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We compute exact asymptotic results for the probability of the occurrence of large deviations of the largest
�smallest� eigenvalue of random matrices belonging to the Gaussian orthogonal, unitary, and symplectic en-
sembles. In particular, we show that the probability that all the eigenvalues of an �N�N� random matrix are
positive �negative� decreases for large N as �exp �−���0�N2� where the Dyson index � characterizes the
ensemble and the exponent ��0�= �ln 3� /4=0.274653. . . is universal. We compute the probability that the
eigenvalues lie in the interval ��1 ,�2� which allows us to calculate the joint probability distribution of the
minimum and the maximum eigenvalue. As a by-product, we also obtain exactly the average density of states
in Gaussian ensembles whose eigenvalues are restricted to lie in the interval ��1 ,�2�, thus generalizing the
celebrated Wigner semi-circle law to these restricted ensembles. It is found that the density of states generically
exhibits an inverse square-root singularity at the location of the barriers. These results are confirmed by
numerical simulations. Some of the results presented in detail here were announced in a previous paper �D. S.
Dean and S. N. Majumdar, Phys. Rev. Lett. 97, 160201 �2006��.
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I. INTRODUCTION

Studies of the statistics of the eigenvalues of random ma-
trices have a long history going back to the seminal work of
Wigner �1�. Random matrix theory has been successfully ap-
plied in various branches of physics and mathematics, in-
cluding in subjects ranging from nuclear physics, quantum
chaos, disordered systems, string theory, and even in number
theory �2�. Of particular importance are Gaussian random
matrices whose entries are independent Gaussian variables
�2�. Depending on the physical symmetries of the problem,
three classes of matrices with Gaussian entries arise �2�: �N
�N� real symmetric �Gaussian orthogonal ensemble
�GOE��, �N�N� complex Hermitian �Gaussian unitary en-
semble �GUE�� and �2N�2N� self-dual Hermitian matrices
�Gaussian symplectic ensemble �GSE��. In these models the
probability distribution for a matrix M in the ensemble is
given by

p�M� � exp�−
�

2
�M,M�� , �1�

where �M ,M� is the inner product on the space of matrices
invariant, under orthogonal, unitary, and symplectic transfor-
mations, respectively, and the parameter � is the Dyson in-
dex. In these three cases the inner products and the Dyson
indices are given by

�M,M� = Tr�M2�, � = 1 GOE, �2�

�M,M� = Tr�M�M�, � = 2 GUE, �3�

�M,M� = Tr�M†M�, � = 4 GSE, �4�

where an asterisk denotes the Hermitian conjugate of com-
plex valued matrices and a dagger denotes the symplectic
conjugate on quaternion valued matrices. The above qua-

dratic actions are the simplest forms �corresponding to free
fields� of matrix models which have been extensively studied
in the context of particle physics and field theory.

A central result in the theory of random matrices is the
celebrated Wigner semicircle law. It states that for large N
and on average, the N eigenvalues lie within a finite interval
�−�2N ,�2N�, often referred to as the Wigner “sea.” Within
this sea, the average density of states has a semicircular form
�see Fig. 1� that vanishes at the two edges −�2N and �2N

�sc��,N� =� 2

N	2	1 −
�2

2N

1/2

. �5�

The above result means that, if one looks at the density of
states of a typical system described by one of the three en-
sembles above, for a large enough system, it will resemble
closely the Wigner semicircle law.

(2N)1/2(2N)1/2− 0
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FIG. 1. The dashed line shows the Wigner semicircular form of
the average density of states. The largest eigenvalue is centered
around its mean �2N and fluctuates over a scale of width N−1/6. The
probability of fluctuations on this scale is described by the Tracy-
Widom distribution �shown schematically�.
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While the semicircle law provides a global information
about how the eigenvalues are typically distributed, unfortu-
nately it does not contain enough information about the prob-
abilities of rare events. The questions concerning rare events
have recently come up in different contexts. For example,
string theorists have recently been confronted by the possi-
bility that there may be a huge number of effective theories
describing our universe. The landscape made up of these
theories is called the string landscape. This seemingly em-
barrassing situation may, however, help to explain certain
fine tuning puzzles in particle physics. The basic argument is
as follows. Our universe is one which supports intelligent
life and this requires that the ratios of certain fundamental
constants lie in specific ranges. The fine tuning we observe is
thus a necessary condition that we are there to describe it.
Other possible universes would have different vacua but
there would be no intelligent life to study them. This ap-
proach to string theory is called the anthropic principle based
string theory and is a subject of current and intense debate. In
Refs. �3,4� the authors carried out an analysis of the string
landscape based solely on the basis that it is described by a
large N multicomponent scalar potential. Of particular inter-
est is the determination of the typical properties of the vacua
in the string landscape based only on assumptions about the
dimensionality of the landscape and other simple general
features. The motivation for these studies is to determine to
what extent the string landscape is determined by large N
statistics and what features depend on the actual structure of
the underlying string theory.

One of the main questions posed in Ref. �4� is, for a �N
�N� Gaussian random matrix, what is the probability PN
that all its eigenvalues are positive �or negative�? If we de-
note the eigenvalues by �i , 1
 i
N, then the quantity PN is
simply

PN = Prob��1 � 0,�2 � 0, . . . ,�N � 0� . �6�

From the semicircle law, we know that on an average half the
eigenvalues are positive and half of them are negative. Thus
the event that all eigenvalues are negative �or positive� is
clearly an atypical rare event. This question arises in the so
called “counting problem” of local minima in a random mul-
tifield potential or a landscape. Given a stationary point of
the landscape, if all eigenvalues of the Hessian matrix of the
potential are positive, clearly the stationary point is a local
minimum. Thus, the probability that all eigenvalues of a ran-
dom Hessian matrix are positive provides as estimate for the
fraction of local minima among the stationary points of the
landscape. In particular, the authors of Ref. �4� studied the
case where the Hessian matrix was drawn from a GOE en-
semble ��=1�. Thus, in this context PN is just the probability
that a random GOE matrix is positive definite. This probabil-
ity has also been studied in the mathematics literature �5� and
one can easily compute PN for smaller values of N=1,2 ,3.
For example, one can show that �5�

P1 = 1/2, P2 =
2 − �2

4
, P3 =

	 − 2�2

4	
. �7�

The interesting question is how PN behaves for large N? It
was argued in Ref. �4� that for large N, PN decays as PN

�exp�−��0�N2�, where the decay constant ��0� was esti-
mated to be �1 /4 numerically and via a heuristic argument.
The scaling of this probability with N2 is not surprising and
has been alluded to in the literature for a number of years,
notably in relation to studies of the distribution of the index
�the number of negative eigenvalues� of Gaussian matrices
�6,7�. However, an exact expression for ��0� was not avail-
able until only recently, when the short form of this paper �8�
was published. In Ref. �8� we had shown that for all the three
Gaussian ensembles, to leading order in large N

PN � exp�− ���0�N2�, where ��0� =
ln3

4
= �0.274653. . .� .

�8�

Interestingly, the probability PN has also recently shown up
in a rather different problem in mathematics. Dedieu and
Maljovich has shown �5� recently that PN is exactly equal to
the expected number of minima of a random polynomial of
degree at most 2 and N variables. Our result in Ref. �8� thus
provided an exact answer to this problem for large N �5�.

To put our results in a more general context, we note that
the semicircle law tells us that the average of the maximum
�minimum� eigenvalue is �2N �−�2N�. However, for finite
but large N, the maximum eigenvalue fluctuates, around its
mean �2N, from one sample to another. Relatively recently
Tracy and Widom �9� proved that these fluctuations typically
occur over a narrow scale of �O�N−1/6� around the upper
edge �2N of the Wigner sea �see Fig. 1�. More precisely,
they showed �9� that asymptotically for large N, the scaling
variable �=�2N1/6��max−�2N� has a limiting N-independent
probability distribution Prob��
x�=F��x� whose form de-
pends on the value of the parameter �=1, 2, and 4 charac-
terizing, respectively, the GOE, GUE, and GSE. The func-
tion F��x�, computed as a solution of a nonlinear differential
equation �9�, approaches 1 as x→ and decays rapidly to
zero as x→−. For example, for �=2, F2�x� has the follow-
ing tails �9�:

F2�x� → 1 − O�exp�− 4x3/2/3�� as x → 

→ exp�− �x�3/12� as x → −  . �9�

The probability density function dF� /dx thus has highly
asymmetric tails. The distribution of the minimum eigen-
value simply follows from the fact that Prob��min���
=Prob��max
−��. Amazingly, the Tracy-Widom distribution
has since emerged in a number of seemingly unrelated prob-
lems �10� such as the longest increasing subsequence prob-
lem �11�, directed polymers in �1+1� dimensions �12�, vari-
ous �1+1�-dimensional growth models �13�, a class of
sequence alignment problems �14�, mesocopic fluctuations in
dity metal grains and semiconductor quantum dots �15�, and
also in finance �16�.

The Tracy-Widom distribution describes the probability of
typical and small fluctuations of �max over a very narrow
region of width �O�N−1/6� around the mean �max���2N. A
natural question is how to describe the probability of atypical
and large fluctuations of �max around its mean, say over a
wider region of width �O�N1/2�? For example, the probabil-
ity PN that all eigenvalues are negative �or positive� is the
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same as the probability that �max
0 �or �min�0�. Since
�max���2N, this requires the computation of the probabil-
ity of an extremely rare event characterizing a large devia-
tion of �−O�N1/2� to the left of the mean. In Ref. �8� we
calculated the exact large deviation function associated with
large fluctuations of �−O�N1/2� of �max to the left of its
mean value �2N. It was shown that for large N and for all
ensembles

Prob��max 
 t,N� � exp	− �N2���2N − t
�N

�
 , �10�

where t�O�N1/2�
�2N is located deep inside the Wigner
sea. The large deviation function ��y� is zero for y
0, but
is nontrivial for y�0 which was computed exactly in Ref.
�8�. For small deviations to the left of the mean, taking the
y→0 limit of ��y�, one recovers the left tail of the Tracy-
Widom distribution as in Eq. �9�. Thus our result for large
deviations of �−O�N1/2� to the left of the mean is comple-
mentary to the Tracy-Widom result for small fluctuations of
�−O�N−1/6� and the two solutions match smoothly. Also, the
probability PN that all eigenvalues are negative �or positive�
simply follows from the general result in Eq. �10� by putting
t=0,

PN = Prob��max 
 0,N� � exp�− ����2�N2� �11�

thus identifying ��0�=���2�= �ln 3� /4, a special case of the
general large deviation function.

The purpose of this paper is to provide a detailed deriva-
tion of the above results announced in Ref. �8�, as well as
numerical results in support of our analytical formulas. In
addition, we also derive asymptotic results for the joint prob-
ability distribution of the minimum and the maximum eigen-
value.

Statistical analysis motivated by anthropic considerations
in string theory or random polynomials in mathematics may
seem a long way from laboratory based physics. However,
similar questions appear naturally also in providing criteria
of physical stability in dynamical systems or ecosystems
�17,18�. Near a fixed point of a dynamical system, one can
linearize the equations of motion and the eigenvalues of the
corresponding matrix associated with the linear equations
provide important informations about the stability of the
fixed point. For example, if all the eigenvalues are negative
the fixed point is a stable one. In this context, another impor-
tant question arises naturally. Suppose that the dynamical
system is close to a stable fixed point, i.e., all the eigenvalues
are negative. Given this fact, one may further want to know
how these negative eigenvalues are distributed. In other
words, what is the average density of states of the negative
eigenvalues given the fact that one is close to a stable fixed
point. In this paper we will calculate the density of states in
this conditioned ensemble and we will see that it is quite
different from the Wigner semicircle law.

Recently the problem of determining the stability of the
critical points of Gaussian random fields in large-
dimensional spaces was analyzed �19,20�. The Hessian ma-
trix in this case does not have the statistics of a Gaussian
ensemble and the probability that a randomly chosen critical

point is a minimum case be shown to decay as exp�−N�� and
the exponent � can be explicitly calculated in terms of the
two point correlation function of the Gaussian field. Thus the
scaling in N is quite different to the random matrix case and
this scaling obviously makes minima much more likely and
yields a more usual thermodynamic scaling of the entropy of
critical points �19�. The statistics of the Gaussian field prob-
lem are perhaps more relevant to statistical landscape sce-
narios in string theory.

The paper is organized as follows. In Sec. II we begin by
recalling the Coulomb gas representation of the distribution
of eigenvalues of Gaussian matrices and show how our prob-
lem can be formulated by placing a hard wall constraint on
the Coulomb gas. This is the key step in the method and the
technique has since been applied to analyze the statistics of
critical points of Gaussian random fields �19� and also to
study the probability of rare fluctuations of the maximal ei-
genvalue of Wishart random matrices �21�. We then show
how in the large N limit the problem can be solved using a
saddle-point computation of a functional integral and we dis-
cuss the features of our analytic results. In Sec. III, we ex-
tend this method to compute the asymptotic joint probability
distribution of the minimum and the maximum eigenvalue.
This requires studying the Coulomb gas confined between
two hard walls. In Sec. IV we carry out some numerical
work to confirm our predictions about the probability of ex-
treme deviations of the maximal eigenvalue. We show how
the Coulomb gas formulation can again be exploited even for
numerical purposes. Finally we present our conclusions in
Sec. V.

II. THE COULOMB GAS FORMULATION AND THE
PROBABILITY OF RARE FLUCTUATIONS

The joint probability density function �PDF� of the eigen-
values of an N�N Gaussian matrix is given by the classic
result of Wigner �1,2�

P��1,�2, . . . ,�N� = BN exp	−
�

2
��

i=1

N

�i
2 − �

i�j

ln���i − � j���
 ,

�12�

where BN normalizes the pdf and �=1, 2, and 4 correspond,
respectively, to the GOE, GUE, and GSE. The joint law in
Eq. �12� allows one to interpret the eigenvalues as the posi-
tions of charged particles, repelling each other via a 2D Cou-
lomb potential �logarithmic�; they are confined on a 1D line
and each is subject to an external harmonic potential. The
parameter � that characterizes the type of ensemble can then
be interpreted as the inverse temperature.

Once the joint PDF is known explicitly, other statistical
properties of a random matrix can, in principle, be derived
from this joint PDF. In practice, however, this is often a
technically daunting task. For example, suppose we want to
compute the average density of states of the eigenvalues de-
fined as ��� ,N�=�i=1

N ���−�i�� /N, which counts the average
number of eigenvalues between � and �+d� per unit length.
The angled bracket ¯� denotes an average over the joint
PDF. It then follows that ��� ,N� is simply the marginal of
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the joint PDF, i.e, we fix one of the eigenvalues �say the first
one� at � and integrate the joint PDF over the rest of the
�N−1� variables.

���,N� =
1

N
�
i=1

N

��� − �i�� = �
−



�
i=2

N

d�iP��,�2, . . . ,�N� .

�13�

Wigner computed this marginal and showed �1� that for large
N and for all � it has the semicircular form in Eq. �5�.

Here we are interested in calculating the probability QN���
that all eigenvalues are greater than some value �. This prob-
ability is clearly also equal to the cumulative probability that
the minimum eigenvalue �min=min��1 ,�2 , . . . ,�N� is greater
than �, i.e.,

QN��� = Prob��1 � �,�2 � �, . . . ,�N � ��

= Prob��min � �,N� . �14�

Since the Gaussian random matrix has the x→−x symmetry,
it follows that the maximum eigenvalue �max has the same
statistics as −�min. Hence, it follows that

Prob��max 
 t,N� = QN�� = − t� . �15�

Hence, knowing QN��� will also allow us to compute the
cumulative distribution of the maximum. Also, note that the
probability PN that all eigenvalues are positive �or negative�,
as defined in the introduction, is simply

PN = QN�0� . �16�

In what follows, we will compute QN��� in the scaling limit
where ���N for large N. For this we will employ the
saddle-point method in the framework of the Coulomb gas.

By definition

QN��� = �
�



¯�
�



P��1,�2, . . . ,�N�d�1d�2 ¯ d�N,

�17�

where P is the joint PDF in Eq. �12�. This multiple integral
can be written as a ratio

QN��� =
ZN���

ZN�− �
, �18�

where the partition function ZN��� is defined as

ZN��� = �
�



¯�
�



exp	−
�

2
��

i=1

N

�i
2 − �

i�j

ln���i − � j���

�d�1d�2 ¯ d�N. �19�

Note that the normalization constant BN=1 /ZN�−�. Clearly,
for any finite �, ZN��� represents the partition function of the
Coulomb gas which is constrained in the region �� ,�, i.e., it
has a hard wall at � ensuring that there are no eigenvalues to
the left of �.

From the semicircle law, it is evident a typical eigenvalue
scales as �N for large N. This is also evident from Eq. �19�
where the Coulomb interaction term typically scales as N2

for large N while the energy corresponding to the external
potential scales as �2N. In order that they balance, it follows
that typically ���N. It is therefore natural to rescale �i

=�i /�N so that the rescaled eigenvalue �i�O�1� for large
N. In terms of the rescaled eigenvalues, the partition function
reads

ZN��� � �
�i���/�N�



�
i=1

N

d�i exp�− �H���� ,

where the Hamiltonian of the Coulomb gas is

H��� =
N

2 �
i=1

N

�i
2 −

1

2�
i�j

ln���i − � j�� . �20�

A. Functional integral, large N saddle-point analysis and the
constrained charge density

We first define the normalized �to unity� spatial density
field of the particles �i as

���� =
1

N
�
i=1

N

��� − �i� . �21�

This is just a “counting” function so that ����d� counts the
fraction of eigenvalues between � and �+d�. The energy of
a configuration of the �i’s can be expressed in terms of the
density � as

H��� = N2E��� , �22�

where

E��� =
1

2
� d��2���� −

1

2
� d�d�����������ln��� − ����

+
1

2N
� d�����ln�l���� . �23�

The last term above removes the self interaction energy from
the penultimate term and l��� represents a position-
dependent cutoff. Dyson �23� argued that l����1 /���� and
hence this correction term has the form

� d�����ln�l���� = −� d�����ln������ + C�, �24�

where C� is a constant that cannot be determined by this
argument, but one may assume that it is independent of the
position of the hard wall. However, in this paper, we will be
interested only in the leading O�N2� behavior and hence pre-
cise value of the constant C� does not matter.

The hard wall constraint can now be implemented simply
by the condition

���� = 0 for � �
�

�N
. �25�

The partition function may now be written as a functional
integral over the density field � as
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ZN��� =� d���J���exp�− �N2E���� , �26�

where J��� is the Jacobian involved in changing from the
coordinates �i to the density field �. Physically this Jacobian
takes into account the entropy associated with the density
field �. For the sake of completeness we will rederive a fa-
miliar form of the Jacobian J���. Clearly J can be written, up
to a constant prefactor DN, as

J��� = DN� �
i=1

d�i�	N���� − �
i

��� − �i�
 , �27�

where the integration range of the �i above are restricted to
the appropriate region. One now proceeds by making a func-
tional Fourier transform representation of the � function at
each point �. This gives

J��� = DN�� �
i=1

d�id�g�exp�� d�g���	N����

− �
i

��� − �i�
� , �28�

where each g��� integral is along the imaginary axis and DN�
is a constant prefactor. The integral over the �i may now be
carried out giving

J��� = DN�� d�g�exp	N� d�g�������
�
i=1

N

d�i exp�− g��i��

= DN�� d�g�exp�N� d�g�������

+ N ln�� d� exp�− g������ . �29�

The above functional integral over g can be evaluated by
saddle point for large N and the corresponding saddle-point
equation �obtained via stationarity with respect to g� is

���� =
exp�− g����

� d�� exp�− g�����
. �30�

We see that the normalization

� d����� = 1 �31�

is respected. Substituting in this solution for g we find that

J��� = DN� exp�− N� d�����ln������� , �32�

from which we can read off the entropy corresponding to the
density field �.

Putting this all together we find

ZN��� = AN� d����	� d����� − 1

�exp�− N� d�����ln������ − �N2E���� ,

�33�

where AN is a prefactor and the delta function enforces the
normalization condition in Eq. �31�. One simple way to in-
corporate this delta function constraint is to introduce a
Lagrange multiplier C �corresponding to writing the delta
function constraint in the Fourier representation� and rewrite
the partition function as

ZN��� = AN�� dCd���exp	− �N2���� − N�1 −
�

2
�

�� d�����ln������
 , �34�

where AN� is a constant and the “renormalized” action is ex-
plicitly

���� =
1

2
� d��2���� −

1

2
� d�d�����������ln��� − ����

+ C	� d����� − 1
 . �35�

The O�N� term in Eq. �34� includes both the entropy of the
density field and the self-energy subtraction following the
Dyson prescription discussed before. While this prescription
is difficult to justify rigorously, we need not pursue this issue
here since we are interested only in the leading O�N2� be-
havior.

The functional integral in Eq. �34� can thus be evaluated
by the saddle-point method in the variable N2 and the term of
order N coming from the entropy and self-energy subtraction
is negligible in the large N limit. We thus find that in the
saddle-point analysis, for large N,

ZN��� = exp�− �N2���c� + O�N�� , �36�

where �c��� is the density field that minimizes the action
���� in Eq. �35�. Minimizing ����, it follows that �c���
satisfies the integral equation

�2

2
+ C = �

z



d���c����ln��� − ���� , �37�

where we have introduced the scaled variable z=� /�N. The
normalization and boundary conditions for �c���, in terms of
the scaled variable z, are

�
z



d��c��� = 1, �c��� = 0 for � � z . �38�

The partition function then reads

ZN�z� = exp�− �N2S�z� + O�N�� , �39�

where
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S�z� = min
�

������ = ���c� . �40�

Let us remark here that in the unconstrained case �z=−� the
Wigner semicircle law can also be obtained from the saddle-
point method �2�. The Couloumb gas and the saddle-point
method was also used for a class of constrained GUE �fixed
trace enemble� problems �22�. However, to our knowledge
the constrained problem in presence of a hard wall has never
been analyzed using this approach. In addition, the effective
free energy is not extensive: it scales as N2 rather than N due
to the long-range nature of the logarithmic interparticle in-
teraction. The entropy term is extensive and is contained in
the O�N� term in Eq. �39�. However, the entropy is subdomi-
nant, and the free energy is dominated by the energetic com-
ponent.

Differentiating Eq. �37� with respect to � we get

� = P�
z



d��
�c����
� − ��

, �41�

where P indicates the Cauchy principal part. It is convenient
to shift the variable � by writing

� = z + x �42�

and where x�0 is now positive and x=0 denotes the loca-
tion of the infinite barrier. In terms of the shifted variable, we
denote the density field as

�c�� = x + z� = f�x;z� . �43�

Equation �41� then becomes

x + z = P�
0



dx�
f�x�;z�
x − x�

. �44�

This integral equation is of the general form

g�x� = �H+f��x� = P�
0



dx�
f�x��
x − x�

, �45�

with g�x�=x+z. The right-hand side �RHS� of the above
equation is just the semi-infinite Hilbert transform of the
function f�x�. The main technical challenge is to invert this
half Hilbert transform. Fortunately this inversion can be done
for arbitrary g�x� using Tricomi’s theorem �24�. To apply
Tricomi’s theorem, we first assume, to be verified aposteriori,
that f�x� has a finite support over �0,L�, so that the integral
in Eq. �44� can be cutoff at L at the upper edge. Then the
solution for f�x� is given by Tricomi’s theorem �24�

f�x� = −
1

	2�x�L − x��P�
0

L

dx��x��L − x��
g�x��
x − x�

+ C�� ,

�46�

where C� is an arbitrary constant which can be fixed by
demanding that f�x� vanishes at x=L. Applying this formula
to our case with g�x�=x+z and performing the integral in Eq.
�46� using MATHEMATICA, we get

f�x;z� =
1

2	�x
�L�z� − x �L�z� + 2x + 2z�, x � �0,L�z��,

f�x;z� = 0, x � 0 and x � L�z� , �47�

where we have made the z dependence of L�z� explicit. The
value of L�z� is now determined from the normalization of
f�x ;z�, i.e., �0

L�z�f�x ;z�dx=1 and one gets

L�z� =
2

3
��z2 + 6 − z� �48�

which is always positive. We also see that in terms of the
variable �=x+z, the support of �c��� is between the barrier
location at z and an upper edge at �=z+L�z�= 2

3 ��z2+6
+2z�.

Let us make a few observations about the constrained
charge density �c��=x+z�= f�x ;z� in Eqs. �47� and �48�.
Physically, the charge density f�x ;z� must be positive for all
x including x=0. Now, as x→0, i.e., as one approaches the
infinite barrier from the right, it follows from Eq. �47� that
f�x ;z� diverges as x−1/2, i.e., the charges accumulate near the
barrier. However, for it to remain positive at x=0, it follows
from Eq. �47� that we must have L�z�+2z�0. This happens,
using the expression of L�z� from Eq. �48�, only for z�
−�2. Thus the result in Eq. �47� is valid only for z�−�2. To
understand the significance of z�−�2, we note that when
z=−�2, i.e., when the barrier is placed exactly at the left-
most edge of the Wigner sea, we recover the Wigner semi-
circle law from Eqs. �47� and �48�. We get L�z=−�2�=2�2
�the support of the full semicircle�, i.e., f�x ;−�2� is nonzero
for 0
x
2�2. In terms of the original variable �=x+z=x
−�2, �c��� is nonzero in the region −�2
�
�2 and is
given by, within this sea to the right of the barrier, in terms of
the original variable �

�c��� =
1

	
�2 − �2. �49�

When z becomes smaller than −�2, the solution in Eq. �47�
remains unchanged from its semicircular form at z=−�2. In
other words, for z
−�2, the solution sticks to its form at z
=−�2. Physically, this means that if the barrier is placed to
the left of the lower edge of the Wigner sea, it has no effect
on the charge distribution. Note that the above fact, in con-
junction with Eq. �40�, indicates that

S�z� = S�− �2� for all z 
 − �2 �50�

including, in particular,

S�− � = S�− �2� �51�

a result that we will use later.
The charge density �c��=x+z�= f�x ;z� changes its shape

in an interesting manner as one changes the barrier location
z. For z�−�2 the global maximum of f�x ;z� is always at
x=0 �at the barrier� where it has a 1 /�x integrable singular-
ity. For −�2�z�−�3 /4, the density is nonmonotonic and in
addition to the square root divergence at x=0, f�x ;z� devel-
ops a local minimum and a local maximum, respectively, at
x= �L��−3L2−8zL� /4. For z�−�3 /4, the density f�x ;z�
decreases monotonically with increasing x. In Fig. 2 we
show the behavior of f�x ;z� for three representative values of
z. An interesting point about the eigenvalue distribution
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f�x ;z� given Eq. �47� is that, for z�−�2 there is a strong
accumulation of eigenvalues at the barrier location x=0 or,
equivalently, at �=z. In the case z=0 if one thinks of the
eigenvalues as being associated about the vacuum of a
�stable� field theory then there is an accumulation of modes
of mass close to zero, a fact that may have consequences in
the context of anthropic principal based string theory or in
other physical systems where only stable configurations can
be observed.

B. Large deviations of the maximum or the minimum

Having computed the constrained charged density �c���,
we next calculate the action S�z�=���c� at the saddle point.
In order to calculate ���c� from Eq. �35�, we will use the
explicit saddle-point solution �c��=x+z�= f�x ;z� obtained in
Eq. �47�. In fact, one can simplify the expression of the
saddle-point action by using the integral Eq. �37� satisfied by
the saddle-point solution. We multiply Eq. �37� by �c��� and
integrate over �. Using the normalization ��c���d�=1 one
gets

� d�d���c����c����ln��� − ���� = C +
1

2
� �2�c���d� ,

�52�

where C is the Lagrange multiplier to be determined. Substi-
tuting this result in Eq. �35� and the fact ��c���d�=1 we get

���c� = −
1

2
C +

1

4
� �2�c���d� . �53�

To determine the Lagrange multiplier C, we put �=z in Eq.
�37�. In the integral on the RHS of Eq. �37� we then make the
usual shift, ��=z+x� and use �c����= f�x� ;z� to get

C = −
1

2
z2 + �

0

L�z�

dx�f�x�;z�ln�x�� , �54�

where f�x ;z� is explicitly given in Eq. �47� and L�z� in Eq.
�48�. Substituting the expression of C in Eq. �53� and
�c����= f�x� ;z� we finally get

���c� =
1

4
z2 −

1

2
�

0

L�z�

dx ln�x�f�x;z� +
1

4
�

0

L�z�

dx�x + z�2f�x;z�

�55�

with f�x ;z� given explicitly in Eq. �47�. The integrals can
again be performed explicitly using MATHEMATICA and using
Eq. �40� we get the following expression for the saddle-point
action:

S�z� =
1

216
�72z2 − 2z4 + �30z + 2z3��6 + z2 + 27�3 + ln�1296�

− 4 ln�− z + �6 + z2��� . �56�

The partition function ZN��=�Nz� is then given by Eq. �39�.
Note also, using Eq. �51�, we have

ZN�− � = exp�− �N2S�− �2� + O�N�� , �57�

where S�−�2�= �3+ln�4�� /8 from Eq. �56�. Taking the ratio
in Eq. �18� gives us QN���, the probability QN��� that all
eigenvalues are to the right of �=�Nz

QN��� = exp	− �N2�� �

�N
� + O�N�
 , �58�

where ��z�=S�z�−S�−�2� is given by

��z� =
1

108
�36z2 − z4 + �15z + z3��6 + z2

+ 27�ln�18� − 2 ln�− z + �6 + z2��� . �59�

The probability that all eigenvalues are positive �or negative�
is simply

PN = QN�� = 0� � exp�− � ��0� N2� , �60�

where

��0� =
ln�3�

4
= 0.274653 . . . . �61�

Finally let us turn to the large deviation function associated
with large negative fluctuations of �−O�N1/2� of �max to the
left of its mean value �2 N. Substituting the expression for
QN��� from Eq. �58� in Eq. �15� we get

Prob��max 
 t,N� = QN�� = − t�

= exp	− �N2��−
t

�N
� + O�N�
 .

�62�

Noting that �max�=�2N, it is useful to center the distribution
around the mean and rewrite Eq. �62� as

Prob��max 
 t,N� = exp	− �N2���2N − t
�N

�
 , �63�

where the large deviation function ��y�=��y−�2� with ��z�
given explicitly in Eq. �59�.

One can easily work out the asymptotic behavior of ��y�
for small and large y. For example, it is easy to see that

0 1 2
x

0

1

2

3

f(
x;

z)

FIG. 2. �Color online�: Plots of the density of states f�x ;z� as a
function of the shifted variable x for z=−1 �dotted�, z=0 �solid�,
and z=0.5 �dashed�.
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��y� �
y3

6�2
as y → 0,

�
y2

2
as y →  . �64�

In particular, when �2N− t��N, i.e., we are rather close to
the right edge �max�=�2N of the Wigner sea �see Fig. 3�, it
follows that the scaling variable y= ��2N− t� /�N�1. Hence
substituting the small y behavior of ��y��y3 /6�2 from Eq.
�64� in Eq. �63�, it follows that in this regime

Prob��max 
 t,N� � exp�−
�

24
���2N1/6�t − �2N���3� .

�65�

Note that this matches exactly with the left tail behavior of
the Tracy-Widom limiting distribution for all the three cases
�=1, 2, and 4 �25�. For example, for �=2, one can easily
verify by comparing Eqs. �65� and �9�. This is to be expected
because the Tracy-Widom distribution describes the distribu-
tion of �max around its mean �2N over a scale �O�N−1/6�. If
we want to investigate the probability of negative fluctua-
tions of order ��2N− t��N−1/6, we need to look at the left
tail of the Tracy-Widom distribution. On the other hand,
those negative fluctuations of order N−1/6� ��2N− t���N
are described by the small argument behavior of the large
deviation function. These two behaviors thus should
smoothly match. As we verified above, they do indeed match
smoothly, thus providing another confirmation of our exact
result. Moreover, our large deviation function provides an
alternative way to compute the left tail of the Tracy-Widom
distribution for all �.

III. COULOMB GAS BOUNDED BY TWO WALLS: THE
JOINT PROBABILITY DISTRIBUTION OF �min

AND �max

In this section we compute, by the Coulomb gas method,
the probability RN��1 ,�2� that all eigenvalues are in the in-
terval ��1 ,�2� where �2��1. Evidently, in the limit �2→,
RN�� ,�=QN��� which was computed in the previous sec-
tion. Clearly, RN��1 ,�2� is also the cumulative probability
that �min��1 and �max
�2, i.e.,

RN��1,�2� = Prob��1 
 �1 
 �2,�1 
 �2 
 �2, . . . ,�1 
 �N


 �2� = Prob��min � �1,�max 
 �2� . �66�

In other words, RN��1 ,�2� provides the joint probability dis-
tribution of the minimum and the maximum eigenvalue. By
definition,

RN��1,�2� = �
�1

�2

¯�
�1

�2

P��1,�2, . . . ,�N�d�1d�2 ¯ d�N,

�67�

where P is the joint PDF in Eq. �12�. As in the previous
section, this multiple integral can be written as a ratio of two
partition functions

RN��1,�2� =
�N��1,�2�
ZN�− �

, �68�

where

�N��1,�2� = �
�1

�2

¯�
�1

�2

exp	−
�

2
��

i=1

N

�i
2 − �

i�j

ln���i − � j���

�d�1d�2 ¯ d�N �69�

and ZN�−�=�N�− ,� is the same normalization constant
as in Eq. �18�. Thus, �N��1 ,�2� represents the partition func-
tion of the Coulomb gas that is sandwiched in the region
��1 ,�2� bounded by the two hard walls at its boundaries.

We then evaluate this partition function in the large N
limit using the saddle-point method. The formalism is ex-
actly same as in the previous section. We first define a count-
ing function ���� that is nonzero only in the region

�1
�N


�



�2
�N

and is zero outside. The rest of the calculation is similar
as in the previous section, except that all the integrals run
over the region �� �z1 ,z2�, where z1=�1 /�N and z2=�2 /�N.
The action ���� is exactly as in Eq. �35�. Thus the partition
function, in the large N limit, behaves as

�N��1,�2� = exp�− � N2 ���c� + O�N�� , �70�

where the saddle-point density �c���, in terms of scaled vari-
ables z1=�1 /�N and z2=�2 /�N, satisfies the integral equation

� = P�
z1

z2

d��
�c����
� − ��

, �71�

where P indicates the Cauchy principle part. Next we intro-
duce the shift

� = z1 + x �72�

and define W=z2−z1. Since z1
�
z2, it follows that 0

x
W. Thus x=0 denotes the location of the left barrier
and x=W denotes the location of the right barrier. In terms of
the shifted variable, we rewrite the density field as

�c�� = z1 + x� = f�x;z1,W� . �73�

Equation �71� then reduces to the integral equation

x + z1 = P�
0

W

dx�
f�x�;z1,W�

x − x�
. �74�

The integral Eq. �74� can again be solved using Tricomi’s
theorem. Note that this equation has almost similar form as
Eq. �44� except that the integral on the RHS of Eq. �74� runs
up to W. From the solution of Eq. �44� presented in Eq. �47�
we learned that the density f is nonzero only for 0
x

L�z� and is zero for x�L�z�, where L�z�= 2

3 ��z2+6−z�. So,
comparing to Eq. �74� we see that there are two possibilities.

�i� If W=z2−z1�L�z1�, the solution f�x ;z1 ,W� will be
exactly the same as f�x ;z1� presented in Eq. �47�. In this
case, the Coulomb gas does not feel the presence of the right
barrier at z2. In other words, the solution f�x ;z1 ,W�
= f�x ;z1 ,� is completely independent of W and one can
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effectively put W→, i.e., put the right barrier at infinity.
Thus in the case, the charge density diverges as x−1/2 at the
left barrier and vanishes at x=L�z1�.

�ii� If W=z2−z1�L�z1�, then the solution will be given by
Eq. �46� with L replaced by W. Using g�x�=x+z1 in Eq. �46�
and performing the integral on the RHS we get

f�x;z1,W� =
1

8	�x�W − x�
�W2 + 4W�x + z1�

− 8x�x + z1� + B�� , �75�

where B� is an arbitrary constant. The normalization condi-
tion �0

Wf�x ;z1 ,W�dx=1 fixes the constant B�=8. In this case,
the charge density diverges �with a square root singularity� at
the locations of both the left barrier �x=0� and the right
barrier �x=W�.

Thus, putting �i� and �ii� together, we find that the solution
for the equilibrium charge density f�x ;z1 ,W� for the Cou-
lomb gas sandwiched between two barriers is given by

f�x;z1,W� =
1

8	�x�l − x�
�l2 + 4l�x + z1� − 8x�x + z1� + 8�

for 0 
 x 
 l , �76�

where

l = min	W = z2 − z1,L�z1� =
2

3
��z1

2 + 6 − z1�
 . �77�

Clearly, in the limit W→, we indeed recover the results of
the previous section. Summarizing �see Fig. 3�, if one fixes
the left barrier at z1 and varies the position of the right barrier
z2 �equivalently by varying the distance W=z2−z1 between
the two walls�, one finds that the charge density at the left
barrier always diverges. On the other hand, the behavior of
the density near the right barrier undergoes a sudden change
as W increases beyond a critical value Wc=L�z1�= 2

3 ��z1
2+6

−z1�. The density at the right wall diverges as long as W
�Wc, i.e., z2�z1+L�z1�. But when W�Wc or equivalently
z2�z1+L�z1�, the charge density goes to zero at the right
edge of the support at L�z1��W. A similar type of phase
transition was also found in the context of Wishart random
matrices �21� and more recently in the context of bipartite
entanglement �26�.

Having determined the charge density �c���= f�x=�
+z1 ;z1 ,W�, the saddle-point action ���c�, is then determined
via the following equation that is analogous to Eq. �55�:

���c� =
1

4
z1

2 −
1

2
�

0

l

dx ln�x�f�x;z1,W�

+
1

4
�

0

l

dx�x + z1�2f�x;z1,W� , �78�

where W=z2−z1 and f�x ;z1 ,W� and l are given, respectively,
in Eqs. �76� and �77�. Denoting the saddle-point action
S�z1 ,W�=���c� and evaluating explicitly the integrals in Eq.
�78� we get for W�L�z1�

S�z1,W� =
1

32
	32 ln�2� − 16 ln�W� + 16z1

2 + 6W2 + 16Wz1

− 2W2z1
2 − 2W3z1 −

9

16
W4
 . �79�

For W�L�z1�, S�z1 ,W� becomes independent of W and
sticks to its value S�z1 ,L�z1��. On the other hand, we know
that when W→, S�z1 ,� must be equal to the action S�z1�
for a single wall as given in Eq. �56�. Indeed, one can check
explicitly that S�z1 ,L�z1��=S�z1�, thus confirming the expec-
tation.

The partition function, in terms of the scaled variables z1
and z2, then follows from Eq. �70�

�N�z1,z2� = exp�− �N2S�z1,W� + O�N�� . �80�

Note that the denominator ZN�−� in Eq. �67� is still given
by Eq. �57�, where S�−�2�= �3+ln�4�� /8. Hence taking the
ratio in Eq. �67� and using Eq. �80� we get the joint prob-
ability RN��1 ,�2� for large N
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FIG. 3. �Color online�: The charge density f�x ;z1 ,W� for z1=0
and W=1 and W=2, respectively. When the left wall location z1

=0, L�0�=�8 /3=1.63299. Thus the critical value of the distance W
between the walls is Wc=1.63299. On the left panel, W=1�Wc

�subcritical� where the charge density diverges �square root singu-
larity� at the location of second wall x=W. On the right panel, W
=2�Wc �supercritical� where the charge density goes to zero as x
→Wc=L�0��W.
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RN��1,�2� = exp	− �N2�� �1

�N
,

�2

�N
� + O�N�
 , �81�

where

��z1,z2� = S�z1,W = z2 − z1� −
3 + ln�4�

8
�82�

with S�z1 ,W� given by Eq. �79�. One can check easily that
when the second wall moves to infinity, i.e., z2→,
��z1 ,�=��z1�, where ��z� is given in Eq. �59�. Thus, Eq.
�81� for the joint distribution of �min and �max is a generali-
zation of Eq. �58� that describes only the distribution of �min.

IV. NUMERICAL RESULTS

The reader will realize that the numerical confirmation of
the analytical results of the previous section is a delicate and
potentially computation intensive task. For simplicity we
will restrict our selves to the case of the GOE but the meth-
ods used can be extended to the other ensembles. The sim-
plest way to compute the probability that all eigenvalues are
greater than some value is to numerically generate matrices
from the required ensemble, diagonalize them, and then
count the number m+ that satisfy the eigenvalue constraint
required. However, because of the order N2 suppression of
this probability found here, for large N the number of matri-
ces m that one would need to generate before seeing a single
matrix satisfying the constraint is huge. The estimate for the
probability that all eigenvalues are positive in this method is
given by

QN�0� =
m+

m
. �83�

In Ref. �4� an approximate argument for the GOE ��=1� was
made yielding �=1 /4 and a subsequent numerical study on
matrices up to 7�7 with an N-dependent fit �=aN� yielded
�=2.00387 and a=0.3291 �27� was found. However, given
that there are O�N� corrections and the size of the systems
studied are so small this fit cannot be taken too seriously. In
fact one can use the Coulomb gas representation of the ei-
genvalues of Gaussian ensembles in order to numerically
compute ��0� for much larger values of N. However, as a test
of this method for smaller values of N we may adopt the
direct enumeration approach of �4� but slightly improve it to
gain a few extra values of N.

If all the eigenvalues of a matrix are positive then for any
vector v we must have that

�v,Mv� � 0. �84�

In particular, if we choose the vector v to be one of the N
basis vectors ei then Eq. �84� implies that

�ei,Mei� = Mii � 0, �85�

and so if M is positive �in the operator sense�, all of the
diagonal elements must be positive. The estimation of QN�0�
can thus be slightly improved by increasing the chances of
seeing a positive matrix by forcing the diagonal elements to
be positive. With respect to the simplest form of enumera-

tion, the matrices M� generated are the same as those for the
GOE but the diagonal elements are replaced with their abso-
lute value. The probability that a given matrix M has all
diagonal elements positive is 1 /2N, thus if m+

� denotes the
number of these so generated matrices �with positive diago-
nal elements� then the estimation of the probability that a
GOE matrix is positive is given by

QN�0� =
1

2N

m�

m
. �86�

For small N this method thus appreciably increases the prob-
ability of generating positive matrices and thus enhances the
accuracy of the estimate for QN�0�. Even so using this
method it is virtually impossible to obtain meaningful results
for N�8. The results obtained by this modified enumeration
method are shown in Fig. 4 �squares�.

For large N it is in fact much better to evaluate QN�0�
directly from Eq. �18� via a Monte Carlo method. We note
that we can write

1

�2	�N/2Z�− � = G���� , �87�

where G���=�i�j��i−� j�� and the angled bracket indicates
the average is over �i taken to be independent and Gaussian
of zero mean and unit variance. The term Z�0� can also be
related to the expectation over �i which are similarly inde-
pendent and Gaussian of zero mean and unit variance but
conditioned to be positive, and we denote the average of with
respect to these variables by ·�+. We find that

2N

�2	�N/2Z�0� = G����+, �88�

the left-hand side now has the form of a conditional average,
the factor of 2N giving the correct normalization for the con-
ditioned probability distribution. Putting all this together
yields

0 10 20 30 40
N

-400

-300

-200

-100

0

ln
(Q

N
(0

))

FIG. 4. Monte Carlo computation of ln�QN�0�� for the GOE
�black circles error at large N indicated by the size of the circles�
along with quadratic fit �solid line�. Shown as squares are the results
obtained by modified enumeration.
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QN�0� =
1

2N

G����+

G����
. �89�

The two expectation values can be computed via Monte
Carlo sampling, the unconditioned one by using Gaussian
random variables and the second trivially by using the abso-
lute value of Gaussian random variables. Shown in Fig. 4 is
a plot of ln�QN�0�� for the GOE ��=1� ensemble measured
as described above �circles�, we see that the agreement for
small N with the results obtained by modified enumeration
approach is excellent. For larger values of N we have used
5�108 Monte Carlo samplings and there is a significant
amount of fluctuation as indicated by the error bars. The
Monte Carlo results were fitted using the fit a fit ax2+bx+c,
for values of N between 3 and 35, the fit yields a=−0.272,
b=−0.493, and c=0.244 which is in good agreement with
that predicted here. However given the errors for large N and
the fact that there are probably corrections of O�ln�N��, the
numerical estimate for the exponent probably on has about a
10% accuracy.

Also, by direct sampling over Gaussian matrices, one can
numerically evaluate the rescaled density for states for ma-
trices having only positive eigenvalues. Because we use the
direct sampling method we are clearly restricted to small
values of N, however, in Fig. 5 we show the analytical large
N result for f with that computed numerically for matrices
with N=6 and for N=7, we see that despite the small value
of N the agreement is already rather good, the main deviation
being in the tails for large �.

V. CONCLUSIONS

In this paper we have shown how the Coulomb gas for-
mulation of the distribution of eigenvalues of �N�N� Gauss-
ian random matrices can be exploited to derive exact

asymptotic results concerning the extreme value statistics of
their eigenvalues. Our main results are summarized as fol-
lows. �i� We have shown the probability PN that all eigenval-
ues are positive �or negative� �or equivalently the probability
that �min�0 or �max
0� decays as PN� exp�−� ��0� N2�
for large N where ��0�=ln�3� /4=0.274653. . . and � is the
Dyson index. �ii� More generally, we have computed the
probability Prob��max
 t ,N� that the maximal eigenvalue is
located deep within the Wigner sea region, far to the left
from its average value �2N, i.e., when t�O�N1/2�
�2N.
This probability has the asymptotic form �exp�
−� N2 ��

�2N−t
�N

�� for large N, where the large deviation func-
tion ��y� has been computed exactly. �iii� We have also
computed the asymptotic joint probability distribution of
�min and �max.

Our result in �ii�, valid when �2N− t�O�N1/2� �deep in-
side the Wigner sea� is complimentary to the Tracy-Widom
�9� result that concerns the distribution of �max about its
mean value �near the edge� over a small range of width
�N−1/6, i.e., for �2N− t�O�N−1/6�. We have demonstrated
explicitly how these two results match up smoothly as one
approaches from deep inside the Wigner sea to its right edge.

The key step in our method for computing the distribution
of �min �or �max� in �ii� consists in using a functional integral
approach to study the Coulomb gas representation of the
problem and imposing a single hard wall constraint which
enforces the fact that no eigenvalues can be to the left �or
right� of a given point. For the computation of the joint dis-
tribution of �min and �max in �iii�, we needed to confine the
Coulomb gas within two hard walls. In the limit of large N,
the functional integrals can be evaluated by the saddle-point
method and the resulting integral equations for the saddle-
point density can be solved explicitly using Tricomi’s theo-
rem �24�.

Our method is actually rather general and has already
been adapted to study the critical points of Gaussian random
fields in large-dimensional spaces �19,20� and the extreme
value statistics of the maximum eigenvalue of Wishart ran-
dom matrices �21�. One can possibly find further applications
in related statistical problems. For instance, the method is
probably adaptable to study the statistics of the index �the
number of negative eigenvalues� �6� of random matrices and
one could also study the extreme value statistics of the mini-
mal value of the modulus of the eigenvalues by introducing
the appropriate constraint on the density of eigenvalues in
the functional integral formulation of the problem.

Note that in this paper we were able to compute only the
leading large N behavior of the distribution of extreme ei-
genvalues. It would be interesting to compute the subleading
corrections to this leading behavior. Some recent attempts
have been made in this direction �28�.
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FIG. 5. The analytical large N formula for f�x ;0� with z=0
�solid line� along with the numerically generated averaged histo-
gram of 6�6 �open squares� and 7�7 �solid circles� Gaussian
matrices with positive eigenvalues. The agreement is already good,
the main difference occurring at the large x tail.
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