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Exercise 1. Probability distribution of the Gaussian Orthogonal Ensemble (GOE). A GEO D× D
matrix H can written as H = (A + AT )/2, where the entries of A are independent normal
gaussian random variables, i.e P(Ai j)∝ e−H2

i j/2. Show that the probability distribution of H
can be written as

P(H) =
∏

i

e−
H2

ii
2

p
2π

∏

j>i

e−H2
i j

p
π
∝ exp(−

1
2

Tr(H2)) . (1)

Note that this distribution is characterized by VarHi j =
1
2Var(Hii).

Exercise 2. The Wigner Surmise. Consider from a 2× 2 GOE matrix:

H =

�

x1 x2
x3 x1

�

, x1, x2 =N (0, 1), x2 =N (0, 1/2) , (2)

where N (a, b) indicates the normal distribution of average a and variance b. Write the eigen-
values λ1,2 and show that the probability distribution of the level spacing s = λ1 −λ2 reads:

p(s) =
s
2

e−s2/4 . (3)

(Hint: for x = f (y) the probability distribution of x reads p(x) =
∫

d yp(y)δ(x − f (y))).
Rescale the level spacing by its average s̄ = s/〈s〉, such that 〈s̄〉= 1 and show that the previous
equation leads to the so-called Wigner Surmise for the GOE:

p̄(s) =
π

2
se−

π
4 s2

. (4)

Exercise 3. Poisson distribution for independent random variables. Consider D iid random
variables X1, . . . XD from a common probability distribution pX (x). Show that the distribution
of the local level spacins is given by the exponential law

lim
D→∞

pD(s̄) = e−s̄ (5)

which is the law for the spacing in a Poisson process, where

s̄ = s DpX (x) . (6)

Exercise 4. Average level density. Given the Wigner semi-circle law

ρ̄(λ) =
1
π

1
p

βD

√

√

√

2−
�

λ
p

βD

�2

, (7)
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write it for the variables x = λ/
p

βD and compute its Fourier transform:

SFF1(t)≡
∫

ei x t ρ̄(x)dλ≡ z1(t) . (8)

What is the asymptotic behaviour at large t?

Exercise 5. The spectral form factor for the GUE. Given a D× D GUE matrix H with variance
1

2D , compute the spectral form factor defined as

SFF2(t) =

�

�

�

�

Tr (e−iH t)
D

�

�

�

�

2

, (9)

using that the eigenvalues x i and x j for i 6= j are correlated as

ρ̄(2)(x i , x j) =
D2

D(D− 1)

�

ρ̄(x i)ρ̄(x j)−
�

D
π

sin(2βD(x i − x j))

2βD(x i − x j)

�2�

. (10)

Exercise 6. Porter-Thomas distribution. Given the distribution of the components of unitary
vectors

ρUE(c
(i)) = cDδ

�

1−
D
∑

α=1

|c(i)α |
2

�

∀i , (11)

consider the following marginal distribution of a single component

ρUE(y) =

∫

d2c1 . . . d2cDδ(y − |c1|2)ρUE(c) . (12)

Show that the re-scaled single component η= y
y follows the so-called Porter-Thomas distribu-

tion in the large D limit:

ρUE(η) = lim
D→∞

1
D
ρUE(η/D) = e−η . (13)

Exercise 7. Toy model for ETH 1. Given Haar expectation values UiαU†
β j = δi jδαβ/D and

UiαU†
α jU jβU†

β i =
1

D2 − 1

�

1+δαβ −
1
D
−
δαβδi j

D

�

, (14)

show that the statistics of the matrix elements of an observable in the energy eigenbasis,
Ai j =

∑

α AαUiαU†
α j with Uiα ≡ 〈i |α〉, at the leading order in D reads

Ai j = 〈A〉δi j , A2
ii − Aii

2
=
〈A2〉 − 〈A〉2

D
+O(D−2) (15)

while for i 6= j:

|Ai j|2 =
〈A2〉 − 〈A〉2

D
+O(D−2) , (16)
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with 〈·〉= Tr(·)/D.

Exercise 8. Toy model for ETH 2. Show that the summary ansatz

Ai j = 〈A〉δi j +
Ri j
p

D

Æ

κ2(A) , (17)

with Ri j = 0 and |Ri j|2 = 1 is equivalent to Aii = 〈A〉, Eq.(15) and Eq.(16).

Exercise 9. Thermalization via ETH. 1) Consider a quantum quench from an initial state |ψ0〉
with extensive initial energy 〈ψ0| Ĥ |ψ0〉 = E0 = Ne0 and sub-extensive energy fluctuations
〈ψ0| (Ĥ − E0) |ψ0〉 = ∆2

E0
= Nδ2

e0
. Assuming absence of degeneriacies and using the ETH

ansatz, show that the infinite time-average of a local operator Â(t) is given by

[A]∞ ≡ lim
T→∞

∫ T

0

〈ψ0| Â(t) |ψ0〉 'A(E0) +
1
2

�

∂ 2A
∂ E2

�

∆2
E0
= 〈E0|Â|E0〉+O(1/N) . (18)

Exercise 10. Thermalization via ETH. 2) In the same quench scenario as the previous exercise,
show how ETH implies thermalization: not only local observables equilibrate to the micro-
canonical expectation value [cf. Eq.(18)], but there are only exponentially small fluctuations
on top. In other words, show the following scaling

σ2
Â
≡ [A2]∞ − [A]2∞ =

∑

mn,m 6=n

|ci|2|cm|2 |Anm|2 ≤max |Anm|2∝ e−S(E) . (19)

Exercise 11. ETH factorization of observables with repeated indices. Using ETH and saddle-
point integration, show that for local observables Â the following holds:

∑

i

e−βEi

Z
A2

ii 'A(eβ)2 +O(N−1)' [〈Â〉β]2 +O(N−1) . (20)

Exercise 12. Corrections to ETH factorization. Using the ETH ansatz, compute the correction
to the Eq.(20) above. Namely show that

∑

i

e−βEi

Z
A2

ii ' [〈A〉β]
2 +A′(eβ)2∆2

Eβ
+O(N−2) , (21)

where A′(e∗) = A(E)
∂ E |e=e∗ and ∆2

Eβ
= 〈(Ĥ− Eβ)2〉β =

1
N |S′′| is the energy variance of the canon-

ical state. (Hint: use the saddle point to compute corrections to both
∑

i e−βEi/Z Aii and
∑

i e−βEi/Z A2
ii .)

This diagram enters in the calculation of the two point function κ2(t) ≡ 〈A(t)A〉β − 〈A〉2β . For
which class of observables can this correction become of the same order of κ2(t)?

Exercise 13. Using the Eigenstate Thermalization Hypothesis Ansatz, show that the Fourier
transform of the following regularized correlator

F2(t) = Tr
�

ρ1/2Â(t)ρ1/2Â
�

− Tr
�

ρÂ
�2

with ρ =
e−βH

Z
(22)
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is the bare off-diagonal smooth function appearing in ETH evaluated at the thermal energy,
i.e. F̃(ω) = | f (eβ ,ω)|2.

Exercise 14. Classical and Free cumulants. Using the moment-cumulant implicit definitiions

E(x1 x2 . . . xn) =
∑

π∈P(n)

∏

b∈π
c|b|(xb(1)xb(2) . . . xb(n)) , 〈A1A2...An〉=

∑

π∈NC(n)

∏

b∈π
κ|b|(Ab(1)Ab(2)...Ab(n)) ,

(23)
where b = (b(1), b(2), . . . , b(n)) denotes the element of the block of the partition and |b| its
length, compute the classical and free cumulants

c3(x1, x2, x3) , c4(x1, x2, x3, x4) ,

κ3(A1, A2, A3) , κ4(A1, A2, A3, A4) .

Then compare κ4(A1, A2, A3, A4) and c4(A1, A2, A3, A4), by writing the last one to respect to 〈·〉
and not E(·).

Exercise 15. Free-cumulants of GUE. Compute κ4(H, H, H, H) for a GUE random matrix H in
the large D limit.

Exercise 16. Freeness as a rule for mixed moments. In the case of D × D matrices A, B and ,
show that κ2(AB) = 0, κ3(ABA) = 0 and κ4(ABAB) = 0 imply

〈ABAB〉= 〈A2〉〈B〉2 + 〈A〉2〈B2〉 − 〈A〉2〈B〉2 . (24)

Show that this correspond to the n= 2 of the more general expression

〈ABAB . . . AB〉=
∑

π∈NC(n)

κπ(A, . . . , A) 〈B, . . . , B〉π∗ , (25)

where π∗ is the dual of the partition.

Exercise 17. Factorization of non-crossing ETH diagrams. Show that in the large N limit the
following factorizations hold:

κ(b)(t1, t2, t3) =
∑

i 6= j 6=m

e−βEi

Z
A(t1)i jA(t2) jiA(t3)imAmi = kETH

2 (t1, t2) kETH
2 (t3, 0) +O(N−1)

(26a)

κ(c)(t1, t2, t3) =
∑

i 6= j 6=k

e−βEi

Z
A(t1)iiA(t2)ikA(t3)kmAmi = kETH

1 kETH
3 (t2, t3, 0) +O(N−1) (26b)

κ(e)(t1, t2, t3) =
∑

i 6= j

e−βEi

Z
A(t1)iiA(t2)iiA(t3)i jA ji = [k

ETH
1 ]2 kETH

2 (t3, 0) +O(N−1) , (26c)

where

kETH
n (A(t1)A(t2) . . . A(tn)) =

1
Z

∑

i1 6=i2 6=...6=in

e−βEi Ai1 i2Ai2 i3 . . . Ain i1 ei t1ωi1 i2+...i tnωin i1 . (27)

Exercise 18. Given n energy eigenvalues Ei1 , . . . Ein , the average energy E+ = (Ei1+Ei2+· · ·+Ein)/n
and the energy differences ~ω= (Ei1 − Ei2 , Ei2 − Ei3 , . . . , Ein − Ei1), show the following identity

Ei1 = E+ + ~̀n · ~ω with ~̀
n =

�

n− 1
n

, . . . ,
1
n

, 0
�

. (28)
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