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Cauchy-Binet formula

Let Λ ⊂ R and let φi, ψj , 1 ≤ i, j ≤ N as well as w be integrable functions on Λ such that φiψjw is also
integrable on Λ for any i, j. Below we prove the Cauchy-Binet identity :∫

ΛN

det
1≤i,j≤N

[φi(xj)] det
1≤i,j≤N

[ψi(xj)]

N∏
i=1

w(xi)dxi = N ! det
1≤i,j≤N

(∫
Λ

φi(x)ψj(x) w(x) dx

)
. (1)

By the Leibniz formula and Fubini’s theorem,

D1 :=
N

det
i,j=1

(∫
Λ

φi(y)φj(y)w(y)dy

)
=
∑
π∈SN

sgn(π)

N∏
i=1

∫
Λ

φi(y)ψπ(i)(y)w(y)dy

=
∑
π∈SN

sgn(π)

∫
ΛN

N∏
i=1

φi(xi)ψπ(i)(xi)

N∏
i=1

w(xi)dxi

and similarly

D2 :=

∫
ΛN

N

det
i,j=1

[φi(xj)]
N

det
i,j=1

[ψi(xj)]dλ
N (x) =

∑
σ,ρ∈SN

sgn(σ)sgn(ρ)

∫
ΛN

N∏
i=1

φi(xσ(i))ψi(xρ(i))dλ
N (x)

(SN denotes the symmetric group of order N , and sgn the signature, or parity of a permutation). We show
that N !D1 = D2. Note that, since the N -fold product measure of w(x1) . . . w(xn)dx1 . . . dxN is invariant with
respect to any permutation of the components xi, we can write

N !D1 =
∑

τ,π∈SN

sgn(π)

∫
ΛN

N∏
i=1

φi(xτ(i))ψπ(i)(xτ(i))

N∏
i=1

w(xi)dxi

=
∑

τ,π∈SN

sgn(π)

∫
ΛN

N∏
i=1

φi(xτ(i))ψi(xτ◦π−1(i))

N∏
i=1

w(xi)dxi ,

where in the rightmost equality above we have simply changed the order of appearance of the elements in the
product inside the integral. Let us pose a change of variable κ = τ ◦ π−1, so that π = κ−1 ◦ τ . Given that
sgn(κ−1 ◦ τ) = sgn(κ−1)sgn(τ) = sgn(κ)sgn(τ), the result follows.

Derivation of the Airy kernel

Consider the eigenvalues of random matrices belonging to the Gaussian Unitary Ensemble (GUE). Their
joint PDF is given by

Pjoint(λ1, λ2, . . . , λN ) =
1

ZN

∏
1≤i<j≤N

(λi − λj)2e−N
∑N

i=1 λ
2
i , (2)
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where ZN is a normalization constant. They form a determinantal process with a Christoffel-Darboux kernel
KN (x, y) given by

KN (x, y) =

√
N

π

1

2N (N − 1)!
e−N

(x2+y2)
2

HN (x
√
N)HN−1(y

√
N)−HN (y

√
N)HN−1(x

√
N)√

N(x− y)
(3)

where Hk(x) denotes the Hermite polynomial of degree k. They satisfy the following orthogonality condition
(note the choice of the physicists’ convention)∫ ∞

−∞
Hk(x)Hk′(x)e−x

2

= δk,k′hk , hk = 2kk!
√
π . (4)

Using the following asymptotic expansion 1

exp(−x2/2)HN+m(x) = (2N)m/2π1/42N/2+1/4(N !)1/2N−1/12
(

Ai(t)− m

N1/3
Ai′(t) +O(N−2/3)

)
(5)

where x = (2N)1/2 + 2−1/2N−1/6t, with Ai(x) denoting the Airy function, show that

lim
N→∞

1√
2N2/3

KN

(√
2 +

u√
2N2/3

,
√

2 +
v√

2N2/3

)
= KAi(u, v) (6)

where KAi(u, v) is the Airy kernel, given by

KAi(u, v) =
Ai(u)Ai′(v)−Ai′(u)Ai(v)

u− v
. (7)

We assume the following asymptotic expansion holds :

exp(−x2/2)HN+m(x
√
N) = π1/42(N+m)/2+1/4((N +m)!)1/2N−1/12(Ai(t)− m

N1/3
Ai′(t) +O(N−2/3))

for x = (2N)1/2 + 2−1/2N−1/6t and m = O(1). Using the above for m = 0,−1, we get

exp(−x2/2)HN (x
√
N) = π1/42N/2+1/4(N !)1/2N−1/12(Ai(u) +O(N−2/3))

and

exp(−x2/2)HN−1(x
√
N) = π1/42(N−1)/2+1/4((N − 1)!)1/2N−1/12(Ai(u) +

Ai′(u)

N1/3
+O(N−2/3))

Using the same expansions with y in place of x and substituting into the Christoffel-Darboux kernel gives

KN (x, y) =

√
N

π

1

2N (N − 1)!
e−N

x2+y2

2
HN (x

√
N)HN−1(y

√
N)−HN (y

√
N)HN−1(x

√
N)√

N(x− y)

=

√
N

π

1

2N (N − 1)!
π1/22N (N − 1)!

√
NN−1/6N

−1/3(Ai(u)Ai′(v)−Ai′(u)Ai(v)) +O(N−2/3)

2−1/2N−1/6(u− v)

=
√

2N2/3 (Ai(u)Ai′(v)−Ai′(u)Ai(v)) +O(N−2/3)

(u− v)

with x =
√

2 + u√
2N2/3

and y =
√

2 + v√
2N2/3

. Dividing by
√

2N2/3 and taking the limit N →∞ gives the Airy

kernel KAi(u, v).

Free fermions in presence of a hard wall potential and random
matrices

Consider N non-interacting fermions, confined on the positive real axis R+ by a quantum potential of the
form

V (x) =
1

2
b2x2 +

α(α− 1)

2x2
, b > 0 & α > 1 . (8)

1. This is same as exp(−x2/2)HN+m(x
√
N) = π1/42(N+m)/2+1/4((N+m)!)1/2N−1/12(Ai(t)− m

N1/3 Ai′(t)+O(N−2/3)) as one

can check using the asymptotics of factorials.
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3.1) Show that the solution of the Schrödinger equation for this type of “hard wall” potential (8) with the
boundary conditions ϕk(0) = 0 (due to the hard wall at x = 0) and limx→∞ ϕk(x) = 0 are of the form

ϕk(x) = cke
− bx2

2 xαL(α−1/2)
k (b x2) , with Ek = b (2k + α+ 1/2) , (9)

with k a non-negative integer and where L(α−1/2)
k is a generalized Laguerre polynomial of degree k and index

α− 1/2 and ck some constant. We recall that Lγk can be written as

Lγk(x) =

k∑
i=0

(
k + γ

k − i

)
(−x)i

i!
. (10)

Solution : It is easy to verify that ϕk(0) = 0 due to the xα term, and limx→∞ ϕk(x) = 0 due to the e−bx
2/2

term. We verify that ϕk(x) satisfies the Schrodinger equation

−1

2

d2

dx2
ϕk(x) + V (x)ϕk(x) = Ekϕk(x).

For simplicity, we denote p(x) := L(α−1/2)
k (x), and we can calculate that

d

dx
ϕk(x) = ck

(
−bxα+1 + αxα−1

)
e−bx

2/2p(bx2) + ck2bxα+1e−bx
2/2p′(bx2), (11)

and

d2

dx2
ϕk(x) =ck

[
−(α+ 1)bxα + α(α− 1)xα−2 + b2xα+2 − αbxα

]
e−bx

2/2p(bx2) + ck
(
−2b2xα+2 + 2bαxα

)
e−bx

2/2p′(bx2)

+ ck
[
2b(α+ 1)xα − 2b2xα+2

]
e−bx

2/2p′(bx2) + ck4b2xα+2e−bx
2/2p′′(bx2).

We can simplify the above expression and get

d2

dx2
ϕk(x) =ck

[
−(2α+ 1)bxα + α(α− 1)xα−2 + b2xα+2

]
e−bx

2/2p(bx2)

+ 4bckx
α

[(
α+

1

2
− bx2

)
p′(bx2) + bx2p′′(bx2)

]
e−bx

2/2. (12)

The Laguerre polynomial of degree k and index α− 1/2 satisfies the equation

xp′′(x) +

(
α+

1

2
− x
)
p′(x) + kp(x) = 0,

so we have

bx2p′′(bx2) +

(
α+

1

2
− bx2

)
p′(bx2) + kp(bx2) = 0.

Plug it into (12), we get that

d2

dx2
ϕk(x) =ck

[
−(2α+ 1)bxα + α(α− 1)xα−2 + b2xα+2

]
e−bx

2/2p(bx2)− 4bkckx
αe−bx

2/2p(bx2)

=
[
−(2α+ 1 + 4k)b+ α(α− 1)x−2 + b2x2

]
ckx

αe−bx
2/2p(bx2).

Thus we have

−1

2

d2

dx2
ϕk(x) + V (x)ϕk(x) =

[(
2k + α+

1

2

)
b− 1

2
α(α− 1)x−2 − 1

2
b2x2

]
ϕk(x) +

(
1

2
b2x2 +

α(α− 1)

2x2

)
ϕk(x)

=

(
2k + α+

1

2

)
bϕk(x) = Ekϕk(x).

Thus ϕk(x) satisfies the Schrodinger equation. Now by the uniqueness of the solution to the ODE, we conclude
that φk(x) is of the form in (13).

3.2) Deduce that the joint PDF of the N non-interacting fermions (in the ground state) reads

Pjoint(x1, x2, · · · , xN ) =
1

ZN

N∏
i=1

x2α
i

∏
1≤i<j≤N

|x2
i − x2

j |2e−b
∑N

i=1 x
2
i . (13)
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Solution : We plug the functions φk in equation (6) to get

Pjoint(x1, ..., xN ) =
1

N !
( det
1≤i,j≤N

[φi(xj)])
2 =

1

N !

(
det

1≤i,j≤N

[
cie
−bx2

j
2 xαj L

(α−1/2)
i (bx2

j )

])2

=
1

ZN
e−b

∑N
j=1 x

2
j

N∏
j=1

x2α
J

∏
i<j

(x2
j − x2

i )
2

where we pulled out all the common factors in the rows and columns of the matrix, the Vandermonde determinant
in the polynomial form and we denoted the product of all the constant factors by 1/ZN .

3.3) Besides the GUE studied in a lecture, a well known ensemble is the so-called Laguerre-Wishart ensemble
for which the eigenvalues are distributed according to

Pjoint(λ1, · · · , λN ) =
1

Z̃N

∏
i<j

(λi − λj)2

(
N∏
i=1

λai

)
e−

∑N
i=1 λi , for λi ≥ 0 ∀i = 1, · · · , N . (14)

Conclude form (13) that the variables yi = x2
i are distributed like the eigenvalues of random matrices belonging

to the Laguerre-Wishart ensemble. What is the corresponding parameter a ?

Solution : Comparing the last expression with yi = x2
i with the Laguerre-Wishart ensemble, we see that they

coincide (taking into account the Jacobian of the transformation xi → yi) when a = α− 1/2.
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