SFT 2024 - Lectures on Statistical Field Theories, GGI, Florence Feb 05-16, 2024

Lectures:

Motivation: Quantum Computing \& Simulation with Atomic Platforms

Peter Zoller

Outline

Lectures 1-4: Theoretical Quantum Optics
Part I: Hamiltonian engineering \& quantum optical toolbox
Part II: quantum noise \& open quantum systems
... basic concepts \& minimal models
... how we "think" about quantum noise in quantum optics

Seminar: Programmable Quantum Simulators with Atoms and Ions

Literature

The Quantum World of Ultra-Cold Atoms and Light:
Book I: Foundations of Quantum Optics
Book II: The Physics of Quantum-Optical Devices
Book III: Ultra-cold Atoms
by Crispin W Gardiner and Peter Zoller

Quantum Noise

A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics
by Crispin W Gardiner and Peter Zoller

Motivation

Engineered Quantum Many-Body Systems with Quantum Optical Systems

Quantum Computing [Digital]

trapped ions

quantum logic network model

... demonstrating quantum algorithms

Quantum Simulation [Analog]

atoms in optical lattices

theory: Jaksch et al. PRL 1998
exp.: Munich,
ETH,, Harvard,
MIT, Hamburg,
UIBK, Heidelberg
(non-)equilibrium many-body physics

Fermi-Hubbard Model
in 2D (high Tc)
... many-body quantum physics / cond mat

Quantum Computing [Digital]

Quantum Simulation [Analog]

trapped ions

quantum logic network model

... demonstrating quantum algorithms

atoms in optical lattices

quantum gas
microscope
`seeing single atom in
a single shot'

Fermi-Hubbard Model in 2D (high Tc)
... many-body quantum physics / cond mat

Programmable Analog Quantum Simulators

Rydberg Tweezer Arrays [1D,2D,3D]

Harvard - MIT, Palaiseau, JILA, Caltech, Wisconsin, Sandia, ...

Trapped-Ions [1D, 2D]
... and single site control \& readout
focused laser

Innsbruck, Duke, Rice

Engineered Spin Models \& Hamiltonians

$$
\hat{H}=\sum_{i} \frac{1}{2} \Omega_{i} \hat{\sigma}_{x}^{i}-\sum_{i} \Delta_{i} \hat{n}_{i}+\sum_{i<j} V_{i j} \hat{n}_{i} \hat{n}_{j} .
$$

spin-spin interaction as Rydberg Van der Waals
$\hat{H}_{\text {lsing }}=\sum_{i, j} J_{i j} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}+B \sum_{i} \hat{\sigma}_{i}^{z}$ $J_{i j} \sim \frac{1}{|i-j|^{\alpha}} \mathcal{N}_{\alpha=0 \ldots 3 \quad \text { long range }}$
phonon-mediated spin-spin interaction

Programmable Analog Quantum Simulators

Rydberg Tweezer Arrays [1D,2D,3D]

D. Bluvstein et.al.,Nature 604, 451 (2022)
D. Bluvstein et.al., Nature Dec 6 (2023)

Trapped-Ions [2D]

Innsbruck ~200 ions, Tsinghua, ~1000 ions
$\hat{H}_{\text {lsing }}=\sum_{i, j} J_{i j} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}+B \sum_{i} \hat{\sigma}_{i}^{z}$

Performance:

- Single qubit gates
- $\mathrm{T}_{1 \mathrm{q}}=20 \mu \mathrm{~s}$
- Error $_{1 q}=3.5 \cdot 10^{-4}$
- Two qubit gates
- $\mathrm{T}_{2 \mathrm{q}}=250 \mu \mathrm{~s}$
- $E r r o r ~\left(2 q=1.8(2) \cdot 10^{-2}\right.$
- Memory
- $\mathrm{T} 1=1.14(6) \mathrm{s}$
- $\mathrm{T} 2=0.45(7) \mathrm{s}$
- $T 2^{*}=1.19(9) \mathrm{s}$ (with spin echo)

99.997\%

single-qubit gate fidelity

99.8\%

two-qubit gate fidelity

- Highest commercially available two-qubit gate fidelity
- All-to-all connectivity
- Qubit reuse
- Mid-circuit measurement with conditional logic

H2 POWERED BY
HONEYWEL HONEYWELL

Entering a New Phase of Quantum Computing with our Second-generation System

The System Model H2, Powered by Honeywell, is our latest generation of quantum computers with a new racetrack-shaped trap. Featuring 32 fullyconnected qubits and an all-new architecture, Quantinuum's H 2 provides a quantum volume of 65,536 (2^{16}) and the largest GHZ-state.

Quantinuum's System Model H2 includes numerous hallmark features that set it apart from other types of quantum computers, including:

32

fully-connected qubits

10, 20 ... 50 Qubit Trapped-Ion

Programmable Quantum Simulator @ IQOQI-Labs

Analog Quantum Simulators

What physics can we do ... ?

product state \rightarrow entangled state
time
Native Hamiltonian

$$
\hat{H}_{\text {lsing }}=\sum_{i, j} J_{i j} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}+B \sum_{i} \hat{\sigma}_{i}^{z}
$$

Analog Quantum Simulators

What physics can we do ...?

Native Hamiltonian

$$
\hat{H}_{\text {lsing }}=\sum_{i, j} J_{i j} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}+B \sum_{i} \hat{\sigma}_{i}^{z}
$$

`Programming’ Quantum Simulators

programming quantum circuits

Native Hamiltonian

$$
\hat{H}_{\text {lsing }}=\sum_{i, j} J_{i j} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}+B \sum_{i} \hat{\sigma}_{i}^{z}
$$

... as resource for high-fidelity N -body gate
family of entangled states

$$
|\psi(\boldsymbol{\theta})\rangle=\hat{U}_{N}\left(\theta_{N}\right) \ldots \hat{U}_{2}\left(\theta_{2}\right) \hat{U}_{1}\left(\theta_{1}\right)\left|\psi_{0}\right\rangle
$$

* 4 40% a 0

trapped ion quantum resources
$\hat{U}_{1}(\theta)=e^{-i \theta \sum_{i j} J_{i j} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}} \quad$ entangle (Ising)
$\hat{U}_{2, i}(\theta)=e^{-i \theta \mathbf{n} \cdot \hat{\sigma}_{i}} \quad$ local rotations

- in general not universal gate set
- scalable

`Programming’ Quantum Simulators

Variational Classical-Quantum Algorithms

target Hamiltonian (e.g. lattice model)

$$
\hat{H}_{T}=\sum_{n \alpha} h_{n}^{\alpha} \hat{\sigma}_{n}^{\alpha}+\sum_{n \ell \alpha \beta} h_{n \ell}^{\alpha \beta} \hat{\sigma}_{n}^{\alpha} \hat{\sigma}_{\ell}^{\beta}+\ldots
$$

Variational Quantum Eigensolver (VQE)

$$
\operatorname{Energy}(\theta)=\langle\psi(\boldsymbol{\theta})| \hat{H}_{T}|\psi(\boldsymbol{\theta})\rangle \rightarrow \min
$$

... computing ground states

Analog Quantum Simulation + Postprocessing

Measurement post-processing

(Cross-) Correlation of probabilities

'Noise' or ensemble average (e.g. CUE)

2-design, ...

Part I: Engineered Many-Body Systems

Trapped-Ion Quantum Computing / [Simulation]

Optical Manipulation of Trapped Ions Quantum Computing with Trapped Ions 1 Ions in a Linear Trap
2 Two-Qubit Quantum Gates
'95 gate, geometric gate,
Quantum Simulation with Trapped Ions
1 Hamiltonian
Transverse Ising Hamiltonian

Quantum Computing: what we want to implement ...

- quantum memory

$$
|\Psi\rangle=\sum_{x \in\{0,1\}^{N}} c_{x}\left|x_{N-1} x_{N-2} \ldots x_{0}\right\rangle
$$

- quantum gates
- read out
- [no decoherence]
single qubit gate:
$\hat{U}_{1}=$ rotation of a single qubit

-

1. A single trapped ion

- a single laser driven ion in a trap

$\sqrt{ }$ system: atom + motion in trap: goal: quantum engineering
\checkmark [open quantum system]

Development of the theory:

- system: Hamiltonian (control)
- reservoir: master equation \& continuous measurement theory

\checkmark control
\checkmark decoherence
\checkmark preparation
\checkmark measurement

1. A single trapped ion

- a single laser driven ion in a trap

\checkmark system: atom + motion in trap: goal: quantum engineering
\checkmark [open quantum system]
- model system: two-level atom + 1D harmonic oscillator

two-level system

phonons

$$
H_{0 T}=\frac{\hat{P}^{2}}{2 M}+\frac{1}{2} M \nu^{2} \hat{X}^{2} \equiv \hbar \nu\left(a^{\dagger} a+\frac{1}{2}\right)
$$

$$
H_{0 A}=\hbar \omega_{e g}|e\rangle\langle e|
$$

$$
H_{1}=-\boldsymbol{\mu} \cdot \boldsymbol{E}(\hat{X}, t) \xrightarrow{\text { in RWA }}-\frac{1}{2} \hbar \Omega e^{i k_{L} \hat{X}-i \omega t}|e\rangle\langle g|+\text { h.c. }
$$

1. A single trapped ion

- a single laser driven ion in a trap

\checkmark system: atom + motion in trap: goal: quantum engineering
\checkmark [open quantum system]
- model system: two-level atom + 1D harmonic oscillator

two-level system

phonons

$$
\tilde{H}=\frac{\hat{P}^{2}}{2 M}+\frac{1}{2} M \nu^{2} \hat{X}^{2}-\hbar \Delta|e\rangle\langle e|-\frac{1}{2} \hbar \Omega e^{i k_{L} \hat{X}}|e\rangle\langle g|+\text { h.c. }
$$

harmonic trap two-level atom atom-laser interaction

> in ‘rotating frame’

RWA
coherent control parameters: $\left\{\Delta \equiv \omega-\omega_{e g}, \Omega, \nu\right\} \ll \omega_{e g}, \omega$

- laser absorption and recoil

$|g\rangle|\otimes|$ motion $\rangle \xrightarrow{\hat{H}_{1}}|e\rangle \otimes e^{i k_{L} \hat{X}} \mid$ motion \rangle
photon recoil kick
interaction

$$
\begin{gathered}
\tilde{H}_{1}=-\frac{1}{2} \hbar \Omega e^{i k_{L} \hat{X}}|e\rangle\langle g|+\text { h.c. } \\
\text { laser photon recoil: }
\end{gathered}
$$

couples internal dynamics and center-of-mass

- Lamb-Dicke limit

laser wave length

Lamb-Dicke expansion

$$
\begin{aligned}
e^{i k_{L} \hat{X}}= & e^{i \eta\left(a^{\dagger}+a\right)} \\
= & 1+i \eta\left(a^{\dagger}+a\right)+\ldots \\
& \quad \eta=2 \pi \frac{a_{0}}{\lambda_{L}} \equiv \sqrt{\frac{\epsilon_{R}}{\hbar \nu}} \quad \sim 0.1
\end{aligned}
$$

Lamb-Dicke parameter

- spectroscopy: atom + trap

- processes: "Hamiltonian toolbox for phonon state engineering"

laser assisted phonon absorption and emission
- example: "laser tuned to red sideband"

Jaynes-Cummings model

vacuum Rabi frequency
~ laser (switchable)

- Remark: Cavity QED

[Dissipation: spontaneous emission]

- sideband cooling ... as optical pumping to ground state

preparation of pure states $\rho_{\text {atom }} \otimes \rho_{\text {motion }} \rightarrow|g\rangle\langle g| \otimes|0\rangle\langle 0|$
- measurement of internal states: quantum jumps ...

Exercises in quantum state engineering

- Example 1: single qubit rotation

$$
\left(\alpha|g\rangle+\beta|e\rangle \otimes|0\rangle \xrightarrow{\hat{U}_{1}}\left(\alpha^{\prime}|g\rangle+\beta^{\prime}|e\rangle \otimes|0\rangle\right.\right.
$$

(1) we can rotate the qubit without touching the phonon state

- Example 2: swapping qubit to phonon mode

$$
\begin{array}{rr}
(\alpha|g\rangle+\beta|e\rangle \otimes|0\rangle & \rightarrow|g\rangle \otimes(\alpha|0\rangle+\beta|1\rangle) \\
\text { ion qubit } & \text { phonon qubit }
\end{array}
$$

(2) Using a laser pulse we can swap qubits stored in ions to the phonon modes (and vice versa)

- Example 3 [Exercise]

we can engineer an arbitrary superposition state of phonon states

$$
|g\rangle \otimes|0\rangle \rightarrow|\Psi\rangle=|g\rangle \otimes \sum_{n=0}^{N} c_{n}|n\rangle
$$

for given coefficients c_{n}.

Idea: let us first consider the inverse of the problem - given the above superposition state we can want to find unitary transformations to obtain $|g\rangle \otimes|0\rangle$.

Procedure: Applying a laser on the red sideband we couple the states $|g\rangle|n\rangle \leftrightarrow$ $|e\rangle|n-1\rangle$.
As a first step we apply a π-pulse so that we make the amplitude of $|g\rangle|N\rangle$ equal to zero by transferring the amplitude c_{N} to $|e\rangle|N-1\rangle$. But we now have a superposition of ground and excited state.

In the second step we apply a resonant laser so that we transform the known! superposition of $|g\rangle|N-1\rangle,|e\rangle|N-1\rangle$ to $|g\rangle|N-1\rangle$ with no amplitude left in $|e\rangle|N-1\rangle$. Now we repeat the argument until we have transformed the state to $|g\rangle|0\rangle$.

In the second step we apply a resonant laser so that we transform the known! superposition of $|g\rangle|N-1\rangle,|e\rangle|N-1\rangle$ to $|g\rangle|N-1\rangle$ with no amplitude left in $|e\rangle|N-1\rangle$. Now we repeat the argument until we have transformed the state to $|g\rangle|0\rangle$.

2. Many ions

- 2 ions \& collective phonon modes

$$
\begin{array}{lll}
\text { stretch mode } & \longleftarrow & \longrightarrow \\
\mathrm{O} & \nu_{r}=\sqrt{3} \nu_{c} \\
\text { center-of-mass } & \overrightarrow{\mathrm{O}} \overrightarrow{\mathrm{O}} & \nu_{c}=\nu
\end{array}
$$

axial
CoM longitudinal radial

collective mode frequencies
SL Zhu et al., PRL 2006
(3) We can swap a qubit to a collective mode via laser pulse

- Hamiltonian \& control

3. Trapped ion quantum computing (\& quantum simulation)

- laser cooled ions in a linear trap

Qubits: internal atomic states
1-qubit gates: addressing ions with a laser
2-qubit gates: entanglement via exchange of phonons of quantized collective mode

- state vector

$$
\left.|\Psi\rangle=\sum_{x \in\{0,1\}^{\otimes N}} c_{x}\left|x_{N-1}\right\rangle \ldots x_{0}\right\rangle_{\text {quantum register }} \otimes|0\rangle_{\text {phonon }}
$$

JI Cirac, P. Zoller, Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091 (1995).
Review: P. Schindler et al. [Blatt-group], A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).

4. Entangling Gates: the '95 gate

- level scheme

A universal qudit quantum processor with trapped ions

Martin Ringbauer $\odot^{1 \otimes}$, Michael Meth ${ }^{1}$, Lukas Postler ${ }^{1}$, Roman Stricker \odot^{1}, Rainer Blatt ${ }^{1,2,3}$, Philipp Schindler ${ }^{(1)}$ and Thomas Monz ${ }^{\left({ }^{1,3}\right.}$
NATURE PHYSICS | VOL 18 | SEPTEMBER 2022 | 1053-1057 I www.nature.com/naturephysics

Fig. 1 | Level scheme of the ${ }^{40} \mathbf{C a}^{+}$ion. Quantum information is encoded in the $S_{1 / 2}$ and $D_{5 / 2}$ states, where each transition between S and D is accessible using a single narrowband laser at 729 nm .

'95 two-qubit phase gate

- step 1: swap first qubit to phonon bus
first atom: m

\[

\]

'95 two-qubit phase gate

- step 2 conditional sign change

'95 two-qubit phase gate

- step 3: swap phonon back to first qubit
atom m
laser

$$
|g\rangle_{m} \otimes \begin{array}{rll}
|g\rangle_{n}|0\rangle & \longrightarrow & \hat{U}_{m}^{\pi, 0} \\
|r\rangle_{n}|0\rangle & \longrightarrow & |g\rangle_{m}|g\rangle_{n} \\
i|g\rangle_{n}|1\rangle & \longrightarrow & |g\rangle_{m}|r\rangle_{n} \\
-i|r\rangle_{n}|1\rangle & \longrightarrow & |r\rangle_{m}|g\rangle_{n} \\
- & -|r\rangle_{m}|r\rangle_{n}
\end{array}
$$

'95 two-qubit phase gate

- summary

$-{ }^{m} \cdot \bullet^{n} \bullet$

$$
\begin{array}{llll}
|g\rangle|g\rangle & |0\rangle & \longrightarrow & |g\rangle|g\rangle \quad|0\rangle, \\
|g\rangle\left|r_{0}\right\rangle|0\rangle & \longrightarrow & |g\rangle\left|r_{0}\right\rangle|0\rangle, \\
\left|r_{0}\right\rangle|g\rangle|0\rangle & \longrightarrow & \left|r_{0}\right\rangle|g\rangle|0\rangle, \\
\left|r_{0}\right\rangle\left|r_{0}\right\rangle|0\rangle & \longrightarrow & -\left|r_{0}\right\rangle\left|r_{0}\right\rangle|0\rangle .
\end{array}
$$

$$
\left|\epsilon_{1}\right\rangle\left|\epsilon_{2}\right\rangle \rightarrow(-1)^{\epsilon_{1} \epsilon_{2}}\left|\epsilon_{1}\right\rangle\left|\epsilon_{2}\right\rangle \quad\left(\epsilon_{1,2}=0,1\right)
$$

Excercise: write out all of these steps explicitly

- (addressable) 2 ion controlled-NOT + tomography

Realization of the Cirac-Zoller controlled-NOT quantum gate

Ferdinand Schmidt-Kaler, Hartmut Häffner, Mark Riebe, Stephan Guide, Eavin P. T. Lancaster, Thomas Deuschle, Christoph Becher, Christian F. Rooss, Jürgen Eschner \& Rainer Blatt
 A 6020 itnsbouck, Austria

Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate

 J. Brition ${ }^{+}$, W. M. Itano ${ }^{*}$, B. Jelenkovié ${ }^{-}$, G. Langer ${ }^{+}$, T. Rosenband \& D. J. Wineland ${ }^{-}$

- teleportation Innsbruck / Boulder
- decoherence: quantum memory DFS 20 sec

EPR pair

Remarks: Scalability

- key idea: moving ions without destroying qubits

Remark: the wishlist

- fast: max \# operations / decoherence [what are the limits?]
- NO temperature requirement: "hot" gate, i.e. NO ground state cooling

$$
\begin{aligned}
& \qquad|\psi\rangle\langle\psi| \otimes \rho_{\text {motion }} \rightarrow \text { entangle via motion } \rightarrow\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right| \otimes \rho_{\text {motion }}^{\prime} \\
& \text { qubits motional state: } \\
& \text { e.g. thermal }
\end{aligned}
$$

- NO indivdual addressing

VS.

addressing:
large distance
vs.
strong coupling small distance

4.2 Geometric [Coherent Control] Gates: One Ion

- Goal: geometric phase by driving a harmonic oscillator
- Hamiltonian

$$
H=\frac{1}{2}\left(\hat{p}^{2}+\hat{x}^{2}\right)-f(t) \hat{x}
$$

- Time evolution

$$
\left|\psi_{0}\right\rangle=\underset{\substack{\left|z_{0}=x_{0}+i p_{0}\right\rangle \\ \text { coherent state }}}{\oint_{\text {phase }}^{\text {coherent state }}}
$$

- Solution

$$
\begin{aligned}
& \begin{array}{ll}
\frac{d}{d t} z=-i \omega z+i \frac{1}{\sqrt{2}} f(t) \Longrightarrow \quad z_{t}=e^{-i \omega t}\left[z_{0}+\frac{i}{\sqrt{2}} \int_{0}^{t} d \tau f(\tau)\right] \\
d
\end{array} \\
& \frac{d}{d t} \phi=\frac{1}{\uparrow} \frac{1}{2 \sqrt{2}} f(t)\left(z^{\star}+z\right) \quad \text { classical evolution } \uparrow_{\text {displacement }} \\
& \text { phase }
\end{aligned}
$$

- Condition

After a given time T the coherent wavepacket is restored to the freely evolved state

$$
\int_{0}^{T} d \tau e^{i \omega \tau} f(\tau) \stackrel{!}{=} 0
$$

- Rotating frame

$$
\begin{aligned}
& \tilde{z}_{t} \equiv \tilde{x}_{t}+i \tilde{p}_{t}=e^{i \omega t} z_{t} \\
& \frac{d \tilde{z}}{d t}=i e^{i \omega t} \frac{1}{\sqrt{2}} f(t) \\
& \frac{d \phi}{d t}=\frac{d \tilde{p}}{d t} \tilde{x}-\frac{d \tilde{x}}{d t} \tilde{p}=2 \frac{d A}{d t}
\end{aligned}
$$

- Phase

$$
\begin{aligned}
\phi(T) & =\operatorname{Im} \frac{i}{\sqrt{2} \int_{0}^{T} d \tau e^{i \omega \tau} f(\tau) \tilde{z}_{\tau}^{\star}} \\
& =\operatorname{Im} \frac{i}{\sqrt{2}}\left[\int_{0}^{T} d \tau e^{i \omega \tau} f(\tau)\right] \tilde{z}_{0}^{\star}+\frac{1}{2} \operatorname{lm} \int_{0}^{T} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} e^{i \omega\left(\tau_{1}-\tau_{2}\right)} f\left(\tau_{1}\right) f\left(\tau_{2}\right)^{\star}
\end{aligned}
$$

return condition

The phase does not depend on the initial state, $\left(\mathrm{x}_{0}, \mathrm{p}_{0}\right)$

- Example

The phase does not depend on the initial state $\left(x_{0}, p_{0}\right)$, i.e. temperature independent

Geometric phase gate: single ion

- Hamiltonian

$$
H=\frac{1}{2}\left(\hat{p}^{2}+\hat{x}^{2}\right)-|1\rangle\langle 1| f(t) \hat{x}
$$

- Time evolution operator

$$
\begin{aligned}
& U(T)=e^{i \phi|1\rangle\langle 1|} \\
& (\alpha|0\rangle+\beta|1\rangle) \otimes\left|z_{0}\right\rangle
\end{aligned}
$$

$$
\longrightarrow\left(\alpha|0\rangle+\beta e^{i \phi}|1\rangle\right) \otimes\left|z_{0}\right\rangle
$$

single ion phase gate
NIST D. Leibfried et al.

NIST Gate: Leibfried et al Nature 2003

- 2 ions in a running standing wave tuned to ω_{r}

- If $F(t)$ is periodic with a period multiple of ω_{r}, after some time the motional state is restored, but now the total phase is

$$
\phi=A \sigma_{z}^{1} \sigma_{z}^{2} \quad U(T)=\exp \left(i \phi \sigma_{1}^{z} \sigma_{2}^{z}\right)
$$

- To address one mode, the gate must be slow $)^{\circ}$

$$
T \geqslant>2 \pi / \omega_{r}
$$

NIST Gate: Leibfried et al Nature 2003

N ions

- We will consider N trapped ions (linear traps, microtraps...), subject to statedependent forces:

$$
H=\frac{\stackrel{\mathrm{O}}{\mathbf{O}} \longleftrightarrow \mathbf{\mathrm { O }} \leftrightarrows \mathbf{\mathrm { O }} \overleftrightarrow{\mathbf{o}}}{\sum_{i=1}^{N}\left[\frac{1}{2 m} p_{i}^{2}+V_{e, i}\left(x_{i}\right)-F_{i}(l) \sigma_{z}^{i} x_{i}\right]+\sum_{i<j} \frac{e^{2}}{4 \pi \varepsilon_{0}}\left|x_{i}-x_{j}\right|}
$$

- normal modes

$$
H=\sum_{i}\left[\frac{1}{2 m} P_{i}^{2}+\frac{1}{2} m \nu_{k}^{2} Q_{k}^{2}\right]-\sum_{k} P_{i}(t) \sigma_{z}^{i} M_{i k} Q_{k}
$$

- unitary evolution operator
- constraints on forces

$$
U(T)=\exp \left(i \sum_{i j} J_{i j} \sigma_{z}^{i} \sigma_{z}^{j}\right)
$$

$$
\int_{0}^{T} d \tau e^{i \omega_{k} \tau} F_{i}(\tau)-0, \quad \forall i, k
$$

general Ising interaction

Trapped-Ion Quantum Simulation

String of Trapped Ions
C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, N. Y. Yao, Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021)

10, 20 ... 50 Qubit Trapped-Ion

Programmable Quantum Simulator @ IQOQI-Labs

Transverse long-range Ising model
... and single site control \& readout
focused laser

Innsbruck, Duke, Rice

$$
\hat{H}_{\text {Ising }}=\sum_{i, j} J_{i j} \hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}+B \sum_{i} \hat{\sigma}_{i}^{z}
$$

Crystal geometry and collective modes of motion

Linear strings of N ions : $\quad \nu_{x}, \nu_{y} \gg \nu_{z}$

Planar crystals: $\quad \nu_{x} \gg \nu_{y}, \nu_{z}$

Collective motional modes:

- 2 N in-plane modes
- N out-of-plane modes

Entangling interactions mediated by transverse motional modes

Spin-spin interaction by off-resonant laser coupling to vibrational modes

| $\left.\begin{array}{l}\|\downarrow \downarrow\rangle \\ \|\downarrow \uparrow\rangle\end{array} \longleftrightarrow c c\left\|\begin{array}{l}\|\uparrow\rangle\rangle \\ \mid \downarrow\end{array} \quad\right\| \uparrow \downarrow\right\rangle$ |
| :--- |$\longleftrightarrow H=\sum_{i<j} J_{i j} \sigma_{i}^{x} \sigma_{j}^{x}$ slide credit: C. Roos

Variable-range entangling interactions (Ising)

Example: 11 ions

$$
H=\sum_{i<j} J_{i j} \sigma_{i}^{x} \sigma_{j}^{x} \quad J_{i j}=\frac{J_{0}}{|i-j|^{\alpha}}, 0<\alpha<3
$$

'Tilt'

Spin-spin coupling $\mathrm{J}_{\mathrm{ij}}(\mathrm{Hz})$

ion number

Variable-range entangling interactions (Ising)

 center-of-mass
couple to all modes equally

Knobs to turn:

- laser detuning Δ
K. Kim et al, PRL 103, 120502 (2009)
J. Britton et al, Nature 484, 489 (2012)
- spread of radial modes
slide credit: C. Roos

Variable-range entangling interactions: XY model

XY model: hopping of spin excitations

