Lectures on Statistical Field Theory Random matrices and statistical physics - Homework 3

Grégory Schehr

Cauchy-Binet formula

Let $\Lambda \subset \mathbb{R}$ and let $\phi_{i}, \psi_{j}, 1 \leq i, j \leq N$ as well as w be integrable functions on Λ such that $\phi_{i} \psi_{j} w$ is also integrable on Λ for any i, j. Prove the Cauchy-Binet identity :

$$
\begin{equation*}
\int_{\Lambda^{N}} \operatorname{det}_{1 \leq i, j \leq N}\left[\phi_{i}\left(x_{j}\right)\right] \operatorname{det}_{1 \leq i, j \leq N}\left[\psi_{i}\left(x_{j}\right)\right] \prod_{i=1}^{N} w\left(x_{i}\right) d x_{i}=N!\operatorname{det}_{1 \leq i, j \leq N}\left(\int_{\Lambda} \phi_{i}(x) \psi_{j}(x) w(x) d x\right) . \tag{1}
\end{equation*}
$$

Hint : Use the Leibniz expansion of the determinant of a square matrix.

Derivation of the Airy kernel

Consider the eigenvalues of random matrices belonging to the Gaussian Unitary Ensemble (GUE). Their joint PDF is given by

$$
\begin{equation*}
P_{\text {joint }}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)=\frac{1}{Z_{N}} \prod_{1 \leq i<j \leq N}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{-N \sum_{i=1}^{N} \lambda_{i}^{2}}, \tag{2}
\end{equation*}
$$

where Z_{N} is a normalization constant. They form a determinantal process with a Christoffel-Darboux kernel $K_{N}(x, y)$ given by

$$
\begin{equation*}
K_{N}(x, y)=\sqrt{\frac{N}{\pi}} \frac{1}{2^{N}(N-1)!} e^{-N \frac{\left(x^{2}+y^{2}\right)}{2}} \frac{H_{N}(x \sqrt{N}) H_{N-1}(y \sqrt{N})-H_{N}(y \sqrt{N}) H_{N-1}(x \sqrt{N})}{\sqrt{N}(x-y)} \tag{3}
\end{equation*}
$$

where $H_{k}(x)$ denotes the Hermite polynomial of degree k. They satisfy the following orthogonality condition (note the choice of the physicists' convention)

$$
\begin{equation*}
\int_{-\infty}^{\infty} H_{k}(x) H_{k^{\prime}}(x) e^{-x^{2}}=\delta_{k, k^{\prime}} h_{k}, h_{k}=2^{k} k!\sqrt{\pi} . \tag{4}
\end{equation*}
$$

Using the following asymptotic expansion (known as Plancherel-Rotach formula)

$$
\begin{equation*}
\left.\exp \left(-x^{2} / 2\right) H_{N+m}(x)=(2 N)^{m / 2} \pi^{1 / 4} 2^{N / 2+1 / 4}(N!)^{1 / 2} N^{-1 / 12}\left(\mathrm{Ai}(t)-\frac{m}{N^{1 / 3}} \mathrm{Ai}^{\prime}(t)\right)+\mathcal{O}\left(N^{-2 / 3}\right)\right) \tag{5}
\end{equation*}
$$

where $x=(2 N)^{1 / 2}+2^{-1 / 2} N^{-1 / 6} t$, with $\operatorname{Ai}(x)$ denoting the Airy function, show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\sqrt{2} N^{2 / 3}} K_{N}\left(\sqrt{2}+\frac{u}{\sqrt{2} N^{2 / 3}}, \sqrt{2}+\frac{v}{\sqrt{2} N^{2 / 3}}\right)=K_{\mathrm{Ai}}(u, v) \tag{6}
\end{equation*}
$$

where $K_{\mathrm{Ai}}(u, v)$ is the Airy kernel, given by

$$
\begin{equation*}
K_{\mathrm{Ai}}(u, v)=\frac{\operatorname{Ai}(u) \operatorname{Ai}^{\prime}(v)-\operatorname{Ai}^{\prime}(u) \operatorname{Ai}(v)}{u-v} \tag{7}
\end{equation*}
$$

Free fermions in presence of a hard wall potential and random matrices

Consider N non-interacting fermions, confined on the positive real axis \mathbb{R}^{+}by a quantum potential of the form

$$
\begin{equation*}
V(x)=\frac{1}{2} b^{2} x^{2}+\frac{\alpha(\alpha-1)}{2 x^{2}}, b>0 \& \alpha>1 . \tag{8}
\end{equation*}
$$

3.1) Show that the solution of the Schrödinger equation for this type of "hard wall" potential (8) with the boundary conditions $\varphi_{k}(0)=0$ (due to the hard wall at $x=0$) and $\lim _{x \rightarrow \infty} \varphi_{k}(x)=0$ are of the form

$$
\begin{equation*}
\varphi_{k}(x)=c_{k} e^{-\frac{b x^{2}}{2}} x^{\alpha} \mathcal{L}_{k}^{(\alpha-1 / 2)}\left(b x^{2}\right), \text { with } E_{k}=b(2 k+\alpha+1 / 2), \tag{9}
\end{equation*}
$$

with k a non-negative integer and where $\mathcal{L}_{k}^{(\alpha-1 / 2)}$ is a generalized Laguerre polynomial of degree k and index $\alpha-1 / 2$ and c_{k} some constant. We recall that \mathcal{L}_{k}^{γ} can be written as

$$
\begin{equation*}
\mathcal{L}_{k}^{\gamma}(x)=\sum_{i=0}^{k}\binom{k+\gamma}{k-i} \frac{(-x)^{i}}{i!} \tag{10}
\end{equation*}
$$

3.2) Deduce that the joint PDF of the N non-interacting fermions (in the ground state) reads

$$
\begin{equation*}
P_{\text {joint }}\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z_{N}} \prod_{i=1}^{N} x_{i}^{2 \alpha} \prod_{1 \leq i<j \leq N}\left|x_{i}^{2}-x_{j}^{2}\right|^{2} e^{-b \sum_{i=1}^{N} x_{i}^{2}} . \tag{11}
\end{equation*}
$$

3.3) Besides the GUE studied in a lecture, a well known ensemble is the so-called Laguerre-Wishart ensemble for which the eigenvalues are distributed according to

$$
\begin{equation*}
P_{\text {joint }}\left(\lambda_{1}, \cdots, \lambda_{N}\right)=\frac{1}{\tilde{Z}_{N}} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(\prod_{i=1}^{N} \lambda_{i}^{a}\right) e^{-\sum_{i=1}^{N} \lambda_{i}}, \quad \text { for } \quad \lambda_{i} \geq 0 \quad \forall i=1, \cdots, N . \tag{12}
\end{equation*}
$$

Conclude form (11) that the variables $y_{i}=x_{i}^{2}$ are distributed like the eigenvalues of random matrices belonging to the Laguerre-Wishart ensemble. What is the corresponding parameter a ?

