Open Quantum Optical Systems - Theory Perspectives

Quantum optical systems as open quantum systems

- open system

system of interest coupled to an environment (bath,

reservoir)
Examples o)
photon
- Driven, radiatively damped two-level atoms laser o M Y
- laser hot
atom driven by laser emitting photons in the 3D Stom e
vacuum modes of the electromagnetic radiation field —19)
- Cavity QED
atoms + cavity mode (system), coupled to waveguide / 0000 OUt_Chann;I D- detector
optical fiber (electromagnetic bath) < drive
environment as input & output channels to drive and in-channel

monitor evolution of quantum system

uibk

(@)




Various Scenarios of Open System Dynamics

« We do not monitor the quantum system out
dynamics of unobserved system / master equation / 0000 <__ drive
a priori dynamics "
- We (continuously) observe the systems [
il 1,
photodetector / photon counting: photon statistics 0000 )| z— D- ' time
in photodetector clicks

homo- / heterodyne current: current correlations

dynamics of system conditional to observed measurement
trajectory in a single run / stochastic Schrodinger Equation /

a posteriori dynamics out
<o 00 o) =2 b

... and quantum feedback

N t Io_ﬁa!( homodyne current
act back on quantum system conditional to measurement -~ osy

read out in a single run of the experiment

feedback loop




Theory Overview - Quantum Markov Processes

CRE)

integrated out

« Dynamics of system + bath * Reduced system dynamics
Quantum Stochastic Schrodinger Equation Master Equations
Quantum Langevin Equations Stochastic Schrédinger Equation
input-output formalism quantum trajectories (jump / diffusive)
- Topics

- Ito & Stratonovich (Quantum) Calculus
- Solution of QSSE with Matrix Product States




Part Il

drive

Theory of Quantum Noise in Quantum Optics

Quantum Stochastic Schrédinger Equation (QSSE)

¢ Quantum Operations, Kraus operators
- formal quantum information theory

e QSSE, quantum trajectories, master equations etc.
- quantum Markov processes, quantum stochastic formalism
- formulated in context of quantum optical problems




System coupled to a Bath - a Quantum Information Perspective
Quantum Operations closed total system

-------------------------------

Open quantum system: system of interest coupled
to a bath. They form a closed quantum system where
time evolution U in Hilbert space #ys ® 5.

------------------------------

Evolution of system coupled to a bath:

& (Psys)

system Psys

Psys — (ga(,osys) =1rp lU(Psys ® ,OB) UT] bath PB ——

Lit.: M. A. Nielsen and I. l. Chuang, Quantum Computation and Quantum Information, Cambridge (2000): Chapter 8



-------------------

closed total system

Operator sum representation i @ @ §

-------------------

Evolution of the composite system

& (Psys) = Z(eklU [psys ® Ie())(eol] UTlek) o o system Psys
¢ B gt SYysS ® Ay bath PB ——
- Zk: k Psys 2 T
leo) {eol

with operational elements Ej. = (ex|U|ep) acting in Ay pure state

Completeness relation:

% E;{;Ek — isys

Proof: 1= trsysg(Psys) = Wgys (Zk EkpsysE;E) = Wgys (Zk E};Ekpsys)



closed total system

------------------------------

Operator sum representation i @ @ §

------------------------------

Performing a measurement in the basis {|ey)}, the
state of the system after reading "k" is

system Psys Psys (k) ~ EkPSYSEch

Psys(k)NtI'B[|ek><ek|U(Psys®|90><30|)UT|ek><ek|] bath 0B — Ul D-
~ (ex|U (psys ® leo)(eol) U le)

= EipsysE} /troys (..)

Probability for the outcome & Not reading the measurements

ek ekl U (poys ® leo)eol) U leg) e

P(k) = trsys+B
E(p) = Z p(k),Osys(k) = ZEszysE};
k k

= Wgys (EkpsysE};)



Open Quantum Optical Systems

Example: Radiatively Damped and Driven Two-Level Atom

Hamiltonian (% = 1) detuning
4 A=0p—weg

Hiot = Hsys + Hp + Hint I |€>

b o Sy A Ao

1 . 1 ; frequenc
Hsys = 6Ueg|e><e| - EQe let0'+ — EQ* etiWilg_ : / photon photon

9)

« System: with Paulioperators o_ =|g) (e| etc.

« Bath: vacuum modes of 1D radiation field

wL+19 ‘6)
Hpg :/ dowb' (w)b(w) )
wp—9 fiber =
=)

input

output

with [b(w), b ()] = 6(w—w') and cutoff 9 (< weg ~ wy)

photonic nanostructure as
engineered em environment



e Interaction Hamiltonian system-bath in RWA

Hint

with 1D electric field operator E® (x) = i

We rewrite

= —’LtegO'_E(_) (0) _HegO-+E(+) (0)

wL +9
d 47Lsz¢€

wr+10
Hine = i/ dwx (w) [bT (w)o_ -0+ b(a))]

wL—ﬁ

 First Markov approximation: replace in [weg — 0,0 + J]

r

k(@) = 27

b(w)elwx/c

K(w)

Below y will be identified with the spontaneous emission rate.

Validity and hierarchy of time scales:

QA Yy <<V <K Weg =y,

A

reservoir coupling

ey

K(w) —

Pl

VY/I2n

Weg
system frequency

\ v J
wo — U wo + U
reservoir bandwidth B




Schrodinger Equation

Schrodinger Equation in interaction picture:
Lod o - - -
lhd_t W (1)) = [Hsys + Hint(t)] |\ (1))

with Ur(f) = exp (—i[HB + HO) t) with HS = w |e) (el

o System Hamiltonian in rotating frame

~ 1 1

o Interaction Hamiltonian in RWA

5 Weg+1U ' |
Hine(t) = i/ dwx (w) [bT (W) g llw—w)t 5 o, b(w) o~ iw-wp)t
weg—ﬁ

ivY b (o - b(t)o,

Rabi () y

frequency

Remarks:

- optical frequencies disappeared

QA Y<K we><wL RWA

T

weak coupling; hierarchy of time scales

* below take white noise limit

9 — oo



Quantum Stochastic Schrédinger Equation (QSSE)

d J & =

photon photon
9)

with initial condition [¥(0)) = |yys) ® [vac).

o Operator ‘white’ noise

1 wr+90 slowly va.rying
b(t) = —/ b(a))e_i(‘“_wL)tdw o-function
V 277: wL—{)
5s(t_ S)
with commutator
— ~1/9
1 [t .
[b(t),b*(s)] —5.(t—s) With 6.(f—s) = 2—/ dwe™0U=9) ey
T.J-9

with § a ‘d—function’ with time scale 1/9 — 0
\ white noise limit

Note: QSSE can be given arigorious mathematical definition within Stratonovich
(or Ito Calculus.) Below will integrate this equation ‘naively.’



Generic Quantum Optical Model - Summary

Hamiltonian of system + bath

Hgys (unspecified)

w0+1‘)
Hp = / dwob'(@bw)  with bosonic [b(w), b! ("] = 6w -w)

w0—19

K (W) reservoir coupling

wo+9 A K(w) — \/v/21
Hine(2) = i / dwx(w) | b’ (w)c - c*b(w)] —
a)()—t‘)
in RWA with ¢ a system operator /
> W

system frequency
\ J

Y
wo — U wo + 9

reservoir bandwidth B



Quantum Stochastic Schrédinger Equation

d :
—IW(0)) = {~iHeys + V7D (e = VTcTb0)} (1) With ¥ (0)) = lysys) @ lvac)

T Rem.: Here we assumed a RWA,
wo+D . and all optical frequencies have
: _ —1l(w—wo)t
quantum noise b(t) = Jon /w o b(w)e “do been transformed away

QAN Yy<I<wenyZwr TLS
b(0),b'(5)| =85t~ 9)

Below we will integrate the QSSE

v — Wo) — [¥r) = e "o |Wy)
lvac) U(t) I Yo Schrodinger equation:
system + environment




Time Evolution of System + Bath f

Questions:

- We do not observe the bath / environment: reduced density operator

master equation

ly) — — pr = trg|V (Y|
U « decoherence
lvac) — - preparation of the system
(e.g. optical pumping, laser cooling)

« We monitor the bath / environment: continuous measurement

conditional wavefunction

) —— — |v.()) < - counting statistics

U | counts . _
lvac) D_{I ||| | ” « effect of observation on system evolution

e (e.g. preparation of the (single) quantum system)




Integration of the Quantum Stochastic Schrodinger Equation

"Coarse Grained” Time Integration

At
ERRRRNNNEEREEY S T N NS
t
> vac) — —D- - —D- — —D-
0 time t
Stroboscopic evolution of the state vector: Idea: we integrate the QSSE in small time steps At

(W (£ =nAn)=U(0)[¥(0))
=U(t,t—=Ar)...UCAL, At)U(At,0)['Y(0))

hierarchy of
Tsys > At > 1/9 (>>>€;,0 time scales

RWA
with U(At,0) etc. the time evolution operators. Example TLS: 74y ~ 1/Q,1/A,1/y



The first time step

lv) — —

> lvac) — ce)

At
O\~

time t

We wish to do an expansion of U(At,0) to keeping terms up to order At

U(At,0)['Y(0)) =

-

Background Material: Perturbation theory

The SE equation for the time evolution operator,

d A
S Ut fo) = —iHin (U1, fo) - (Ulho, fo) = 1),

is equivalent to the integral equation

t
ul(t, l‘o)=i—/ dt' Hin (YUt 1o).

1o

A perturbative solution is derived by iteration:

Io

t t 2
Ul(t, ty) = 1—i/ dt Hint(f1)+(—)2/ dtz/ d ty Hine(£2) Hine(£1) +... |
o to

_J




The first time step

At
L " o
> [vac) — (A7)
O\ time t
We wish to do an expansion of U(At,0) to keeping terms up to order At

At At
U(At,O)I\P(O)):{i—iHsySAt+ \/?c/ b*(t)dt—\/?c*/ Wt
0 0

} 'WP(0)) with |W(0))) =|v)®|vac)



The first time step

) — — ~

lvac) — URDL -

tlme t

We wish to do an expansion of U(At,0) to keeping terms up to order At

At
U(At,0)|¥(0) =  Hy s AT+ bt dt - / dt
(A1,0)|¥(0)) = { —~ iHgy ﬂc/O () M

At )
+(—i)2yc*c/ dt/ dﬂb(r)b*(t’)+...+...}|\1’(0)> with |¥(0))) = |y) ® |vac)
0 0

At t At t
/ dt/ dt'b(t)bT(t')Ivac):/ dt/ dr’ [b(t),bT(t')]lvac)
0 0

At
/ dt/ dt' §s(t—t')|vac)

Due to the singluar nature of [b(1),b'(s)] = §5(¢ —s) the second order

perturbation theory term is actually first order in At . 5At|VaC> for At>1/9.



The first time step

At
O\~

>
time t

Result: the wave function after the first time step order At

|W(AD) = U(At,0)[\Y(0))

={1—iHeAt+¥cAB' O} 1¥(©0)  with [¥(0))) = [y) ® Ivac)

with the definitions

- effective (non-Hermitian) system Hamiltonian

i

_ Wigner-Weisskopf
Heff = Hgys — EYCTC J P

Hamiltonian

« A system wave function evolving under H.g will decayloose norm
o TLS Wigner-Weisskopf Hamiltonian Hgys = (weg — %y) ley(e| +...

increment of noise operator

integral of what op. noise

r+At
AB(t) E/ b(s)ds
t

"points to the future”

« annihilation (creation) operator of photon in (¢, ¢+ A]
e quantum version of Wiener increment



The first time step

At
O\~

Result: the wave function after the first time step order At

>
time t

V(A1) = U(At,0)[\W(0))
- {i _iH AL+ ﬂcABT(O)} W(0)) with |[¥(0))) = |w) ® |vac)

with the definitions

Note: The state |W(Ar)) is normalized to first order in At

i i
1Y (A = 1+<@|<¢|+%H§EM—%H&M
T T
+/y ¢'AB(0)/y cAB' (0)|y)|vac)

=1+ O(A?)



The first time step

At
O\~

Result: the wave function after the first time step order At

>
time t

|W(AD) = U(At,0)[\Y(0))

superposition state of atom
an no & one photon state

={1—iHeAt+¥cAB' O} 1¥(©0)  with [¥(0))) = [y) ® Ivac)

with the definitions

one photon

no photon

>-
time

>
time



(slide 1 of 2)
Physical Meaning and Properties of AB(t) and AB'(¢)

At 1y,

[+At
AB(1) E/ b(s)ds W
f L1 ]

>

increment "pointing to the future” (Ito) £ AL time
Properties
« AB(f)|vac) =0 e photon number operators
« commutation relations (independent increments) N(p) = AB'() AB(1)
VAt VAt

At t=1t overlapping

AB(1),AB' ()| =
(1) ()l {o t#t non-overlapping

with eigenstates N(1)[0); =0, N(8)[1);=1|1);

e one photon wave packet in time slot (A, £ + At]

ABT (1)

VAL
with zero-photon state AB(1)|0); = 0.

lvac) = (1),



(slide 2 of 2)
Physical Meaning and Properties of AB(t) and AB'(¢)

At 1y,

[+At
AB(1) E/ b(s)ds W
f L1 ]

increment pointing “to the future” (Ito)

>
t t+Ap Ume

Properties (continued) § detector

photon
laser o M\,\;\'\HJ

 {N(1)} form a set of commuting operators, —

atom

[N(£), N(t)]1 =0

with eigenstates <A_t.

: : LUl L e
AB'(t;,) AB'(fy) _1 11
Jns VY lvac) =[1¢,,...,15,14) t tr l,

corresponding to photons emitted attimes r1 <6 <...< ¢ .

>
! time

Rem.: We will use this below to calculate the photon statistics of the emitted light



The first time step: quantum operations

At
O\~

Summary of first time step: to first order in At

>
time t

W (AD)) = [i — iH. g At+ ﬁCABT(o)l 1P (0)) superposition of a vacuum and one-photon state.

= |vac) ® (1 — i Hog At) [p(0)) + [1) ;=0 ® \/yAtclw(0))
= [vac) ® Eo|y(0)) +11) =0 ® E1|y(0))

We read off the operation elements  Eo=1-iH.gAt (no photon in (0,Ar]) R
\ N time
E1 =+/yAtc (one photon in (0,At])
>
\S time

Reminder: Quantum operations

) — - [¥)leo) — W) = Uly)leo)

leo)—, U LY = lex){erlUlep)lw) =) ler) Exlw) with Ey = (ex|Ulep) (Operation elements)
k k




The first time step

Discussion:

« We do not read the detector: reduced density operator

V) —
lvac) —

U(At)

—— p(A7)
p(At) =trg|V(AD))(V(AD)]

>< = Eop(0)E] + E1 p(0)E]

= (1-iHg A1) p©) (1 - iHgAD) +ycp©)c Az
master equation:
o(AD) — p(0) = —i (Heﬁcp(O) - p(O)H;rH) At+yco0)ct At

= —i [Hsys, p(0)] AL + %y(Zc,o(O)cT —cTep(0) - p(O)CTC) At

Lindblad form of master equation; optical Bloch equations

Reminder: Quantum operations

)

U

|€0>

::B( p=lw)wl — &(p) = Trg [Up ® |ep)(ey| UT| = ) ExpE]
k




The first time step

Discussion:

« We read the detector:

v) —

lvac) —

U(At)

— p- Zoick)

Reminder: Quantum operations

)

U

|€0>

— b <{*)

c=o_=|g)el Y

9)

o Click: resulting state after emission / detection of a photon
E1ly(0)) = [y (A) = /yAtcly(0)) (quantum jump) — [g)
with probability
ik (E1pOE]) =yar Jey@? PO = rAilCelw) I
Rem.: density matrix after click

p1(AD) = E1p(0) E] /trgy (...

W ~lep) Exly)  probability pi = | Exw|’



The first time step

Discussion:

« We read the detector:

V) —
lvac) —

U(At)

— b <%

Reminder: Quantum operations

)

U

|€0>

— b <{*)

e No click: resulting state
Eolw (0)) = [y k(A1) = (1 - i Hog At) [pr(0)) = e e BT 4 (0))

with probability non-Hermitian
evolution

. . 2
@no click — trsys (EOP(O)E;) — H e—lHeﬁ‘At/hw(O) H

Rem.: density matrix po(At) = Egp(0) Eo/trgys(...)

W ~lep) Exly)  probability pi = | Exw|’



Second integration step

At
0\

Wave function after second step

>
time t

W (2A1)) = U(At) [V (AD)
explicitly

2At

2At
I‘{’(ZAt)):{i—iHsysAt+ \/?c/ b*(t)dt—\/?c*/ b(t)dt
At At

2At )
+ (-D)*yc'c dt/ dt'b(t)bT(t')+...} \
- /

" commute due to

At
X {i_iHeffAt+ \/70/ bT(f)df}N’(O)) [b(t),bT(s)] =64(t—5)
0

The increments ABT(At) and AB(At) etc. commute with ABT(0) because
the time intervals do not overlap, i.e. we can commute AB(At) through
the ABT(0) until we can apply AB(At)|vac) = 0.



Second integration step

At
0\

>
time t

Wave function after the second step:

W (2AD) = (i —iH AL+ ﬂcABT(At)) (i —iH AL+ ﬁcABT(O)) W (0))



Integration up to time ¢

At
0 \S
t

Many time steps:

>
time t

V(1 +AD) = (i —iH AL+ \/?cABT(t)) W (5)

or

n—1

WD) = [ (1-iHewAr+ yeAB' (1)) 19(0)
=0

V) —

lvac) — s

U(At)

Schrodinger Equation for |¥ (1)) & Properties

o Schrddinger Equation with a discretized time steps At:

Al (2)) : =Y (t+A) — Y (1)

= (~iHer A+ 7eABT(0) (D)

« |¥(1)) depends only on AB'(¢;) in the past (0, t], and thus

AB(D) U(1) ly)lvac) = AB(1) U(1) |[y)|vac) =0,

and

AB()|¥ (1)) =0



Integration up to time ¢

At
0 \S
t

Many time steps:

>
time t

W (1 +AD) = (i —iHy AL+ \/?cABT(t)) V(D)

or

n—1

WD) = [ (1-iHewAr+ yeAB' (1)) 19(0)
=0

v) — H
|V|aC>_U(At) U(At)_

Schrodinger Equation for |¥ (1)) & Properties
o Schrddinger Equation with a discretized time steps At:
AW (D) : =P (t+ A1) —[¥(1))

= (~iHer A+ 7eABT(0) (D)

Ito Quantum Stochastic Schrodinger Equation (A1 — d)
() dlY@)=Y(t+dn))— V¥ (1)
= (- iHeg At + yedB ()19 (1)
with Ito table (vaccum input)
dB(1)dB' (1) = dt other elements of Ito table are zero
( AB(1AB' (1) vac) = | AB(1),AB' (1) | Ivac) = At [vac)



Interpretation of the state vector

Entangled state system + (emitted) photons ... huge!
At

+—>

P (1)) = e ettt |1(0)) ® [vac)

+ Z g~ Heit (1=11) ﬁce_iHeff h lw(0)) ® ABT(tl) |vac) ¢
I

+...

+ Z e—iHeff(t—tn)ﬁce_iHeff(tn_tn—l)“.e_iHeff(tZ_tl)\/?C@_iHefftl|17U(O)>®ABT(tn)...ABT(tI)lvaC>

tn>...> tl

atomic wavefunction conditional to sequence of photon emission photon state
= |W(t|tn)y tl))

Continuous observation with a photodetector will collapse the superposition



>

Discussion:
/NN N\ ‘A/\
tn

« Under continuous observation the system wave function evolves ‘ ‘ “‘ ‘ ‘ H ‘ ‘ ‘ ‘ ‘ ‘

during time intervals of no photon emission as t t) t

1w (t0)) — [w(8)) = e~ Hett 1=10) 14 (1))

while emission of a photon is associated with a quantum jump

W (8)) — ly(t+dt) ~cly()) (quantum jump)
Instead of solving for p with the master

« Probability of no photon emission in (0, 7] equation, we can simulate stochastic
. .
pt= v wavefunctions y and average over

_ He—iHeff iy 0) Hz quantum trajectories p = (( [W){y| Dst
« Probability density for n-photon emission attimes r, <, <...< 1,
in (0, £]

t _ 2
Po(ty,-- t) = [yt )] We have calculated the
_ ” —iHes (t—1t5)/h —iHes 11 /1 Z ‘oti
= |le vyee...\/yce v (0) H complete photon statistics



Master Equation

Reduced system density operator

) — — p(2) = trp|V (1) (W (D)

vacy—{UBD| e - _JUBDL

Master equation: taking the At — dt (coarse grained derivative)

p(1) = —iHegep (1) + p(0)iH .+ yep(£)c'

1
= —i|Hgys, ()] + Ey(Zcp(t)cT —cTep(d) —p(t)cTc)
- Zo(1) Lindblad

jump operator

Rem.: check trgsp =1



Master Equation

Proof:

Ap(8):=p(t+AD) —p(1)
=Trp{(1- iHe At + y¥eAB' (0] W (0 (P ()] (1+ iH]g A+ ¥t AB(o) |
—Trp {|¥Y ()W (D}
= Trp {—i Hegr ALY (0)CP(0)] + [P ()P ()i HI At
+ VYCABT ()P ()P ()] + 1P ()P (D)]y/yc  AB(1)
+ ycABT(t)|\11(t><‘y(t)|cTAB(t)}

Ap(t) :=p(t+At)—p(1)

= trp {...AB*WW +... ¥ (ONHTITAB (D) +...ABT(t)I\P(t)OP(t)IAB(t)...}

use AB(1)|¥(£) =0, (¥(NIABT =0 and [AB(1),ABT(1)] = At



Some simple, and not so simple examples



1. Driven Two-Level System undergoing Spontaneous Emission

Quantum jumps and master equation

* two-level system Hamiltonian

Al

i ~ 1 1
—E@ Hyys =—Ale)(el - -Q0, — -0
c—o_=|g){el laser Y ‘\ )
jump operator
9)

c—0-=|g) (el

* a quantum jump (detection of an emission) prepares the atom in the
ground state

(@) — ly(@+d)) ~oly@) =g

probability for click in time interval (t,t+dl]  p g = yelw ()| dt

e master equation (Optical Bloch Equations)

Lp=—i[Hysp|+LyQ0_po,-0c.0-p—-po.c_)



Optical Bloch Equations damped Rabi oscillations

o Writing out the optical Bloch equations Q=5
d _ , 1_ !
%peg — (ZA - §F)peg - 259 (pee - ng) ) 1
d 1 1 A=0
dtpge = (—iA - §F>ﬁeg + i_Q* (Pee = Pgg) »
d 1 P ee
dt,Oee = —T'pee — Z2Q Peg +Z2ngea
d 1 1
- = I'pee Q" De =Qp e
at"99 T Pee T35 Peg 1550 oJ
or
[ Peg | [ iA—4T 0 —i5Q  i5Q | [ peg |
i Pyge = (1) _iA.l_ %F Z%Q* _'%Q* Pge 1
dt Pee —Z?Q* Z§Q —I 0 Pee A = SF
| Pgg | | i) —i%Q +I 0 1 L Pgg |
pee
05 /\/\/me
- 0 . . : :
O — o 2 4 6 8 10
D ee 0.3 It
stationary solutions 02 Q =
0.1 O=1/2
0
5 0 5

AIT




2. Driven Two-Level System undergoing Spontaneous Emission

Conditional time evolution

photon count trajectory (single run)

\

e)

O |

Y
photodetector

g) o )

> time

Evolution of the atom, given this counting trajectory?

conditional time evolution / wave function



2. Driven Two-Level System undergoing Spontaneous Emission

Conditional time evolution

Fig.: typical quantum trajectory (upper state population)

X /,\ A ,\\ A\ A\
» 0.2 - X \\ / X \ / \ . / / \_
a yasiil 1 A A
normalizeg'] -/ / / / / y / 1‘
wavefct | / M “/ | il | | | | v | /
oo Is 1 IS 20 25 30 35 40 45 S

click: Yt
“‘quantum jump” = effect of
detecting a photon on system

[thsys(8)) = VY0 [Wsys(2))

no click: with Wigner -Weisskopf Hamiltonian
_ —iHesst 1
e (8)) = e~ et [y (0)) gy _ (weg_izy) —



2. Driven Two-Level System undergoing Spontaneous Emission

Conditional time evolution

Fig.: typical quantum trajectory (upper state population)

M, /ﬂ -‘A\ A 4 /\\

0.2 - / \\ / /

"?r"."r: I2 fp\ = / \ /f\\_./"'""' S - x / \
0.1 - \_x’ / H \” \ / -
normalized / / / / /
wavefct / i/ ) l/ y v
() ' . . . T . T
0 5 10) ) 2() 25 a0 35 4) 45 S()

 Monte Carlo wave function simulation

stochastic wavefunction [ (¢)). . (dim d)

Sys

reduced density matrix p(t) = ( [thsys(t)) (Ysys(t)] ),

DMRG + wave function simulation » density matrix psys(t) (dim d x d)




3. Decaying Two-Level Atom

Conditional time evolution

photodetector '/
LT,
@ Af time

Outcome of experiment:
We observe NO photon up to time t

Question: what is the state of the atom
conditional to this observation after time t?

e_iHefft/h|¢c(O)> . Cg|g> + Cee_’yt/2|€>

Answer: |Y.(1))

— |g) for t — oo

We learn that the system is in the ground state

initial state:

——le)

8)
1%e(0)) = cq4lg) + cele)



4. Entanglement of Distant Atoms from Observation (Detector Click)

Preparation of EPR / Bell pairs of entangled atoms from conditional evolution

e System: two atoms with ground states |0), |1) and
excited state |r)

atom A atom B

atom A

laser  AAAARAAANAA —"I“> —|’I“>
'/Iow efficiency / /
photodetectors

atom B ‘\ . ‘ > e | >
laser |O> |O>
- Weak (short) laser pulse, so that the excitation probability is small.
- If no detection, pump back and start again.

PAP ° ~10,1) +1,0)

- If detection, an entangled state is created.



Process:

atom A atom B

e preparation (by optical pumping) —_ ) —7)

¥(z = 0)) = |vac)[0):(0).
e excitation by a weak short laser pulse —— e

W( = 07)) = [vac) (|0)2 + €[r)2)(|0)2 + €[r)2) 0) b 0) b

= [vac) [|0)1|0)2 + €([)110)2 +[0)1[r)2) + O(e?)]

e spontaneous emission
[P(z > 0%)) = [10)1]0)2 + €e7(|r)1]0)2 +[0)1]r)2)] ® |vac) atom A
+ 3" ABl(1)vac) ® € [7 e 77| 1)10) B e
1 '/Iow efficiency
+ AB}(t)vac) ® € fy e 2|0)1]1); + O(e?) photodetectors

e We observe the fluorescence through a beam splitter atom B aQ

laser

AB}, — ‘/%(AB’; + ABY)

e Observation of a click prepares Bell state
[12110)2 +[0)1]1)2



5. Quantum jumps, or reading out qubits

Three level atom

e three level atom

)

7)

dipole-allowed dipole-forbidden

transition transition
e single atom photon counting
\
photon counting on strong photon Countl.ng _On the
transition strong line:

single trajectory

D
1:8< N Y




5. Quantum jumps, or reading out qubits

Three level atom photon counting on strong transition
ul \
€) simulation of
) photon statistics
strong 0 5C 100 15D 200 250
: g
line D b‘) 00 ' . ' ' '
5 BW '*‘W**r«] AU P peiv A
‘g> g;" sk "‘
2t 1500}
£ E 1000 measurement
£ = s \ \
D o --\ = [
0 1D 2 30 4D 50 SO
\ Time (s
v"atomic density matrix conditional to observing
an emission window S
preparation in . )
pc(t) 5 ‘7‘> <r‘ metastable state | ... probability NO window

b = alg) + Br) |ﬁ|2 ... probability window

... reading out qubits

v' state measurement with 100% efficiency



Unravelling of the master equation



ATAZZN /" \

t2 aan tn

A

>

Unraveling of the Master Equation t

n-photon contributions to the reduced density matrix: the total system wave
function |W(r)) can be written as
W (1)) = lw(t]) ® |vac) +...
+ Y |w(tlty,..., 1)) ® AB () ... ABT(17)[vac) +...

tn>...> tl

which is a sum of n=0,1,2,... photon contributions.

In a similar way we can decompose the reduced density operator of the system
as sum over n-photon contributions,

o) =Trg|P(OWP@D) =Y p™(®),

n=0



/NN /" \

wih HECERRSRNNRNCE
t2 e tl’l

A

>

t
p V(1) = lp () (w (2))]
I2
0

t th
0 0

where p (1) := Trg P W (1)) (¥ (1)| with P the projector on the n-photon sub-
space.

Interpretation: We have achieved here a decomposition of the reduced density
operator into pure state system wave functions |y (t|t,,...,t;)). Our earlier dis-
cussion showed that |w(t|t,,..., t;)) describes the evolution of the system in the
time interval (0, f] with (exactly) n photons emitted (quantum jumps) at times
f <...< t,. The n-photon contribution to the density matrix p™(¢) is obtained
by integrating over these emission times, and the total density matrix is obtained
by summing over these n-photon contributions, p(#) = X%, p"™ (z). We call the
above construction unraveling of the master equation.



Equations of motion for p™ (¢): we have the hierarchy of equations by A= —Weg

. I i 1
60 (p) = — 0O 1) +p(0)(t)%Hgff e)

. i I _
p(”)(t) — _% effp(n)(t) +p)(n)(t)%H;rff+ch(n D(t)CT (n=1,2,...) Q ’)/ A; A;
photon photon

9)

Proof: Take time derivative p"" (1) =... and use %lw(tl...) = —% et (£]...)

c=o_=|g)e]

Master equation: p(?) =trg| V(D)WY (1)]

/ recycling term

p(1) = —iHegep (1) + p(0)i H .+ yep(£)c'
1
=—1 [Hsys,p(t)] + 5)/(26,0(1‘)5r — cTc,o(t) — p(t)cTc)
= Zp(1) T

quantum jump operator .



Equations of motion for p™ (¢): we have the hierarchy of equations

A A - wL_weg
. i i _
p(O)(t) — _% effp(O)(t) _I_p(O)(t)%Hgff ‘€>
i I _
p(”)(t) — _% effp(n)(t) +p)(n)(t)%H;rff+ch(n D(t)CT (n=1,2,...) Q ’)/ A; ﬁr;
photon photon
9)
Discussion: c=o_=|g\e|

« This is a hierarchy of equations for p""” (¢) where the recycling term plays the
role of a feeding term connecting the n and n—1 photon contributions.

e Summing over n we obtain the master equation back: p = Z£p.
« n-photon probabilities

PO(1) = Treysp™ (1) = py,
t In )

P(”)(t):TrSysp(")(t):/ dtn/ dtn_l.../ dupl(t,....ty) (n=1,2,..
0 0 0

where from earlier p = |w(t)|° and pi(t,..., tn) = |[wtltn, ..., )|



Appendix
Poisson process

P(n)(t) 1.07 n=o

PO@)y = —xPO() Poisson process
Py = —kP™M#t)+xP" VW) (n=1,2,...)
with solution (et
(n) _ Kl —Kt
P (t) = ¢

Remark: the light statistics from a driven two-level atom is not Poissonian



Appendix

Photon Statistics: Characteristic Functions & Density Opera-

A A:wL_w
tors etc. eg

| —T—le)
Example: Poisson process

« characteristic function: Q Y ﬁr’ ﬁ?’

x(s):= i e P (p) = pkte’ =1 photon  photon

n=0 ‘g>
e normalization: o
1:ZP(n)(t):X(S:0) C=6—=|g><e|
n=0

e mean number of jumps:

(ny; = Z ™ (g = 2O _
=0 0s

e Vvariance: with (n?) = & X(O)

(n®y —(ny* = (n)

= KI

An?



Appendix

characteristic density operator: We definee

A A:wL_weg

P(s, 1) := i e p (¢)
n=0 | . ‘€>

Q [Sy S S

which obeys the equation

0
=1 D=2Ls, 0+ -1 21,1 (1(s,0) = p(0)

ot photon  photon
Note: to solve for the photon statistics we must solve this equation to compute 19)
the
characteristic functional for the photon statistics c=o_=|g)e]

x(s, 0= P () =Trj(s, 1)

n=0



Appendix
Example: Photon statistics of the driven two-level atom
A A — wL - weg
e« mean number of photons
% (1) = Tpee® BEE
dr T Pee

i.e. for long times (1) — T'peet 0 y A. A’

e photon number fluctuations photon  photon
AR?  (n?)—(n)? 9)
(n) (n)

with Mandel Q-parameter (which measures the deviation from Poisson statis- c=o_=|g)el
tics)

=1+Q

107(a2-31)
(A% + 1124 102)°
Discussion: For weak fields and strong driving the photon statistics is Poisso-

nian (Q = 0), on resonance and for medium driving we have sup-Poissonian
fluctuations.

Q:



Example: Quantum Jumps in Three-Level Atoms

Background: Experiments with single trapped ions represent an experimental
realization of continuous observation of a single quantum system in the context
of quantum optics. The observation of quantum jumps in a three level system
is probably one of the best-known examples in quantum optics where quan-
tum jumps are “seen” in experiments where fluorescence from single ions is
observed by continuously monitoring the atom with a photodetector.

spontaneous emission

R

photon counting on the
strong line:

photon counting on strong
single trajectory

transition

/D_ — _
(o)

)

7)
dipole-allowed

transition dipole-forbidden
transition

Y |g)



System of interest: double resonance with two excited states |e) and |r) are
connected to a common lower level |g) via a strong and weak transition.

Continuous observation: fluorescence photons from the strong transition are
observed in a photon counting experiment. Excitation of the weak transition with
a laser will induce a quantum jump to the metastable state |r), or will temporarily
shelve the atomic electron in |r). This will cause the fluorescence from the
strong transition to be turned off. Quantum jumps of the weak transition are thus
monitored via emission windows in the signal provided by the fluorescence of
the strong transition.

€)
spontaneous emission )
photon countllng _on the dipole-allowed
photon counting on strong ' Strong !lne- transition dipole-forbidden
transition Smg/e trajectory transition

ALY |g)
S



photon counting on strong transition

|I| simulation (theory)
‘€> 5C 100 15D o0 230
g
strong PR "“‘N@»‘] wﬂwmmmwfwm s -«
line 2:‘ LN _
e experimental run
< ¥ £ 1000
‘g> E‘. S

0 ! [N DY V" NN — L--h— -
0 10 20 30 40 50 S0
Tume (s} <

Continuous observation: fluorescence photons from the strong transition are
observed in a photon counting experiment. Excitation of the weak transition with
a laser will induce a quantum jump to the metastable state |r), or will temporarily
shelve the atomic electron in |r). This will cause the fluorescence from the
strong transition to be turned off. Quantum jumps of the weak transition are thus
monitored via emission windows in the signal provided by the fluorescence of
the strong transition.




master equation: three-level system €)

: T 7)
. l s
P= —%(Heffp—pHgff)+jsp+pr dipole-allowed L,
= transition dipole-forbidden
= =218 transition
effective Hamiltonian <\ /v g)
I r
Hefi = h(—As— if) le){el +h(—Aw— ‘TW) ) (r]
1 1
- 510s (18) (el +le)(gl) = Shu (18)(rl +17)¢g])
radiative decay terms I's and ', (I's > T'y), A, detunings, Qg ,, Rabi frequen-
cies
recycling operators
Zsp =188l Tspee, ... on the strong line
I'>1,

Fwp =188 Twporr. ... on the weak line



Master equation with photon counter » on the strong transition €)

7)

2 (1) _

0 —%(Heffp( p" )Hff)‘l‘fsp(n Vi g0 dipole-allowed

transition dipole-forbidden
=(¥-¢ ),O(n)+fs,0(n_1) transition
S
ALY |g)
[Note: by summing over n, p =Y, p™ we obtain again the master equation

p=2p]
formal solution with initial condition p(0) = |g){g]

p =3 p"w

n=0
= &= (0)
" . y unraveling of the master
dtn/ dtn_l.../ d el At g oL=F)tn=tn-1) equation with respect to
0 0 photons on the strong
e(ff—fs)(tz—fl)jse(ff—fs)tlp(o) (green) line



We read off the photon statistics: )

7)

« probability that no photon is emitted during (0, ¢] on the strong transition dipole-allowed

3 transition dipole-forbidden
po = Trsys{e(g 7 g)(gl) transition

<\ /»
o probability density that exactly » photons are emitted on the strong tran- 8

sition at times 13,..., t,, in the time interval (0, ¢]

pé(tl,...,tn) = Trsys{e('g_fs)(t_l‘n)jse(i”—js)(tn—tn_l)“.

e(ff—js)(l‘z—l‘l)jse(ff—fs)tl |g> <g|}

which factorizes

Pé(tb---, tn) — pé_tn E(tn - tn—l)é(tl —O)

Factorization is due to the fact that a quantum jump always prepares the
atom in the ground state |g), and thus there is no dependence on the previ-
ous history of the wave function.



)

probability density for "next photon emission" or "delay function"

7)

&(T) = Treys ZseC =797 | gV (g} dipole-allowed
e <% 878 transition dipole-fo_rt_)idden
Interpretation: ¢(r)dr = the probability that a photon is emitted at at time ¢ fransition
when the previous photon was emitted at time 7 = 0. /v g)
Properties:
t
/ é(mdr=1-p§
0
Proof:
d d o
— Py = Troysle™ 7 1g) (g

= Troys (L — £)e 79 g)(gl}  (we use Trgys Z(...) =0)
= —Treys{ Zse 7 |g)(glt = —&(1)

The probability density is normalized

/ c(r)dr =1
0



How to simulate ¢(7): take a random number generator which produces
equally distributed numbers = € [0, 1]. We can simulate the decay time ¢ of
"emission of the next photon" according to

t
t =t(x) with ¢ solution of 1 — / ¢(t)dr = x (given x)
0

- ; S(7)dr

x € [0,1] '\




complement:

How to simulate random numbers y e 0.a1 according to the distribution p(y): simulating a
. distribution
[, Py
1 , S—

choose a random number x .
equally distributed in [0, 1]

we find a random y € [0,«] distributed according to p(»)



Discussion of ¢(7): ¢(r) consists of a sum of exponentials
with different decay constants, reflecting the different time
scales for the excitation and decay on the strong and
metastable transition.

N
delay function . 2F \\\
t- \\\
- . 3| N N
¢(7) o \\\\¥\\i ¢)
S 4L . S
\ “~_ b
5L \ @) ~
§ N —
-6 N ~~
0 50 100

Fig.11.6 Thc conditional probability density ¢i(7) as a function of ~.7 according to [11.4].
c¢(7) 1s the conditional probability density that: given a count has occurred on the strong
transition |g) < |e) at time 7 = O—the next count on the strong transition will occur at time
7. The three curves show: a) the metastable state is not excited, (2, = 0. and ¢i(r) decays
essentially exponentially: b) the lifetime of the metastable state ) is ten times longer than
the lifetime of the rapidly decaying state |e}. W, = 7, = 107"y, ¢) the lifetime of the
metastable state |r) is one hundred times longer than the lifetime of the rapidly decaying
state ey, W, =,, = 107~,. W, is an incoherent excitation rate on the weak transition.



The existence of a weak transition leads to a long time tail in
the delay function.

In a simulation of a photon emission sequence on the strong
line this will manifest itself in the periods of brightness and
darkness.

photon counting on strong transition

50 100 14
T

200 250
strong

line

2500 ""“Hh'm] ﬁ#wm\m']kb\,\'kfﬁb" r-fny‘w‘ Y

0 ! LU VNPV DV NN o L--A— -
] 1D 20 30 L)) 50 s
Time (s}

1
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[Tuorsscent int snsity
rer (]
s
3
1

Comis g




)

7)

dipole-allowed
transition dipole-forbidden
transition

e The atomic density matrix conditional on observing an emission win-
dow on the strong line when the last photon on the strong transition was
emitted at time ¢, is

AAVA S}

LT (=t g3 (g
IOC(t) — TI“ { }
SyS e o o
— |r)(r]| (Cst > 1)

That is, observation of a window in a single trajectory of counts corresponds
to a preparation of the electron in the metastable state |r). This state prepa-
ration is what is usually referred to as shelving of the electron.

application: projective state measurement in ion trap quantum computer and simulator



END Unravelling of the master equation



6. Laser Cooling Master Equation

spontaneous
emission

System: We consider a radiatively damped two-level atom driven by a classical
light field. We wish to include the motion of the atom and mechanical effects
due to induced and spontaneous radiative processes.



laser

spontaneous
emission

recoil

ion

laser trap

spontaneous
emission

Compare Chapter on Quantum
Computing with Trapped lons.

€) ———
— "
dipole-allowed dipole-forbidden
transition (cooiing) transition (qubit)

g)

P Zoller, UIBK Master Course 705853 VO3 Quantum Optics SS2020

70



Model

laser

Hamiltonian of the driven atom + radiation field
H = Hoa + Hor + Hint

e Atom: The atomic degrees of freedom include the center-of-mass degrees
of freedom (motion) of the atom, and the internal (electronic) degrees of
freedom.

The atomic part of the Hamiltonian includes the kinetic energy, and possibly
a trapping potential
P°

Hoa = oo + V(F) + husegle) (] - (ﬁegﬁfj) (&, )0y + h.c.)

with e.g. a travelling wave £\ (i, t) = Eeet(kra—wit),

Example: harmonic trapping V (%) = SM (V222 + V] + viz?)

spontaneous
emission



7.
™,

spontaneous

Optical Bloch equations for laser cooling

The reduced atomic density matrix obeys the OBE (including the COM motion)

, 2
pa=—7 (Hoa, pal

1 . S : S
4 §F (Z/dQﬁ (I)(ﬁ) (U_e_"kegn'x) PA (04_62]“69”' ) — 040_pPA — pAO'+U_)

8

emission

angular distribution of

or spontaneous emission quantum jump operator for | - |y + momentum recoil

7 o o= D
. e d R ke . ke .
pA:—%(Heﬂ‘IOA—IOAHgH)—I—F/dQﬁ (I)(n) (0_6 1 gna:) oA (O'_|_6Z gn:c)

o)
EF
g)



spontaneous photon recoill

Properties:

e The master equation has Lindblad form. hk

e recycling term
Tpa(t) = F/dﬂﬁ o (1) (U_e_ikegﬁ'%) pa(t) (eikegﬁ'%mr)

The quantum jump operator o_e~**<s™% describes the return of the electron
to the ground state and the momentum kick to the center-of-mass motion
associated with the emission of a spontaneous photon. Here ik, = hkegmi 1S
the momentum kick to the center-of-mass with k., = we,/c in the direction

angular distribution of
the emitted light

4&

i, as determined by the angular distribution i n
1 dI' >
O(R) = =——.
) = T a0,

D) =1~



