LECTURES ON STATISTICAL FIELD THEORY
RANDOM MATRICES AND STATISTICAL PHYSICS — Homework 3

Grégory Schehr

Cauchy-Binet formula

Let A C R and let ¢;,%;, 1 <,57 < N as well as w be integrable functions on A such that ¢;v;w
is also integrable on A for any i, j. Prove the Cauchy-Binet identity :
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Hint : Use the Leibniz expansion of the determinant of a square matrix.

Derivation of the Airy kernel

Consider the eigenvalues of random matrices belonging to the Gaussian Unitary Ensemble (GUE).
Their joint PDF is given by
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where Zp is a normalization constant. They form a determinantal process with a Christoffel-Darboux
kernel Kn(z,y) given by
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where Hj(x) denotes the Hermite polynomial of degree k. They satisfy the following orthogonality
condition (note the choice of the physicists’ convention)
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Using the following asymptotic expansion (known as Plancherel-Rotach formula)
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where z = (2N)'/2 4+ 271/2N~1/6¢with Ai(x) denoting the Airy function, show that
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where Kaj(u,v) is the Airy kernel, given by
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Free fermions in presence of a hard wall potential and random
matrices

Consider N non-interacting fermions, confined on the positive real axis R™ by a quantum potential
of the form
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3.1) Show that the solution of the Schrédinger equation for this type of “hard wall” potential (8)
with the boundary conditions ¢ (0) = 0 (due to the hard wall at z = 0) and lim,_, pr(x) = 0 are of
the form
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with k£ a non-negative integer and where Eéa_l/ ) is a generalized Laguerre polynomial of degree k
and index o — 1/2 and ¢, some constant. We recall that £ can be written as
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3.2) Deduce that the joint PDF of the N non-interacting fermions (in the ground state) reads
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3.3) Besides the GUE studied in a lecture, a well known ensemble is the so-called Laguerre-Wishart
ensemble for which the eigenvalues are distributed according to
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Conclude form (11) that the variables y; = x7 are distributed like the eigenvalues of random matrices
belonging to the Laguerre-Wishart ensemble. What is the corresponding parameter a ?



