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Abstract
We review recent advances in the theory of trapped fermions using techniques 
borrowed from random matrix theory (RMT) and, more generally, from the 
theory of determinantal point processes. In the presence of a trap, and in 
the limit of a large number of fermions N � 1, the spatial density exhibits 
an edge, beyond which it vanishes. While the spatial correlations far from 
the edge, i.e. close to the center of the trap, are well described by standard 
many-body techniques, such as the local density approximation (LDA), these 
methods fail to describe the fluctuations close to the edge of the Fermi gas, 
where the density is very small and the fluctuations are thus enhanced. It turns 
out that RMT and determinantal point processes offer a powerful toolbox to 
study these edge properties in great detail. Here we discuss the principal edge 
universality classes, that have been recently identified using these modern 
tools. In dimension d  =  1 and at zero temperature T  =  0, these universality 
classes are in one-to-one correspondence with the standard universality 
classes found in the classical unitary random matrix ensembles: soft edge 
(described by the ‘Airy kernel’) and hard edge (described by the ‘Bessel 
kernel’) universality classes. We further discuss extensions of these results 
to higher dimensions d � 2 and to finite temperature. Finally, we discuss 
correlations in the phase space, i.e. in the space of positions and momenta, 
characterized by the so called Wigner function.
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1. Introduction

Over the past few decades, there have been spectacular experimental developments in manipu-
lating cold atoms (bosons or fermions) [1, 2] that have led to a number of Nobel prizes. 
These developments allow one to probe quantum many-body physics, both for interacting 
and noninteracting systems. In these systems the nature of the interaction can be tuned exper-
imentally and the effective interaction can actually be removed. However, even noninteracting 
bosons and fermions display interesting collective many-body effects emerging purely from 
the quant um statistics [3–5]. For noninteracting fermions, which we focus on here, the Pauli 
exclusion principle induces highly non-trivial spatial (and temporal) correlations between the 
particles. Remarkably, the recent development of Fermi quantum microscopes [6–8] provides 
a direct access to these spatial correlations, via a direct in situ imaging of the individual fermi-
ons, with a resolution comparable to the inter-particle spacing. The theoretical understanding 
of these spatio-temporal correlations in noninteracting fermions is therefore an outstanding 
and challenging problem.

In contrast to classical systems, quantum systems display non-trivial spatial fluctuations 
even at zero temperature (T  =  0) due to the zero-point motion of the particles. These purely 
quantum fluctuations, in combination with the quantum statistics of particles (Bose–Einstein 
or Fermi–Dirac), give rise to non-trivial spatial correlations. The presence of a confining trap 
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also affects these spatial correlations in a non-trivial way and this is our main object of interest 
here. Indeed, the confining trap breaks the translational invariance of the system. The physics 
in the bulk near the trap center (where the fermions do not feel the curvature of the confining 
trap) can be understood using the traditional theories of quantum many-body systems such as 
the local density approximation (LDA) [4, 9]. However, away from the trap center, the fermi-
ons start feeling the curvature induced by the confining trap. As a result the average density 
profile of the fermions vanishes beyond a certain distance from the trap center—thus creat-
ing a sharp edge, see figure 1. Near this edge, the density is small (there are few fermions) 
and consequently, quantum and thermal fluctuations play a more dominant role than in the 
bulk. The importance of these fluctuations means that traditional theories such as LDA break 
down in this edge region. Indeed, this was pointed out by Kohn and Mattson that the uniform 
electron gas, the traditional starting point for density-based many-body theories of inhomo-
geneous systems, is inappropriate near electronic edges [10]. One thus needs new methods to 
describe this edge physics. In this review we will demonstrate a connection to random matrix 
theory (RMT) which can thus be exploited to provide precise and powerful tools to address the 
edge physics (see figure 2). The methods we discuss will be used to derive the average density 
profile for the free fermionic system, but also the two point kernel from which all statistics and 
correlation functions can be inferred.

In a series of recent studies we have shown how the techniques from RMT can be exploited 
to make precise predictions for the spatial correlations between noninteracting fermions near 
the edge [11–14]. In one dimension and at zero temperature, the joint distribution of the posi-
tions of the fermions in a trap (that characterizes the purely quantum fluctuations) can be 
mapped, for certain types of traps, to the joint distribution of eigenvalues of an appropriate 
classical random matrix ensemble (see figure 2). For example, the harmonic potential cor-
responds to the Gaussian unitary ensemble (GUE), the hard box potential corresponds to the 
Jacobi unitary ensemble (JUE) and the potential V(x) = A x2 + B/x2 (x  >  0) corresponds to 
the Laguerre unitary ensemble (LUE). The fact that these ensembles are all unitary reflects the 
fact that the fluctuations are quantum in nature, as we will see below. In dimensions d  >  1 or at 
temperature T  >  0, these direct connections to RMT ensembles no longer hold. However, the 
underlying structure of spatial correlations is still described by a determinantal point process 
(DPP) which is completely characterized by a temperature and dimension dependent ker-
nel. In this short review, we briefly discuss some of these developments involving RMT and 
describe how it leads to precise predictions for the spatial correlations in this trapped Fermi 
gas, both in the bulk as well as at the edges. In the bulk, our results recover in a controlled way 
the results of the LDA, which is extensively used in the atomic physics literature. However, 
at the edge, RMT techniques lead to new results which can not be obtained using the semi-
classical (LDA) approximation.

The paper is organised as follows. We start in section 2 by explaining the exact corre-
spondence between the position of N spin-less trapped fermions at zero temperature in one 
dimension, with a number of confining potentials, and the eigenvalues of a number of uni-
tary Gaussian random matrix ensembles. These exact correspondences allow a number of 
results from RMT to be directly transposed to the context of trapped fermions. In section 3 
we describe the determinantal structure of the statistics of the trapped fermion problem. In 
particular, we show how all correlation functions can be expressed in terms of a kernel and 
how this kernel behaves in the limit of a large N. In particular, we show how the statistics 
are strongly modified at the edge of the Fermi gas, where the effects of quantum fluctuations 
are much more important than in the bulk. In section 4 we consider trapped fermions at zero 
temperature in higher dimensions d � 2. Although the direct link with RMT no longer holds 
in this case, these systems still possess the determinantal structure exhibited by those in one 
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dimension. We present results for the behaviour of the average density and kernel as a function 
of spatial dimension, both in the bulk and at the edge. In section 5 we examine what happens 
at non-zero temperature. There we show that in the canonical ensemble, i.e. for fixed particle 
number, the determinantal structure is lost. However it is recovered if one passes to the grand-
canonical ensemble. By exploiting this we can obtain the bulk and edge properties, in a well 
defined low temperature regime, by using the equivalence between the canonical and grand-
canonical ensembles in the thermodynamic limit. In section 6, we consider the correlations 
in the phase space, i.e. in position and momentum space (x, p), characterized by the so-called 
Wigner function, which also exhibits an edge in the (x, p) plane. Focusing on the edge in 
momentum space, we also discuss some recently discovered connections with multi-critical 
matrix models. Finally, we conclude in section 7.

Figure 1. Sketch of typical density profiles for non-interacting trapped fermions, (a) 
in d  =  1 and (b) in d  =  2. In both cases, it exhibits an edge (in red) beyond which the 
(scaled) density vanishes in the limit N → ∞: (a) in 1d the ‘edge’ consists of two points 
while in d  =  2 the edge is a circle (for spherically symmetric potential).

Figure 2. Quantum potentials V(x) (black solid line) and associated bulk fermion 
density ρN(x) (blue dotted line) corresponding to three different unitary ensembles of 
RMT discussed here: (a) the harmonic potential V(x) = mω2 x2/2, for which the limiting 
density is the Wigner semi-circle (38), corresponds to the GUE (6), (b) the hard box 
potential on [−R,+R], for which the limiting density is uniform (51), corresponds to the 
JUE as in (12) with parameters a  =  b  =  1/2 (more general JUE ensembles correspond 
to potentials of the form (13)) and (c) the potential V(x) = A x2 + B/x2 on (0,+∞) (14) 
for which the density is a ‘half’ semi-circle (58), corresponds to the LUE (16).
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2. 1d noninteracting trapped fermions at T  =  0 and random matrix ensembles

We consider N spinless noninteracting fermions in a one-dimensional trapping potential V(x). 
Note that spinless fermions are experimentally realised using a spin polarisation technique 
(see e.g. [15]), i.e. by applying an external magnetic field and taking advantage, through 
Zeeman coupling, of the different magnetic moments carried by the two spin components. 

The system is thus described by the N-body Hamiltonian ĤN =
∑N

j=1 ĥj where ĥj = ĥ(x̂j, p̂j) 
is a single-particle Hamiltonian of the form

ĥ =
p̂2

2 m
+ V(x̂). (1)

Let us denote by φl(x) the lth single-particle eigenfunction (l = 1, 2, · · ·) with eigenvalue εl , 
i.e.

ĥφl(x) = εlφl(x). (2)

The ground-state of the N-body system corresponds to filling up the N first single-parti-
cle energy levels with one fermion per level (as dictated by the Pauli exclusion principle). 
Correspondingly, the N-body ground-state wave-function is given by the Slater determinant

Ψ0(x1, · · · , xN) =
1√
N!

det
1� j, l �N

φl(xj), (3)

with the associated energy E0 =
∑N

l=1 εl. The quantum probability density function (PDF) is 
then given by

Pjoint(x1, · · · , xN) = |Ψ0(x1, · · · , xN)|2 =
1

N!

∣∣∣∣ det
1� j, l �N

φl(xj)

∣∣∣∣
2

. (4)

This joint PDF is normalised and encodes the quantum fluctuations of the Fermi gas. For an 
arbitrary potential V(x) it is hard to solve this Schrödinger equation (2) and evaluate explicitly 
the Slater determinant in (3). However, for a few specific potentials V(x) the Slater determi-
nant can be computed as we show below.

2.1. Harmonic potential and the GUE

We consider first the harmonic trap V(x) = 1
2 mω2x2. In this case, the single-particle eigen-

functions φk(x) are given by

φk(x) =
[

α√
π2kk!

]1/2

e−
α2 x2

2 Hk(α x), (5)

where k = 0, 1, · · · (note that here, and what follows, the index k starts at 0 while the generic 
index l in equation  (2) starts at 1), Hk(z) is the kth Hermite polynomial of degree k and 
α =

√
mω/� is the characteristic length scale of the trap. The associated single-particle energy 

levels are given by εk = (k + 1/2) �ω. Here, to construct the Slater determinant, we take the 
first N energy levels labelled by k = 0, · · · , N − 1. In the Slater determinant, the Gaussian fac-
tors come out of the determinant, leaving us to compute the determinant of a matrix consisting 
of Hermite polynomials. The Hermite polynomials H0(z), H1(z), · · · , HN−1(z) provide a basis 
for polynomials of degree N  −  1 and by manipulating the rows and columns, the determinant 
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can be reduced to a Vandermonde determinant. Hence, we can evaluate the Slater determinant 
explicitly to obtain

Pjoint(x1, · · · , xN) =
1

zGUE
N

e−α2 ∑N
i=1 x2

i
∏
i<j

(xi − xj)
2, (6)

where zGUE
N  is a normalisation constant. We identify immediately that, up to a trivial rescal-

ing factor α, this is precisely the joint distribution of the eigenvalues of a N × N  GUE matrix 

of RMT [16, 17]. Clearly the Vandermonde square term 
∏

i<j(xi − xj)
2 provides an effective 

repulsion between any pair of fermions coming purely from the Pauli exclusion principle. Thus 
even though the fermions are noninteracting to start with, their quantum statistics provides an 
effective pairwise repulsion. Note that in the context of GUE eigenvalues, the Vandermonde 
square term has a purely mathematical origin, coming from the Jacobian of the transforma-
tion from matrix entries to eigenvalues and eigenvectors [16]. Finally, we notice that, since in 
quantum mechanics, the probability density is always the square of the modulus of the wave 
function, the power of the Vandermonde term is naturally two, and hence the corre sponding 
random matrix ensemble is necessarily a unitary ensemble.

Before we discuss other potentials, it is interesting to point out one immediate consequence 
of the one-to-one mapping between the positions of the fermions in a 1d harmonic trap at zero 
temperature and the eigenvalues of GUE. In the RMT literature there has been a tremendous 
recent interest in the distribution of the largest eigenvalue λmax (for short reviews see [18, 19]). 
When appropriately centered and scaled, the limiting distribution of λmax is the celebrated 
Tracy–Widom (TW) GUE law [20]. This TW distribution has since appeared in a wide vari-
ety of, apparently unconnected, problems [21–33] and has also been measured in experiments  
[34, 35], albeit somewhat indirectly. From the above mapping (6), we see that the position xmax 
of the rightmost fermion at T  =  0 corresponds to λmax and, hence, the quantum fluctuations of 
xmax, appropriately centered and scaled, is also described by the TW-GUE law. This provides 
a possibility to directly measure the TW-GUE distribution in trapped fermion systems [12].

2.2. Hard box potential and the JUE

Let us now consider the case of a hard box potential V(x) of the form

V(x) =
{

0, |x| � R
∞, |x| > R. (7)

In this case, the single-particle Schrödinger equation (2) can be solved exactly with eigenfunc-
tions and energies given by

φl(x) = sin

(
lπ
2R

(x + R)
)

and εl =
�2

2m
k2

l =
�2π2

8mR2 l2, (8)

for l = 1, 2, · · ·. We set in the following R  =  1, which amounts to rescaling all positions by R. 
The N-body ground state wave function is given by the Slater determinant constructed from 
the single-particle eigenfunctions in equation (8),

Ψ0(x1, · · · , xN) =
1√
N!

det
1� j, l �N

φl(xj) =
1√
N!

det
1� j, l �N

sin

(
lπ
2
(xj + 1)

)
.

 (9)
This Slater determinant can be written in a more convenient way by using the identity 
sin(nx) = sin(x)Un−1(cos(x)) where Un(t) is the Chebychev polynomial of second kind of 
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degree n. By rearrangements of rows and columns, the joint quantum PDF of the positions in 
equation (4) reads [36–39]

Pjoint(x1, · · · , xN) =
1

zJUE
N

N∏
l=1

cos2
(πxl

2

) N∏
i<j

∣∣∣sin
(πxi

2

)
− sin

(πxj

2

)∣∣∣
2

,

 (10)
where zJUE

N  is a normalisation constant. Introducing the new variables ui = (1 + sin(πxi/2))/2, 
the joint PDF of u1, · · · , uN  can be worked out from (10). It coincides with the joint PDF of 
the eigenvalues of a matrix belonging to the JUE [16, 17, 36, 37]

Pjoint(u1, · · · , uN) =
1

z̃JUE
N

N∏
l=1

√
ul(1 − ul)

N∏
i<j

|ui − uj|2 , ui ∈ [0, 1]. (11)

This is of course a special case of a more general Jacobi ensemble [17]

Pjoint(u1, · · · , uN) ∝
N∏

k=1

ua
l (1 − ul)

b
N∏

i<j

|ui − uj|2 , ui ∈ [0, 1], (12)

parametrised by two real numbers a  >  −1 and b  >  −1. The joint PDF for the hard box poten-
tial in equation (11) corresponds to a  =  b  =  1/2. It is natural to ask the question if there exist 
quantum potentials that correspond to the general JUE with arbitrary parameters a and b. 
Indeed, it was shown recently [39] that a potential of the type

V(x) =
a2 − 1

4

8 sin2( x
2 )

+
b2 − 1

4

8 cos2( x
2 )

, x ∈ [0,π] (13)

generates a joint PDF of the form in (12) with arbitrary a and b. Similar potentials (13) were 
also considered in the context of Dyson’s Brownian motion [17, 40, 41].

2.3. The potential V (x) = A x2 + B/x2, with x  >  0, and the LUE

Here we consider a potential of the form V(x) = A x2 + B/x2 which we conveniently parame-
trise as follows [42]

V(x) =





b2

2 x2 + α(α−1)
2x2 , x > 0,

+∞, x � 0,
 (14)

with b  >  0 and α > 1. For convenience, we set here � = 1 as well as the mass m  =  1. For a 
potential of this form (14), the Schrödinger equation (2), together with the boundary condition 
φk(0) = 0 (since we impose a hard wall at x  =  0), can be solved exactly. The single-particle 
eigenfunctions φk(x) and associated energies εk  are given by

φk(x) = ck e−
b
2 x2

xαL(α− 1
2 )

k (b x2), εk = b
(

2k + α+
1
2

)
, (15)

where k = 0, 1, · · · is a non-negative integer, ck is a normalisation constant and L(α− 1
2 )

k (z) is a 

generalized Laguerre polynomial of degree k. Constructing the Slater determinant out of the 
first N states, one gets (again using the fact that the determinant of orthogonal polynomials, in 
this case generalized Laguerre polynomials, reduces to a Vandermonde form)
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Pjoint(x1, · · · , xN) ∝ e−b
∑N

i=1 x2
i

N∏
l=1

x2α
l

∏
i<j

(x2
i − x2

j )
2. (16)

Making further the change of variables yi = x2
i , the joint PDF of the y i’s reads [42]

Pjoint(y1, · · · , yN) =
1

zLUE
N

e−b
∑N

i=1 yi

N∏
l=1

yα−
1
2

l

∏
i<j

(yi − yj)
2, yi � 0. (17)

This corresponds to the joint PDF of the eigenvalues of a Wishart–Laguerre unitary ensemble 
(LUE) of random matrices [16, 17].

We end this section with the following remark. In the original fermion problem, there is an 
external quantum potential V(x). We have shown that, for some choices of this V(x), the Slater 
determinant square can be interpreted as the joint PDF of the eigenvalues of a corresponding 
unitarily invariant random matrix ensemble. It is natural to ask the reverse question. Suppose 
we start with a unitarily invariant random matrix ensemble, where the entries of an N × N  
complex matrix X are distributed as Pr(X) ∝ e−TrVM(X) where VM(X) is typically a polynomial 
matrix potential. Given VM(X), one can ask if there is a fermion problem with a suitable poten-
tial V(x) whose Slater determinant square would correspond to the joint PDF of this RMT 
ensemble. For GUE (corresponding to VM(X) = X2), we have seen above that V(x) is also a 
harmonic potential. However, for a general VM(X), it is not clear that there is an underlying 
fermion problem with a suitable quantum potential V(x).

3. Determinantal structure of the spatial correlations in d  =  1 and T  =  0

For noninteracting fermions in an arbitrary potential V(x), all the information about the 
(quant um) spatial fluctuations are contained in the joint PDF in equation (4). Of special inter-
est are the n-point spatial correlation functions Rn(x1, · · · , xn), with 1 � n � N , which are 
given by the different marginals of the full joint PDF, i.e. [16, 17]

Rn(x1, · · · , xn) =
N!

(N − n)!

∫
dxn+1 · · ·

∫
dxN Pjoint(x1, · · · , xn, xn+1, · · · , xN),

 (18)
where the integrals over the positions xi’s run over their full domain of definition (and which 
thus depends on the quantum potential). In particular, for n  =  1

R1(x) = N
∫

dx2 · · ·
∫

dxNPjoint(x, x2, · · · , xN), (19)

which is directly related to the average density of fermions in the ground-state via

R1(x) = N ρN(x), ρN(x) =
1
N

〈
N∑

i=1

δ(x − xi)

〉

0

, (20)

where 〈· · · 〉0 denotes an average in the ground state Ψ0(x1, · · · , xN) (4). Note that this density 
ρN(x) is normalized to unity, and not to the total number of fermions.

To perform the multiple integrals in equation (18) or (19), it is convenient to rewrite the 
joint PDF in (4) as

Pjoint(x1, · · · , xN) =
1

N!
det

1� j, l �N
φ∗

l (xj) det
1� j, l �N

φl(xj). (21)
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Using the property det(AT) det(B) = det(AB), the product of two determinants in (21) can be 
written as a single determinant

Pjoint(x1, · · · , xN) =
1

N!
det

1� j, l �N
Kµ(xj, xl), (22)

where we have introduced the kernel Kµ(x, y) defined by

Kµ(x, y) =
N∑

l=1

θ(µ− εl)φ
∗
l (x)φl(y), (23)

where θ(z) is the Heaviside theta function, i.e. θ(z) = 1 if z  >  0 and θ(z) = 0 if z  <  0, and µ is 
the Fermi energy (here this is simply the energy of the last occupied level, i.e. µ = εN). Exploiting 
the ortho-normality of the single-particle eigenfunctions, i.e. 

∫
dxφ∗

l (x)φl′(x) = δl,l′, it is easy to 
check that the kernel Kµ(x, y) in (23) is self-reproducible, i.e. it satisfies the important property

∫
dy Kµ(x, y)Kµ(y, z) = Kµ(x, z). (24)

This property plays an important role because it implies that the n-point correlation function 
Rn(x1, · · · , xn) can be written as an n × n determinant [16, 17]

Rn(x1, · · · , xn) = det
1� j, l �n

Kµ(xj, xl), (25)

for any 1 � n � N . In particular, for n  =  1, this result (25), together with the relation in (20), 
implies

ρN(x) =
1
N

Kµ(x, x) =
1
N

N∑
l=1

|φl(x)|2. (26)

This property (25) establishes that the positions of N noninteracting fermions trapped in an 
arbitrary potential V(x) constitute a DPP [43, 44] with a kernel Kµ(x, y) given by equation (23).

Before analysing the large N behaviour of the kernel, we present a few important and use-
ful properties of determinantal processes. Let us first consider the number of fermions NI  
within an interval I = [a, b]: we would like to describe the statistics of NI  in the ground state 
Ψ0(x1, · · · , xN) given in equation (3), i.e. compute the generating function 〈zNI 〉0, from which 
the full counting statistics for the fermions within the interval I  can be obtained. To this pur-
pose, it is useful to introduce the indicator function χI(x) defined as

χI(x) =
{

1, if x ∈ I
0, if x /∈ I. (27)

Hence NI  can be written as NI =
∑N

i=1 χI(xi), which implies that zNI =
∏N

i=1 zχI(xi). 
Therefore the generating function can be written as

〈zNI 〉0 =

〈
N∏

i=1

(1 − (1 − z)χI(xi))

〉

0

, (28)

where we have used that zχI(x) = 1 − (1 − z)χI(x) for the binary variable χI(x) (27). Since 
the xi’s form a DPP (25), the average in the right hand side of equation (28) can be written as 
[43, 44]

〈zNI 〉0 = Det (1 − (1 − z)χI Kµ χI) , (29)

D S Dean et alJ. Phys. A: Math. Theor. 52 (2019) 144006



10

where Det denotes a Fredholm determinant (we recall that Det(1 − K̃) = exp(−
∑

p�1 TrK̃ p/p)), 
Kµ ≡ Kµ(x, y) is the kernel in (23) and χI ≡ χI(x) is the projector on the interval I  (27)—
and therefore χIKµχI ≡ χI(x)Kµ(x, y)χI(y). From this exact formula (29) it is then pos-
sible to extract the cumulants of NI  and, in principle, recover the full distribution of NI . For 
instance the probability that there is no fermion in the interval I , Pr.(NI = 0), is simply given 
by the right hand side of equation (29) evaluated at z  =  0,

Pr.(NI = 0) = Det (1 − χI Kµ χI) . (30)

Specialising this formula (30) to the case I = [M,+∞) yields the cumulative distri-
bution of the position of the rightmost fermion xmax(T = 0) = max1�i�N xi. Indeed, 
Pr.(xmax(T = 0) � M) = Pr.(N[M,+∞) = 0) and therefore, from equation  (30), we obtain 
immediately

Pr.(xmax(T = 0) � M) = Det (1 − χI Kµ χI) , with I = [M,+∞). (31)

These results in equations (25), (29) and (31) show that a huge amount of information can be 
obtained from the kernel Kµ(x, y) (23), which is thus a central object.

Of course, for finite N, the kernel (23) and thus these different observables (25), (29) and 
(31) will depend on the specific form of the trapping potential V(x) in (1). But what happens 
in the large N limit? Quite generically, in the presence of a trapping potential V(x), the den-
sity ρN(x), for N � 1, has a finite support [−xedge,+xedge] (for simplicity we consider here a 
symmetric potential V(x) = V(−x)) and thus it exhibits edges at x = ±xedge beyond which 
the density vanishes. Far from the edges, in the bulk, the density can be computed using the 
LDA [4, 9]. The starting point of the LDA is a semi-classical approximation of the so-called 
Wigner function WN(x, p ) (see section 6.1 below), which can be interpreted as a (pseudo) 
single-particle probability distribution over the phase space (x, p): by integrating WN(x, p ) 
over p  one obtains the spatial density ρN(x) and by integrating it over x one obtains the density 
in momentum space (see equation (110) below). At finite inverse temperature β = 1/T , the 
LDA approximates WN(x, p ) by the Fermi-factor (up to a prefactor) corresponding to the total 
energy E(x, p) = p2/(2m) + V(x)

WN(x, p) ≈ 1
2π�

1
eβ(E(x,p)−µ̃) + 1

, (32)

with µ̃ the finite temperature chemical potential. At T  =  0, i.e. β → ∞, µ̃ = µ and the Fermi 
factor in (32) reduces to a simple Heaviside theta-function, i.e.

WN(x, p) ≈ 1
2π�

θ

(
µ− p2

2m
− V(x)

)
. (33)

By integrating (33) one obtains the LDA prediction for the density

ρN(x) =
1
N

∫
WN(x, p) dp ≈

√
2m

Nπ�
θ(µ− V(x)) [µ− V(x)]1/2 , (34)

which has a finite support [−xedge,+xedge] where the edge is thus defined as

V(xedge) = µ, (35)

and we recall that µ is the Fermi energy, i.e. here the last occupied single-particle energy 
level in the many-body ground state. Since the density has a finite support (34), one naturally 
expects that the kernel Kµ(x, y) in (23) will exhibit a different behaviour in the bulk, for x, y far 
from the edges, and close to the edges, for x ∼ y ∼ xedge (or equivalently x ∼ y ∼ −xedge), see 
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figure 3. In the bulk, for generic x and y  with a separation of the order of the local inter-particle 
distance, i.e. |x − y| ∼ 1/(NρN(x)), the kernel Kµ(x, y) takes the scaling form

Kµ(x, y) ≈ 1
�(x)

KSine

(
x − y
�(x)

)
, �(x) =

1
NπρN(x)

, (36)

where the scaling function KSine(z) is universal, i.e. independent of V(x) [14, 45], and given 
by the sine-kernel

KSine(z) =
sin z
π z

, (37)

which is well known in RMT [16, 17]. While this result in the bulk can also be obtained using 
the LDA [4] or semi-classical approaches, these methods fail to study the large N behaviour 
of the kernel near the edges [10]. It is precisely in this region where the RMT tools are very 
useful. Indeed, these questions related to the edge of the spectrum of random matrices have 
generated a lot of interest during the last twenty years in the RMT literature [20] (for a short 
review see [19]). In particular, it is well known in RMT that the different matrix ensembles 
corresponding to the three different fermion models mentioned above (GUE, JUE and LUE) 
lead to different behaviours at the edge. Therefore, below, we study the edge behaviours in the 
three different models separately.

3.1. Harmonic potential (GUE): soft edge scaling and the Airy kernel

For the harmonic potential V(x) = 1
2 mω2x2, the limiting density given by (34) is the well 

know Wigner semi-circle, which takes the scaling form

ρN(x) ≈
α√
N

fW

(
α x√

N

)
, fW(z) =

1
π

√
2 − z2, (38)

with soft edges at x = ±xedge with xedge =
√

2N/α. Therefore, the inter-particle distance in 
the bulk (36) is of order �(x) = O(N−1/2). In contrast, one expects that, near the edge, the 
inter-particle distance wN is much larger, as �(x) → ∞ for x → ±xedge. In fact wN can be esti-
mated by considering that the fraction of particles in the interval [xedge − wN , xedge] is of order 
O(1/N), i.e.

∫ xedge

xedge−wN

ρN(x) dx ≈ 1
N

. (39)

Given the behaviour of the bulk density (38) near x = xedge =
√

2N/α, one obtains

wN =
1

α
√

2
N−1/6, (40)

which is the width of the edge region (see figure 3), well known for GUE [20]. Near the (soft) 
edge, for both x, y � xedge, the kernel takes the scaling form

Kµ(x, y) ≈ 1
wN

KAi

(
x − xedge

wN
,

y − xedge

wN

)
, (41)

where KAi(z, z′) is the Airy kernel

KAi(z, z′) =
Ai(z)Ai′(z′)− Ai′(z)Ai(z′)

z − z′
=

∫ +∞

0
du Ai(z + u)Ai(z′ + u),

 (42)

D S Dean et alJ. Phys. A: Math. Theor. 52 (2019) 144006



12

where Ai(x) is the Airy function. In particular, from this result (42), together with the relation 
(26), we obtain the density profile near the edge. The sharp edge of the bulk density in equa-
tion (38) is smeared out, for large but finite N, over a length ∼ wN  close to the edges ±xedge 
where it is described by a finite size scaling form (say close to the right edge +xedge) [46, 47]

ρN(x) ≈
1

N wN
FAi

[
x − xedge

wN

]
, (43)

where the scaling function is given by [46, 47]

FAi(z) = [Ai′(z)]2 − z[Ai(z)]2 . (44)

The scaling function FAi(z) has the asymptotic behaviors

FAi(z) ≈

{
1
π

√
|z| as z → −∞

1
8πz e−

4
3 z3/2

as z → +∞ .
 (45)

Far to the left of the right edge, using FAi(z) ∼
√
|z|/π as z → −∞ in equation (45), it is 

easy to show that the scaling form (43) smoothly matches with the semi-circular density in 
the bulk (38).

Another important application of this scaling form (42), combined with the formula in 
equation (31), is the expression of the cumulative distribution of the position of the rightmost 
fermion xmax(T = 0) among N noninteracting fermions in a harmonic trap at T  =  0. Using 
the expression (31) specified with M = xedge + s wN , one obtains that the typical quantum 
fluctuations of xmax(T = 0), correctly centered and scaled, are governed by the celebrated 
TW distribution for GUE, F2(x) [20]. Indeed one has

xmax(T = 0) = xedge + wN χ2, (46)

Figure 3. Illustration of the different length scales both in the bulk and at the edge for 
the 1d harmonic potential V(x) = mω2x2/2. The solid line represents the bulk density 
ρN(x), given in this case by the Wigner semi-circle (38), which has a finite support 
[−xedge,+xedge], with xedge =

√
2N/α and α =

√
mω/�. In the bulk, close to the center 

of the trap, the typical inter-particle distance is �(0) = O(N−1/2) (see equation (36)). In 
contrast, the inter-particle distance at the edge, close to xedge  is much larger and given 
by wN = O(N−1/6) (see equation (40)).

D S Dean et alJ. Phys. A: Math. Theor. 52 (2019) 144006



13

where the cumulative distribution function (CDF) of the random variable χ2 is 
F2(s) = Pr(χ2 � s), which can be written as a Fredholm determinant (31)

F2(s) = Det(I − PsKAiPs), (47)

where KAi(z, z′) is the Airy kernel given in equation (42) and Ps is a projector on the interval 
[s,+∞). Note that F2(s) can also be written in terms of a special solution q(x) of the following 
Painlevé II equation [20]

q′′(x) = xq(x) + 2q3(x), q(x) ∼ Ai(x), x → ∞. (48)

The TW distribution F2(s) can then be expressed as

F2(s) = exp

[
−
∫ ∞

s
(x − s)q2(x) dx

]
. (49)

In particular its asymptotic behaviors are given by [48]

F2(s) ∼





τ2
e−

1
12 |s|3

|s|1/8

(
1 + 3

26|s|3 +O(|s|−6)
)

, s → −∞,

1 − e−
4
3 s3/2

16πs3/2

(
1 − 35

24s3/2 +O(s−3)
)

, s → +∞,

 (50)

where τ2 = 21/24eζ
′(−1) where ζ ′(x) is the derivative of the Riemann zeta function. Quite 

remarkably, the TW distribution appears in a wide variety of systems, however this free fer-
mion problem is certainly one of the simplest where it naturally arises.

These two examples, (43) and (47), illustrate how the results and tools from RMT can be 
transposed to study the edge properties of the Fermi gas, which are otherwise very hard to study 
using standard methods like LDA. This has been recently exploited to study other physical 
properties like the number variance, i.e. the variance of the number of fermions inside a box 
[11, 49], order statistics [50] as well as the entanglement entropy of a trapped Fermi gas [51].

Here we have discussed the case of a pure harmonic potential. However, one can show [14, 
45, 52] that the scaling forms found both in the bulk (36) as well as at the edges (41) and (42) 
actually hold for a wide class of smooth confining potentials of the form V(x) ∼ |x| p with 
p   >  0. The N-dependence of the length scales �(x) (36) and wN (40) will depend explicitly on 
p  but the scaling functions, namely the sine kernel (37) and the Airy kernel (42), are universal. 
From the point of view of RMT, the universality at the edge is somewhat expected. Indeed, 
for such potentials V(x) ∼ |x| p, equation (34) predicts that the density does have a square-root 
singularity at the edge, and one would therefore expect that the correlations at the edge are 
governed by the Airy kernel [53].

3.2. Hard box potential (JUE) and the hard-edge kernel

For the hard-box potential given in (7), setting R  =  1, the bulk density (34) is uniform inside 
the box and it is simply given by

ρN(x) ≈
√

2mµ

Nπ�
θ(1 − |x|) = kF

Nπ
θ(1 − |x|), (51)

where we have introduced kF =
√

2mµ/�—we recall that µ is the Fermi energy, i.e. in this 
case µ = εN = �2π2N2/(8m) (see equation (8)). In fact, in this problem there is a single length 
scale (36)

D S Dean et alJ. Phys. A: Math. Theor. 52 (2019) 144006



14

� ≡ �(x) =
1
kF

, (52)

which characterizes the fluctuations both in the bulk and at the edge. Here the density exhibits 
two edges at x = ±xedge with xedge = 1 but, in contrast to the harmonic potential (38), here the 
edges are hard. In particular, since the eigenfunctions vanish at x = ±1, i.e. φl(x = ±1) = 0, 
it follows from equation (26) that the density is strictly zero at the edges, i.e. ρN(x = ±1) = 0 
for all N � 1. This also indicates that the formula above (52) will fail to hold sufficiently close 
to the boundaries x = ±1 of the box. In fact, close to the hard edges at x = ±1, the kernel 
takes the scaling form (say near the right edge x  =  +1)

Kµ(x, y) ≈ kFKHb (kF(1 − x), kF(1 − y)) , (53)

where KHb(z, z′) is a hard-box kernel [38, 39, 54]

KHb(z, z′) =
sin (z − z′)
π(z − z′)

− sin(z + z′)
π(z + z′)

, (54)

which is actually a special case of the so-called Bessel kernel, well known in 
RMT [17] (see also below). Note that the structure of the hard-box kernel (54), 
KHb(z, z′) = KSine(z − z′)−KSine(z + z′), where KSine(z) is the sine-kernel (37) indicates that 
this kernel can be actually obtained by the method of images [38, 39]. From these results (53) 
and (54), together with (26) we obtain the density profile near the edge at x  =  +1 (a similar 
formula holds at the left edge)

ρN(x) ≈
kF

N
FHb(kF(1 − x)), (55)

where the scaling function FHb(z) reads

FHb(z) =
1
π

(
1 − sin(2z)

2z

)
. (56)

Its asymptotic behaviours are given by

FHb(z) =




2
3π z2 +O(z4), z → 0,

1
π +O(z−1), z → ∞.

 (57)

It describes the crossover from the vanishing density at the boundary (corresponding to the 
limit z → 0 in (57)) to the constant density profile in the bulk (described by the z → ∞ limit 
in (57)). The hard-box kernel (54) corresponds here to the hard-edge scaling limit of the JUE 
(12) with the special value of the parameters a  =  b  =  1/2. Different values of the parameters 
a, b, associated to the quantum potential in equation (13) yield different Bessel kernels with 
an index that depends on a (at the left edge θ = 0) and b (at the right edge θ = π) [39]. We 
refer the reader to [37] for the study of different boundary conditions imposed on the wave-
functions φl(x) at the boundary of the box (for instance periodic or Neumann), for which the 
corresponding joint PDF relates to different unitary matrix models.

3.3. The potential V (x) = A x2 + B/x2 (LUE) and the Bessel kernel

We now consider the case where V(x) is given in equation (14), which corresponds to the 
LUE (16)—we recall that here we set m = � = 1. For large N, the Fermi energy µ = εN  (see 
equation (15)) behaves as µ ≈ 2bN . Hence, from equation (34), the bulk density is given by
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ρN(x) ≈
√

b
2N

f̃W

(
x

√
b

2N

)
, f̃W(z) = 2θ(z) fW(z) = θ(z)

2
π

√
2 − z2, (58)

where f̃W(z) is thus the ‘half’ Wigner semi-circle. Note that one can easily check from (58) 
that the variable y   =  x2 is distributed according to the Marčenko–Pastur law, as expected from 
the mapping to the LUE in equation (16). The bulk density (58) exhibits two edges: a ‘soft’ 
edge at x = 2

√
N/b and a ‘hard’ edge at x  =  0. Near the soft edge, the limiting kernel, prop-

erly scaled, is given by the Airy kernel studied above (42). However, near the hard edge at 
x  =  0, the kernel is different and given by the so-called Bessel kernel, also well known in 
RMT [17, 55]. Indeed, one has (see for instance [39] as well as [56] in the context of fermions)

Kµ(x, y) ≈ 2k2
F
√

x yKBe,α−1/2(k2
Fx2, k2

Fy2), (59)

where kF =
√

2µ and KBe,ν(u, v) is the Bessel kernel of index ν , given by

KBe,ν(u, v) =
√

v J′ν(
√

v)Jν(
√

u)−
√

u J′ν(
√

u)Jν(
√

v)
2(u − v)

, (60)

where Jν(x) denotes the Bessel function of index ν . Note that in the limit α → 1, one can 
check that equations (59) and (60), using J1/2(z) =

√
2/(πz) sin z, yield the hard-box kernel 

(54), as expected by comparing the Hamiltonians in equations (7) and (14)—since close to 
the wall at x  =  0 the quadratic term in (14) plays no role, at leading order for large N. From 
equation (26), by evaluating the kernel (60) at coinciding points, we obtain the density profile 
near the hard edge at x  =  0,

ρN(x) ≈
kF

N
FBe(kFx), (61)

with the scaling function

FBe(z) =
z
2

(
J2
α−1/2(z)− Jα+1/2(z)Jα−3/2(z)

)
. (62)

It behaves asymptotically as

FBe(z) ∼
{

Aα z2α, z → 0
1
π , z → ∞, (63)

where Aα = [22αΓ(α+ 3/2)Γ(α+ 1/2)]−1, with Γ(z) denoting the Gamma-function. The 
scaling function FBe(z) interpolates between a vanishing density exactly at the wall and a con-
stant value ρN(x) ≈ (2/π)

√
b/N  far from the wall, i.e. for kFx � 1 (but still x � 1), which 

matches perfectly with the bulk density in equation (58) for x → 0.

3.4. General power law potentials V (x) ∼ 1/|x |γ : transition from hard edge to soft edge

Since it is now possible to realise virtually any confining potential in cold atom experiments 
[1, 57, 58], it is an interesting question to ask about the edge universality for potentials which 
diverge at the boundary with some arbitrary power law. We will restrict the discussion to one 
dimension. We already know that hard box potentials relate to the JUE and 1/x2 to the LUE, 
so we ask now about a potential of the form V(x) ∼ 1/|x|γ with γ > 0.

First one must ask whether a barrier V(x) ∼ 1/|x|γ is actually confining. It turns out that at 
the level of a single particle, if 0 < γ < 1 the barrier is penetrable, i.e. there exists eigenstates 
which do not vanish at x  =  0. If γ � 1 the barrier is impenetrable, i.e. the eigenfunctions 
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vanish at x  =  0 [59]. In the first case the potential can not act as a trap for a system of N non-
interacting fermions, hence we restrict to the second case, γ > 1. In this case with no loss of 
generality, one can restrict to x  >  0 and assume that V(x) = +∞ for x  <  0.

In [39] it was shown that for 1 � γ < 2 the barrier acts as an infinite hard wall. In par-
ticular, in the solvable case γ = 1 one has [39]

Kµ(x, y) = kFK(kFx, kFy; kF) (64)

where µ = �2

2m k2
F, in terms of a non-trivial reduced kernel K, which in the large µ limit conv-

erges to

K(z, z′;∞) =
sin(z − z′)
π(z − z′)

− sin(z + z)
π(z + z′)

= KHb(z, z′), (65)

which is the hard box kernel given in (54). One can further show [39] that this limiting kernel 
actually holds for all values 1 � γ < 2. This can be understood qualitatively as follows: the 

position of the edge density is re = k−2/γ
F . Hence for γ < 2 the scaled position of the edge, 

kFre tends to zero at large µ. This is why the edge universality is the one of the hard wall for 
1 � γ < 2. More detailed arguments can be found in [39].

For the special value γ = 2 we already know the answer from section 3.3 and the edge universality 
is in this case the one of LUE, i.e. the Bessel kernel KBe,ν with an index ν  that depends continuously 
on the amplitude of the potential (see equation (59)). It is thus a marginal case. The more surprising 
fact is that for γ > 2, i.e. very steep potentials, one recovers the Airy universality class, i.e. the soft 
edge RMT results ! One way to see it is to consider the case γ = 2, i.e. V(x) = α(α− 1)/(2x2) 
as in equation (14) with b  =  0 (since the quadratic term is irrelevant close to the origin) in the limit 
of large amplitude α → +∞. The limiting kernel near the hard edge, given by the Bessel kernel in 
equation (59), can be analysed in the large α limit by using the asymptotic result

lim
ν→+∞

22/3ν4/3KBe,ν(ν
2 + 22/3ν4/3ã, ν2 + 22/3ν4/3b̃) = KAi(−ã,−b̃), (66)

where KAi(z, z′) is the Airy kernel (42). In this case, one has, for large α, kFre � α [39]. Hence 
we will center the kernel around this point and define

x = re + wNx̃ , y = re + wNỹ (67)

with kFwN = 2−1/3α1/3. The convergence property (66) then leads [39] to the following 
behaviour of the kernel close to the edge |x − re|/wN ∼ |y − re|/wN = O(1)

Kµ(x, y) ≈ 1
wN

KAi

(
re − x

wN
,

re − y
wN

)
with KAi(z, z′) =

∫ ∞

0
du Ai(z + u)Ai(z′ + u). (68)

For fixed γ > 2 one can indeed argue that the Airy universality class holds, see discussion in 
appendix A of [14] (below equation (A.28)).

In conclusion, to realize the hard wall universality class at the edge in experiments one 
should use potentials with 1 � γ < 2. Contrarily to naive expectations, a more strongly diver-
gent potential does not lead to the hard wall. Instead, by increasing γ , one goes from hard wall 
(JUE), to Bessel (LUE), and then finally to Airy (GUE) classes.

4. Noninteracting trapped fermions in d-dimensions at T  =  0

Until now, we have focused on noninteracting trapped fermions in one dimension, d  =  1, and 
we have shown that there are strong connections between these models and classical unitary 
matrix models of RMT (GUE, JUE and LUE). But it is natural to ask what happens in higher 
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dimensions d � 2 and consider N spin-less noninteracting fermions in a d-dimensional poten-

tial V(x), with x ∈ Rd . The model is then described by an N-body Hamiltonian ĤN =
∑N

j=1 ĥj, 
where ĥj = ĥ(pj, xj) is a one-body Hamiltonian of the form ĥ ≡ ĥ(pj, xj) with

ĥ =
p̂2

2m
+ V(x) , p̂ =

�
i
∇. (69)

Here, for simplicity, we will consider the isotropic d-dimensional harmonic oscillator

V(x) ≡ V(r) =
1
2

mω2r2 , r = |x|, (70)

which can be solved exactly, but other types of potential, e.g. spherical hard-box potentials can 
also be studied exactly (see [38, 39] for more details). In higher dimensions d � 2, there is no 
direct mapping to random matrix models (except in some very special cases in d  =  2, see e.g. 
[60] which considers the case of non-interacting fermions in a rotating harmonic trap in the 
‘Landau limit’, and is closely related to the physics of 2d-electrons in the presence of a perpend-
icular magnetic field [17, 61]). In spite of this, the positions of the fermions form a d-dimen-
sional DPP, for which there exist powerful analytical tools, which enable the analysis of the edge 
properties of the Fermi gas [14]. Here we will briefly recall the main results obtained along these 
lines, and we refer the reader to [14] for more details about this higher-dimensional case.

4.1. Zero temperature statistics

At zero temperature, as in the 1d case (3), the ground state many-body wave function Ψ0 can 
be expressed as an N × N  Slater determinant,

Ψ0(x1, · · · , xN) =
1√
N!

det
1�i,j�N

[ψki(xj)] (71)

constructed from the N single particle wave functions labelled by a sequence {ki}, i = 1, . . . , N, 
with non-decreasing energies such that εki � µ where µ is the Fermi energy. For the isotropic 
harmonic oscillator, the energy levels and corresponding eigenfunctions are given

εk =

d∑
a=1

(
ka +

1
2

)
�ω , ψk(x) =

d∏
a=1

φka(xa), (72)

where the ka’s are integers which range from 0 to ∞, and where φk(x) are the single-par-
ticle eigenfunctions for the one-dimensional harmonic oscillator (5). Note that, in general, 
the N-body ground state is degenerate (whenever the last single particle level is not fully 
occupied). However, since the effect of degeneracy is subdominant in the large N limit that 
we are interested in [14], we will assume here that the last level is fully occupied. In this 
case, for the harmonic oscillator, by filling up completely the levels up to µ, one obtains 
N =

∑
k∈Zd θ (µ− �ω(k1 + ... + kd)), where we recall that θ(x) is the Heaviside theta func-

tion. This leads for large N, to

µ � �ω[Γ(d + 1)N]1/d. (73)

Using exactly the same manipulations as in 1d (see equations (21)–(23)), the quantum prob-
ability, given by the squared many-body wave function, can be written as

Pjoint(x1, · · · , xN) = |Ψ0(x1, · · · , xN)|2 =
1

N!
det

1�i,j�N
[ψ∗

ki
(xj)] det

1�i,j�N
[ψki(xj)] 

(74)
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=
1

N!
det

1�i,j�N
Kµ(xi, xj) (75)

in terms of the d-dimensional kernel

Kµ(x, y) =
∑

k

θ(µ− εk)ψ
∗
k(x)ψk(y). (76)

One can easily check that the kernel satisfies the reproducing property, i.e. the d-dimensional 
generalisation of (24), which follows straightforwardly from the orthonormality of the sin-
gle-particle eigenfunction. From this reproducing property, together with the determinantal 
structure of the quantum joint PDF in (74), it follows that the n-point correlation functions 
Rn(x1, · · · , xn) can be written as determinants,

Rn(x1, · · · , xn) =
N!

(N − n)!

∫
dxn+1 · · · dxN Pjoint(x1, · · · , xN) (77)

= det
1�i,j�n

Kµ(xi, xj). (78)

And in particular, for n  =  1, this yields the average density of fermions (normalised to unity)

ρN(x) =
1
N

N∑
i=1

〈δ(x − xi)〉0 =
1
N

R1(x) =
1
N

Kµ(x, x), (79)

where, here, 〈· · · 〉0 stands for an average over the joint PDF in equation (74). This result for 
the correlations (77) explicitly shows that the positions of the noninteracting trapped fermions 
form a d-dimensional DPP. This, in turn, implies that all the information about the correlations 
is thus contained in the kernel Kµ(x, y), which we now study in the limit of large N.

4.2. Bulk properties

For N � 1, the bulk density can be computed from the LDA, i.e. the straightforward generali-
sation of (34) to d-dimensions. As in the 1d-case (38), it has a finite support

ρN(x) ≈
1

2dNπ
d
2 Γ(1 + d

2 )
α2d (r2

edge − r2) d
2 θ (redge − r) , r = |x|, (80)

with an extended edge (namely a (d − 1)-sphere, see figure 1) located at

redge =
2

1
2 [Γ(d + 1)]

1
2d

α
N

1
2d , (81)

which generalises the Wigner semi-circle found in d  =  1 (38). Therefore, the kernel behaves 
differently in the bulk and at the edge. If we consider two points close to a point x in the bulk, 
the kernel takes the scaling form

Kµ(x + x′, x + y′) ≈ 1
�(x)d K

bulk
d

(
|x′ − y′|
�(x)

)
 (82)

where

�(x) =
1
2
[NρN(x)γd]

−1/d , with γd = πd/2[Γ(d/2 + 1)] (83)
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is the typical local separation between fermions in the bulk. The explicit formula for the scal-
ing function in equation (82) is given by [4, 14, 62]

Kbulk
d (z) =

Jd/2(z)
(2πz)d/2 , (84)

where Jν(z) is the Bessel function of index ν . Note that this scaling function (84) has a well 

defined limit at the origin with Kbulk
d (0) = 1/(2dγd). In d  =  1, using J1/2(z) =

√
2/(πz) sin z, 

we recover the standard sine-kernel Kbulk
d=1(z) = KSine(z) = sin z/(πz) of RMT (37). While the 

standard derivation of this result for the bulk kernel (84) usually relies on the LDA [4], we 
provided a more controlled derivation of it using a method relying on the representation of the 
kernel in terms of the quantum propagator (in imaginary time) [14]. As in 1d, this form of the 
kernel (82)–(84) holds in the bulk, where the density is finite, but breaks down at the edge, for 
|x| = redge, where the density vanishes.

4.3. Edge statistics

Near the edge, the limiting kernel is described by a different scaling form [13, 14]

Kµ(x, y) ≈ 1
wd

N
Kedge

d

(
x − redge

wN
,

y − redge

wN

)
. (85)

To give an explicit expression of the scaling function at the edge redge, it is useful to decom-
pose any vector v as v = vt + vnn. Here, n = redge/redge is the normal to the edge and vt  is the 
projection of v onto the hypersurface forming the edge (i.e. vt · n = 0). With these notations, 
the scaling function reads [13, 14]

Kedge
d (a, b) =

∫
dd−1l

(2π)d−1 eil·(at−bt)

∫ ∞

l2
dz Ai(an + z)Ai(bn + z). (86)

In fact, the integral over the angular variables can be performed explicitly [39] and this yields 
finally (for d � 2)

Kedge
d (a, b) =

∫ ∞

0
dl
(

l
2π

) d−1
2 J d−3

2
(l|at − bt|)

|at − bt|
d−3

2

∫ ∞

l2
dz Ai(an + z)Ai(bn + z).

 (87)
This kernel is a generalisation of the Airy-kernel (42) and, in particular, in equation (86), it can 
be seen that Kedge

d=1(a, b) = KAi(a, b), in agreement with the 1d result (42). Note that this limiting 
kernel (86) was obtained using the method of the quantum propagator in imaginary time, and not 
directly from the formulae given in equations (72) and (76)—see [14] for more details.

Here we have discussed the d-dimensional (purely) harmonic oscillator V(x) = mω2|x|2/2 
(70) but one can show that the kernels both in the bulk (84) and at the edge (87) are actually 
universal and hold for smooth spherically symmetric potentials with a single minimum, such 
as V(x) ∼ |x| p for p   >  0 (see [14] for a more precise statement about universality in this 
case). In this case, the typical width of the edge regime scales like wN ∼ N−2( p−1)/(3d( p+2)).

4.4. Extremal statistics

As in the one-dimensional case (46), it is also interesting to investigate extreme value ques-
tions for such d-dimensional determinantal point processes (77). In particular, in 1d, the 
distribution of the position of the rightmost particle xmax = max{x1, x2, · · · , xN}, properly 
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shifted and scaled, converges for large N to the celebrated TW distribution (46) and (47). For 
d-dimensional system, a natural extreme value observable is the maximal radial distance of 
the fermions from the trap center, defined as [63]

rmax = max{r1, r2, · · · , rN}, where r2
i = xi · xi. (88)

In [63] the cumulative distribution of rmax, P(w, N) = Prob(rmax � w), was computed and 
studied in the large N limit. It was shown that for large N it takes the scaling form

P(w, N) ≈ G
(

w − AN

BN

)
, where G(z) = e−e−z

, (89)

where AN and BN can be computed explicitly for large N [63] [in particular, to leading order 
for large N, AN � redge given in equation (81)]. In equation (89), the function G(z) is the well 
known Gumbel distribution, which is one of the limiting distributions that emerges in the clas-
sical theory of extreme value statistics of independent and identically distributed (i.i.d.) ran-
dom variables [64, 65]. Hence, although the positions of the Fermions are strongly correlated, 
as a consequence of the Pauli principle, it turns out that, for spherically symmetric potential, 
the radial components of the displacements are actually independent, yielding eventually the 
Gumbel distribution for the distribution of rmax (89) in the large N limit [63]. Note that a 
similar property holds [66] for the moduli of the eigenvalues of random matrices belonging to 
the complex Ginibre matrices—which corresponds to another spherically symmetric DPP in 
dimension d  =  2 [16, 17]. In this case, the largest modulus, properly shifted and scaled, is also 
distributed according to a Gumbel law, as in (89) [67].

5. Noninteracting trapped fermions in d-dimensions at T  >  0

We now proceed to study the effects of temperature on N noninteracting fermions in an exter-
nal confining potential. Although the analysis can be done for any potential and in any arbi-
trary dimensions, we will focus for simplicity on the harmonic potential in one dimension, 
the generalisation to higher dimensions and other potentials being rather straightforward [14]. 
We first focus on the canonical ensemble at temperature T = 1/β , that corresponds to a fixed 
number of fermions N, which is often the situation studied in cold atoms experiments.

Let us start with a qualitative scaling analysis to estimate the different relevant temperature 
scales in the problem, both in the bulk and at the edge. As soon as temperature is turned on, 
T  >  0, there is a new length scale in the problem, namely the de Broglie wavelength, given by

λT = �
√

2π
mT

. (90)

The de Broglie wavelength controls the quantum to classical crossover and thus allows us 
to estimate when the temperature is relevant, i.e. when it modifies the T  =  0 results found 
above. In the bulk, the zero temperature characteristic length scale (36) is �(x) = O(1/

√
N) 

(see figure 3). Therefore, when λT � �(x), or equivalently T � N , the quantum effects are 
important while quantum fluctuations are irrelevant if λT � �(x), i.e. T � N . This suggests 
that the typical temperature scale in the bulk is T = O(N). The situation is different at the edge 
where the characteristic length scale (40) is wN = O(N−1/6) (see figure 3) and therefore the 
typical temperature scale, such that λT ∼ wN, is T = O(N1/3): this clearly shows that the edge 
is much more sensitive to thermal fluctuations than the bulk.

D S Dean et alJ. Phys. A: Math. Theor. 52 (2019) 144006



21

5.1. Canonical and grand-canonical statistics

To make a more precise analysis at finite temperature, we need to consider all the excited 
states (not only the ground-state), i.e. the full Hilbert space of the N particles. A natural basis 
of this Hilbert space is formed by the eigenstates of the N particle Hamiltonian ĤN . For 
noninteracting fermions, this basis can be constructed from the eigenstates φk(x) in (5) of the 
single particle Hamiltonian ĥ. The associated eigenvalues are εk = �ω(k + 1/2) where k is an 
integer which ranges from 0 to ∞. From these single particle eigenstates, one can construct 
all many-body eigenfunctions of ĤN  by putting N fermions in N different single particle levels 
indexed by k1 < k2 < . . . < kN. The corresponding eigenfunction is given by the Slater deter-
minant ∝ det1�i,j�N φki(xj) built from these single particle levels. In the canonical ensemble, 
the joint PDF of the particle positions is given by the diagonal element of the density matrix 

ρ̂ = e−βĤN/ZN(β) where ZN(β) is the canonical partition function. Therefore, in the canoni-
cal ensemble, it can be written as the Boltzmann weighted sum of such Slater determinants 
(squared)

Pjoint(x1, · · · , xN) = 〈x1, · · · , xN |ρ̂|x1, · · · , xN〉

=
1

N!ZN(β)

∑
k1<···<kN

∣∣∣∣ det
1�i,j�N

φki(xj)

∣∣∣∣
2

e−β (εk1+···+εkN ), 
(91)

where ZN(β) =
∑

k1<k2<...<kN
e−β (εk1+···+εkN ) is the canonical partition function. It is easy to 

check that ZN(β) is such that the PDF Pjoint(x1, . . . , xN) is normalized to unity. Interestingly, 
this joint distribution in (91) turns out to be the joint law of the eigenvalues of a random matrix 
model, the so-called Moshe–Neuberger–Shapiro (MNS) model [68], which has also received 
some attention in the maths literature [69–71]. The goal is then to compute n-point correla-
tion functions Rn(x1, · · · , xn) defined as in equation (18) with this joint PDF (91). However, 
handling these multiple integrals in (18) at finite temperature T  >  0 turns out to be much more 
difficult than their counterpart at T  =  0. To appreciate this, we note that the joint PDF in equa-
tion (91) can be written as a determinant, as it is the case for T  =  0, [68]

Pjoint(x1, · · · , xN) =
1

N!ZN(β)
det

1�i,j�N
G(xi, xj,β�) (92)

in terms of the imaginary-time propagator associated to the one-body Hamiltonian

G(x, y; t) = 〈y|e− t
� ĥ|x〉 =

∑
k

e−
t
� εkφ∗

k (x)φk(y). (93)

Unfortunately, and at variance with the T  =  0 case, successive integrations over the coor-
dinates xi do not preserve this determinantal structure. This is because the kernel inside the 
determinant no longer satisfies the reproducing property since

∫ ∞

−∞
dz G(x, z;β�)G(z, y;β�) = G(x, y; 2β�) (94)

which is clearly a different kernel. Hence the evaluation of these integrals for arbitrary N is 
very difficult, since the process is not determinantal in the canonical ensemble at T  >  0.

Fortunately, in the large N limit, it is possible to make further progress by using the equiva-
lence between the thermodynamic ensembles and work in the grand-canonical ensemble with 
fixed chemical potential µ̃ (which, for T  >  0, is actually different from the Fermi energy µ 
discussed previously: µ̃ → µ only for T → 0). This amounts to considering that the total 
number of fermions is fluctuating. The advantage of working in the grand-canonical ensemble 
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is that the positions of the fermions do constitute a DPP. Therefore, in the large N limit, the 
n-point correlation functions Rn(x1, · · · , xn) take a determinantal form [14] (see also [69, 72])

Rn(x1, · · · , xn) ≈ det
1�i,j�n

Kµ̃(xi, xj), (95)

where the finite temperature kernel is given by

Kµ̃(x, x′) =
∞∑

k=0

φ∗
k (x)φk(x′)

eβ(εk−µ̃) + 1
. (96)

In equation (96) we recognise the Fermi factor 1/(eβ(εk−µ̃) + 1) where the chemical potential 
µ̃ is fixed by the relation

N =

∞∑
k=0

1
eβ(εk−µ̃) + 1

. (97)

Let us emphasise that the relation in (95) is actually exact in the grand-canonical ensemble 
but only approximate in the canonical ensemble for finite N, becoming exact only in the limit 
N → ∞. As T → 0, using that µ̃ → µ together with the fact that the Fermi factor in equa-
tion (96) becomes a theta function θ(µ− εk), we see that the expression in (96) yields back 
the zero temperature kernel (23). This exact formula for the kernel (96) is then amenable to a 
large N analysis, which can be carried out both in the bulk and at the edge [12, 14], which, as 
done for T  =  0, we discuss separately.

5.2. Bulk regime at finite temperature

Before discussing the two-point kernel, it is useful to analyse the finite temperature density in 
the bulk, where, as we have seen before (see equation (90) and below it), the typical temper-
ature scale is T = O(N). For large N, one finds that the fermion density ρN(x) = N−1Kµ̃(x, x) 
(see equation (26)) in the bulk takes the scaling form [14]

ρN(x) ≈
α√
N

R
(

y = βN�ω, z = x
√
βmω2/2

)
, (98)

with the bulk scaling function

R(y, z) = − 1√
2πy

Li1/2(−(ey − 1)e−z2
), (99)

where Li1/2(z) =
∑

n�1 zn/n1/2 is the polylogarithm function of index 1/2. On this temper-
ature scale, the fermion density (99) extends over the whole real axis, so that there is no edge 

for T = O(N). Using the asymptotic behaviors, Li1/2(−eX) ≈ −(2/
√
π)X1/2, as X → ∞ 

while Li1/2(X) ≈ X  as X → 0, it is easy to see that R(y, z) interpolates between the Wigner 
semi-circle (38) as T → 0 and a Gaussian as T → ∞, namely

ρN(x) ≈
√

β mω2

2π
exp

[
−β

2
mω2 x2

]
, T → ∞, (100)

which is just the (classical) Maxwell–Boltzmann weight for independent particles in a har-
monic potential V(x) = (1/2)mω2x2 and at inverse temperature β.
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The two-point kernel Kµ̃(x, y) (96) can also be analysed in the bulk, for x, y both close to 
the center of the trap, with x − y = O(1/(α

√
N)) (the typical inter-particle distance in the 

bulk) and at finite temperature T = O(N). For large N, it takes the scaling form

Kµ̃(x, y) ≈ αN1/2Kbulk
y

(
α
√

N(x − y)
)

, (101)

where

Kbulk
y (v) =

1
π
√

2y

∫ +∞

0
dp

cos(
√

2p
y v)

(1 + e p/(ey − 1))
√

p
 (102)

(see also [69, 73] for alternative derivations of this kernel).

5.3. Edge regime at finite temperature

At the edge, the typical temperature scale is T = O(N1/3), i.e. β = O(N−1/3) (see equa-
tion (90) and below). In this scaling regime, the variable y = βN�ω � 1 for large N. Hence 
the bulk density profile (99) is given by the Wigner semi-circle (38) in this regime, with two 
edges at ±

√
2N/α, as in the case T  =  0. However, the edge kernel is different from the Airy 

kernel. Indeed, setting

b =
�ω
T

N1/3, (103)

the kernel Kµ̃(x, y) at the edge takes a scaling form similar to the T  =  0 scaling form in equa-
tion (41), i.e.

Kµ̃(x, y) � 1
wN

Kedge
b

(
x − xedge

wN
,

y − xedge

wN

)
, (104)

but with a modified scaling function given by [12, 14, 69]

Kedge
b (z, z′) =

∫ ∞

−∞

Ai(z + u)Ai(z′ + u)
e−b u + 1

du, (105)

which is a finite temperature generalisation of the Airy kernel KAi(z, z′) in equation (42). Note 
that in the limit of zero temperature, when b → ∞, the non-zero contribution to the integral 
over u on the right hand side of equation (105) comes from u ∈ [0,+∞) and one gets, using 
equation (42), limb→∞ Kedge

b (z, z′) = KAi(z, z′). From this limiting kernel (105) evaluating at 
s = s′ one obtains the finite temperature density profile at the edge,

ρN(x) �
1

NwN
Fedge

b

(
x − xedge

wN

)
 (106)

where the finite temperature scaling function Fedge
b (z) is obtained as

Fedge
b (z) =

∫ +∞

−∞
du

Ai(z + u)2

1 + e−bu , (107)

which thus depends continuously on b, through the Fermi factor, and yields back the T  =  0 
edge profile (43) in the limit b → ∞.

From the determinantal structure (95) one can also obtain the distribution of the position of 
the rightmost fermion at finite temperature, xmax(T) = max1�i�N xi. Indeed, as in the T  =  0 
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Figure 4. Behavior of the distribution of the position of the rightmost fermion 
xmax(T) as a function of T. For T/(�ω) � N1/3, the distribution is given by the 
TW-GUE distribution (47), well known in RMT [20] while for T/(�ω) � N1/3 (and 
T/(�ω) � N) it behaves as a Gumbel distribution. The full crossover between these 
two regimes occurs for T/(�ω) = O(N1/3) and is described by the ‘finite temperature 
Tracy–Widom’ distribution given in equation  (108). Note that for T/(�ω) � N , the 
distribution of xmax(T) is described by yet another Gumbel law [14], not discussed 
here.

case in (46) and (47), the cumulative distribution of xmax(T), properly shifted and scaled, is 
given by a Fredholm determinant involving the finite temperature Airy kernel (105). Indeed, 
one has

Pr

(
xmax(T) � xedge +

N−1/6
√

2α
s
)

= Det(I − Ps Kedge
b Ps), (108)

where Ps is the projector on [s,+∞) and Kedge
b  is given in equation  (105). The Fredholm 

determinant on the right hand side of equation (108) is a finite temperature generalization of 
the TW distribution, found at T  =  0 (47) and it can be expressed in terms of the solution of a 
non-local Painlevé equation [28] (see also [14, 74, 75]). In fact, one can show [69] that this 
Fredholm determinant interpolates between the TW distribution as T → 0, i.e. b → ∞, and a 
Gumbel distribution (as in equation (89)) at high temperature, i.e. b → 0, where the positions 
of the fermions become completely uncorrelated (see figure 4).

Interestingly, it turns out that the very same Fredholm determinant (108) arises in the exact 
solution of the Kardar–Parisi–Zhang (KPZ) equation with droplet initial conditions. The ori-
gin of this connection remains poorly understood. We refer the interested reader to [12, 14, 
74–76] for a more detailed discussion as well as further analysis of this Fredholm determinant 
(108) in the context of large deviations in the KPZ equation, which has recently attracted a lot 
of attention, both in the physics [74–79] and in the maths literature [80, 81].

We conclude this section by mentioning that, recently, for 1d trapped fermions in a har-
monic well, it was shown [82] that by choosing a block of N consecutive single particle states, 
labelled from m to m  +  N  −  1 (m  =  0 being the ground state), one can obtain a family of 
determinantal point processes parametrized by m. As m → ∞, the system approaches the 
classical limit, somehow analogous to a very high temperature state, where the process was 
shown to converge to the so called α-determinantal process with α = −1/2. It would be inter-
esting to find similar constructions in higher dimensions.

6. Correlations in the phase space and edge in momentum space

Here we consider briefly two applications and extensions of the methods discussed in this review. 
Until now we have mostly discussed the spatial structure of the correlations of trapped fermions. 
However, one can also ask about the correlations in momentum space, p , accessible via time of 
flight experiments [58, 83]. The tool of choice for exploring the correlations phase-space, i.e. in 
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the (x, p)-plane, is the Wigner function, which we first consider. Next, we discuss the possible 
edge behaviors in momentum space, which leads to new universality classes.

6.1. The Wigner function of free trapped fermion systems

In [84] the many body Wigner function for trapped systems of non-interacting fermions was 
studied employing the techniques described in this review. We recall that the Wigner function 
for a single quantum particle in one dimension is given by [85]

W1(x, p) =
1

2π�

∫ +∞

−∞
dy eipy/�ψ∗(x +

y
2
)ψ(x − y

2
) (109)

where ψ(x) denotes the wave function in the spatial representation. We also denote by 
ψ̂( p) =

∫
dxψ(x) eipx/�  the wave function in momentum representation, i.e. the Fourier 

transform of ψ(x). The Wigner function is a pseudo-probability density function and is often 
heuristically used as a joint probability distribution function for the position and momentum 
as its marginal distributions are given by

∫
dp W1(x, p) = |ψ(x)|2 ;

∫
dx W1(x, p) = |ψ̂( p)|2, (110)

that is to say the probability distribution of the position and the probability distribution of the 
momentum. However, the Wigner function is referred to as a pseudo-probability density as 
it is generically non-positive. Despite this, the Wigner function has proved to be useful in a 
number of contexts [86]. As mentioned in section 3, it can be used to derive the LDA in bulk 
systems, but is also used in quantum chaos and semiclassical physics [87, 88], in quantum 
optics [89], in the theory of optical devices [90], in quantum information theory [91] or in the 
context of quantum mirror curves [92].

For an N body system in d-dimensions and zero temperature, the Wigner function is defined as

WN(x, p) =
N

(2π�)d

∫ +∞

−∞
dy dx2 . . . dxN e

ip·y
� Ψ∗

0(x +
y
2

, x2, . . . , xN)

×Ψ0(x − y
2

, x2, . . . , xN),
 

(111)

where Ψ0(x1, x2, . . . , xN) is the ground-state wave function constructed from the Slater deter-
minant. This many body Wigner function satisfies

∫ +∞

−∞
dp WN(x, p) = nN(x) ;

∫ +∞

−∞
dx WN(x, p) = ρ̄N(p) (112)

∫ +∞

−∞
dx dp WN(x, p) = N, (113)

where nN(x) = N ρN(x) is the average number density of fermions in position space (nor-
malized to N), and ρ̄N(p) the average number density in momentum space.

The classical single particle energy for this system is given by

E(x, p) =
p2

2m
+ V(x). (114)

The points in phase space (xe, pe) obeying E(xe, pe) = µ, where µ is the Fermi energy, con-
stitute a semi-classical Fermi surface in classical phase space, known as the Fermi surf [93]. 
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This Fermi surf plays the role of the edge for the behaviour of the Wigner function. Within the 
Fermi surf, there is a bulk region where one finds

WN(x, p) � 1
(2π�)d θ(µ− E(x, p)), (115)

that is to say a uniform distribution over the classically permitted phase space. This result can 
also be obtained via the LDA, see for example [4]. However, this LDA result breaks down 
near the Fermi surf.

Near a given point on the Fermi surf (xe, pe) we can associate an intrinsic energy scale [84]

eN =
(�)2/3

(2m)1/3

(
1
m
(pe · ∇)2V(xe) + |∇V(xe)|2

)1/3

, (116)

which in general will vary over the Fermi surf. Near the point (xe, pe) we can associate the 
scaled energy variable

a =
1

eN
(E(x, p)− µ), (117)

which is a function of only the local classical energy of the point (x, p). The Wigner function 
WN(x, p), at T  =  0 and in arbitrary d, is then given by

WN(x, p) � W(a)
(2π�)d , (118)

where remarkably the scaling function

W(a) =
∫ +∞

22/3a
Ai(u)du (119)

does not depend on the dimension of space d.
The results at zero temperature can be extended to finite temperature, by again passing 

over to the grand-canonical ensemble (see section 5.1). In the bulk we recover the LDA result

Wµ̃(x, p) =
1

1 + eβ(
p2
2m +V(x)−~µ)

 (120)

where µ̃ is the finite temperature chemical potential which can be obtained from standard 
statistical mechanics methods [84]. Near a given point on the Fermi surf, the Wigner function 
depends again on its coordinates via the local scaled energy a defined in equation (117) for the 
zero temperature case and is given by

WN(x, p) � Wb(a)
(2π�)d , (121)

where the scaling function is now given by

Wb(a) =
∫ +∞

−∞

22/3du
1 + e−bu Ai(22/3(u + a)) (122)

and depends on the temperature via the parameter b which is given here by b = β eN  with 
eN given in equation  (116). This representation is valid in the thermodynamic limit where 
eN(µ) → ∞ while b is of order 1.
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6.2. Edge in momentum space: multicritical universal statistics

We now ask about the statistics of the momenta pi of N noninteracting fermions, and 
their maximum pmax = maxi=1,...,N pi, in a (e.g. 1d) trap described by a single particle 

Hamiltonian ĥ = p̂2

2m + V(x̂). From the Wigner function bulk formula (115), we see that if the 

potential is bounded from below (assume that its minimum occurs at x  =  0 with V(0) = 0) 
there exists also an edge in momentum space pe =

√
2mµ, beyond which the momentum 

density ρ̄N( p) =
∫

dx WN(x, p) vanishes. Obviously, if the confining potential is harmonic, 
i.e. V(x) = mω2x2/2 momenta and positions play a symmetric role and the two (dimension-
less) random sets { pi/�α}i=1,...,N  (momenta) and {αxi}i=1,...,N  (coordinates) are described 
by exactly the same joint PDF (here α =

√
mω/� is the harmonic oscillator inverse length 

scale), at any temperature (and in fact, in any dimension d). This joint PDF is also the one of 
the GUE eigenvalues, leading to the Airy class at the edge (both in real and momentum space). 
This can also be seen from the universality of the Wigner function, in that case all along the 
Fermi surf, as discussed in the previous section.

The question of what happens for a more general, non harmonic trap, i.e. the pure power 
law potentials V(x) = gx2n, with n � 2 is however, non-trivial. In particular, for n  >  1 the 
duality between x and p  break down. From (115) we see that the density in momentum space 
now vanishes as

ρ̄N( p) ∼ ( pe − p)
1
2n , (123)

i.e. distinct from the standard Wigner semi-circle exponent 12 (for n  =  1) which indicates a new 
universality class. The failure of the GUE edge universality can also be seen from the formula 
for the width eN of the edge region (see equation (116)) associated to the Wigner function. We 

Figure 5. Plot of the limiting PDF of pmax, F ′
4(s) (in red), corresponding to n  =  2, 

compared to the standard TW distribution F ′
2(s) (in blue) corresponding to n  =  1. The 

dotted line corresponds to the large negative behaviour F ′
4(s) ≈ exp(−

√
8/3

15 s5/2), which 

is quite different from the TW distribution F ′
2(s) ≈ e−

|s|3

12  for s → −∞ (see equation (50)). 

Notice also the surprising oscillatory behavior of F ′
4(s) for s → +∞ (see [94]) for 

mode details.
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see that if the curvature of the potential vanishes (together with its first derivative) at the point 
(xe = 0, pe) in phase space, the formula gives eN  =  0. This signals a new universality class.

In [94] it was shown that the fluctuations of pmax are given by a set of new distributions, 
indexed by integer n � 2, which we called F2n, different from the usual TW distribution, 
which one gets for n  =  1 (see figure 5). These are found to satisfy a hierarchy of Painlevé 
equations, for different n, which generalize the one for the usual TW distribution. Such hier-
archies are also encountered in multicritical matrix models of interest in random surfaces and 
string theory. This raises the possibility of interesting connections, yet to be explored. We refer 
the reader to [94] for more details.

7. Conclusion

To conclude, we have shown how RMT techniques (in dimension d  =  1 and at temperature 
T  =  0), and more generally the methods borrowed from determinantal point processes provide 
the ideal tools to study in detail noninteracting trapped fermions. In particular, these methods 
turn out to be extremely useful to study the universal correlations that emerge at the edge of 
trapped Fermi gases, where the standard techniques, such as the LDA, can not be applied. 
In d  =  1 and T  =  0 we have reviewed various classes of quantum potentials V(x) that lead 
to noninteracting Fermi systems which are in one-to-one correspondence with the standard 
unitary ensembles of RMT, namely GUE, JUE and LUE (see figure 2). In particular, the edge 
correlations are described by the Airy kernel (for smooth potentials leading to a ‘soft edge’) 
and the Bessel kernel (for sufficiently singular potentials leading to a ‘hard edge’). An interest-
ing outcome of this mapping to RMT [12, 14] is that the quantum fluctuations of the position 
of the rightmost fermion in a smooth potential (i.e. of the form V(x) ∼ |x| p with p   >  0) are 
described at T  =  0, by the celebrated TW distribution [20]. For noninteracting fermions in a 
quadratic potential, the mapping to GUE was also very useful to study the fluctuations of the 
number of particles inside an interval I , in particular its variance [11] which, for I  inside 
the bulk, is related to the entanglement entropy of I  with its complement [51]. In this case, 
it is however quite difficult to study in detail the relation between the number variance and 
the entanglement entropy for a domain I  close to the edge. Recently, it was shown that both 
quantities can actually be computed at the edge for a model of noninteracting fermions in a 
two-dimensional rotating harmonic trap [60].

In higher dimensions d � 2, still at T  =  0, the connection to RMT is generically lost—see 
however the case of 2d-fermions trapped in a rotating harmonic potential mentioned above 
which can be mapped onto the so called Ginibre ensemble of RMT [60]. However, the univer-
sal correlations at the edge can still be studied using the tools of determinantal point processes. 
In this case, the associated kernels are given by generalisations of the Airy kernel (for smooth 
potentials) and of the Bessel kernel (for hard edge potentials), that depend non-trivially on the 
dimension d [13, 14, 38, 39].

At finite temperature T  >  0, in the canonical ensemble where the number of fermions N 
is fixed, the correlations are much harder to study, since the corresponding processes cease 
to be determinantal. Despite this, it is possible, in some cases, to obtain exact results for the 
linear statistics, i.e. for the distribution of physical observables of the form O =

∑N
i=1 f (xi) 

of the positions xi’s of the N fermions [95, 96]. To compute the correlations, one can use 
the equivalence between the thermodynamic ensembles, which is expected to hold for 
N � 1, and work in the grand-canonical ensemble. The great advantage of working in the 
grand-canonical ensemble is that the positions of the trapped fermions do, again, form a 
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determinantal point processes. And in this case, one can also show that the fluctuations at 
the edge are governed by universal correlation kernels that depend on both the dimension 
d � 1 and the temperature T  >  0, both for smooth [12, 14] and hard-edge [38, 39] poten-
tials. In particular, in d  =  1 and T  >  0 (properly scaled with N, see figure 4), the distribution 
of the position of the rightmost fermion, in a smooth potential, is given by a finite temper-
ature generalisation of the TW distribution [12, 14, 69]. Interestingly, as noticed in [12], 
the very same distribution (see equation (108)) appears in the exact solution of the Kardar–
Parisi–Zhang (KPZ) equation at finite time, and for droplet initial condition. Inspired by this 
connection between trapped fermions at finite temperature and the KPZ equation, further 
developments [97] have concerned the construction of a periodic version of the so called 
Airy process, which underlies the (spatial) fluctuations in the KPZ equation [98]. In par-
ticular, it was shown that this periodic Airy process describes the equilibrium (i.e. imaginary 
time) dynamics of trapped fermions near a (soft) edge. Recently, this periodic Airy process 
was found [99] to occur in combinatorics, in the context of the so called ‘periodic Schur 
process’ [100].

Finally, we have discussed the Wigner function, which is the natural observable to char-
acterize the correlations in the phase space (i.e. in the space of position x and momentum p ). 
In particular it also exhibits an edge in the (x, p)-plane. The vicinity of this edge was stud-
ied, for smooth potentials, for any dimension d � 1, at T  =  0 as well as finite temperature 
T  >  0 and it was shown [84] that the Wigner function is described by a ‘super-universal’, 
d-independent, scaling function at the edge (see equation (122)). This work further lead to 
investigate the statistics of the momenta of trapped fermions, which, at T  =  0, also form 
a DPP. In particular, in dimension d  =  1 and for anharmonic potential V(x) ∼ |x| p, with 
p   >  0, an interesting connection with multi-critical matrix models was unveiled [94].

This set of results, obtained using the methods of RMT and determinantal point processes, 
raise open challenging questions. In particular, the calculations presented here concern non-
interacting fermions. A natural and important question thus concerns the effects of interac-
tions, both in the bulk and at the edge. This is particularly challenging in one dimension 
where the standard Fermi liquid theory fails [101]. We refer the reader to [102] for recent 
results on Lieb–Liniger models in traps. Similarly, one may wonder about the effects of 
quenched disorder. Finally, it would be very interesting to extend the methods presented here 
to non-equilibrium situations, for instance in the context of quantum quenches [103–105]. 
We hope that the methods and results reviewed here will stimulate further research along 
these lines.
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