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Abstract
The symmetries of two-dimensional conformal field theories (CFTs) can be formalised as
chiral algebras, vertex operator algebras or nets of observable algebras. Their represen-
tation categories are abelian categories having additional structures, which are induced by
properties of conformal blocks, i.e. of vector bundles over the moduli space of curves with
marked points, which can be constructed from the symmetry structure.
These mathematical notions pertain to the description of chiral CFTs. In a full local CFT one
deals in addition with correlators, which are specific elements in the spaces of conformal blocks.
In fact, a full CFT is the same as a consistent system of correlators for arbitrary conformal
surfaces with any number and type of field insertions in the bulk as well as on boundaries and
on topological defect lines. We present algebraic structures that allow one to construct such
systems of correlators.

Key points

• Algebraic structures describing chiral symmetries in two-dimensional conformal field the-
ories: vertex operator algebras and their representations.

• Structure on the representation categories of nice vertex algebras: braided tensor cat-
egory with Grothendieck-Verdier duality.

• Conformal blocks as vector bundles with flat connection; their monodromies are en-
coded in terms of a modular functor that comes from a modular fusion category.

• Description of consistent sets of correlators in terms of three-manifolds with bound-
ary and a skein-theoretic construction in terms of string nets, for world sheets of
arbitrary genus, with arbitrary conformal boundary conditions and with insertions of all
types of fields, including generalised defect fields.

Literature:

• These lecture notes are based on arXiv:2305.02773 [math.QA]. Older lecture notes with
a different focus are available at arXiv:hep-th/0011109.

• Background on categorical notions can be found e.g. in the lecture notes for my class
Hopf algebras, quantum groups and topological field theory which are
available at https://www.math.uni-hamburg.de/home/schweigert/skripten.html.
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1 Introduction: chiral and full CFT
Conformal field theory in two dimensions – CFT, for short – is a prime example of the fruitful
interplay between mathematics and physics. On the mathematical side it combines concepts
and tools from algebraic geometry, higher structures, modular forms, quantum topology and
representation theory. Two-dimensional CFT is arguably the class of quantum field
theories for which a maximal mathematical control has been reached. The goal of
these lectures is to given an overview over this control.

For applications to physics, it is crucial to appreciate that there is in fact no single notion
of CFT; different applications require different theoretical setups.

1. For instance, conformal field theories can be defined on two-dimensional manifolds with
a metric of

• either Euclidean

• or Lorentzian signature.

The qualifier conformal expresses the fact that the relevant geometry is the one of con-
formal manifolds, i.e. manifolds endowed with an equivalence class, with respect to local
rescalings of metrics

gµ,ν(x) eλ(x)gµ,ν(x) .

Working with Lorentzian signature has the advantage that structures familiar from local
quantum field theory can be utilized [13, 4]. On the other hand, conformal field theories
defined on Euclidean manifolds have a broader range of applications and have access
to powerful tools from complex geometry. Accordingly we focus our attention on CFTs on
compact Euclidean two-manifolds. The relation between the Euclidean and Lorentzian
approaches still remains to be understood in full detail; however, remarkably, in both
settings similar mathematical structures arise.

2. A further distinction, whose importance cannot be overemphasised, is the one between
chiral and full conformal field theory. Again, these are defined on two different types of
two-manifolds:

• Together with an orientation, a Euclidean conformal structure on a two-manifold
amounts to a complex structure. Chiral CFT is defined on a complex curve.
Mathematically, chiral CFT consists of the theory of vertex operator algebras, their
representations and their conformal blocks. Their properties are abstracted with the
help of the notion of a modular functor.

• In contrast, full local CFT is defined on conformal real two-manifolds. Such a
manifold may in particular have a non-empty boundary. In fact, one allows for
stratified manifolds, of which manifolds with boundary are just special instances.
For a picture, see (58). The one-dimensional strata of a stratified conformal two-
manifold are interpreted as topological line defects which separate different phases
of a given CFT. Specific types of such defects encode symmetries and dualities of
CFTs [16].

Given a chiral CFT, a corresponding full CFT is a consistent system of correlators,
i.e. a collection of specific elements in the spaces of conformal blocks of the chiral theory.

Both chiral and full CFTs appear in physics applications:
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• Chiral theories are relevant for the fractional quantum Hall effect; in that case, the
orientation has a very direct meaning as the direction of an external magnetic field.

• Full CFTs arise as world sheet theories of |textbfstring theories, in two-dimensional
critical phenomena of statistical mechanics, and in effectively one-dimensional systems
in condensed matter physics.

In most of these applications one deals with oriented full CFT, i.e. an orientation is chosen
on the two-manifolds. But full CFTs can also defined on unoriented, and even non-orientable,
two-manifolds. Unoriented full CFTs arise in particular as world sheet theories of type-I
string theories.

Remarks 1.1. 1. Best understood among all CFT models is the class of rational CFTs,
for which the representations of the chiral symmetries form a finitely semisimple modular
tensor category, also known as modular fusion category; for a historical review see [18].

2. More recently, the focus of research has shifted to non-rational theories, in particular to
logarithmic CFTs, for which the conformal blocks may have logarithmic singularities
and which are in particular non-unitary; for a review of these, see e.g. the articles in the
collection [26].

3. By making use of powerful algebraic structures, CFT can be formulated without re-
course to a classical Lagrangian or any form of perturbation theory. But there do exist
models of (full) CFT that are based on a Lagrangian, notably sigma-models with topo-
logical terms. Such topological terms are closely related to bundle gerbes and other
higher geometric structures, compare e.g. [25].

These lectures are organized organized as follows.

• Brief recap of the relevant two-dimensional geometry.

• We first review algebraic structures that formalize the chiral symmetries of CFTs. One
conceptual framework for these is given by conformal nets of algebras of observables [4];
in this framework unitarity is deeply built in. In view of the importance of non-unitary
CFTs in string theory, statistical mechanics and as duals of supersymmetric quantum
field theories, we restrict our attention to vertex operator algebras [15] – VOAs, for
short – which make no assumption on unitarity.

• Afterwards we review aspects conformal blocks, which can be constructed from VOAs
and which are the building blocks of correlators in full local CFTs. They form vector
bundles with projectively flat connections over the moduli space of complex curves. Mon-
odromies of these bundles can be described in terms of a modular functor.

• These data suffice to formulate the concept of a consistent set of correlators. We
finally exhibit the construction of such consistent sets of correlators, including a recent
approach based on a string-net formulation of modular functors.

2 Two-dimensional manifolds
Manifolds of (real) dimension two constitute the ‘arena’ for our studies. In this section we
briefly summarize those features that are needed in our discussion. We start with topological
aspects, then discuss complex geometry of these manifolds, and finally describe Teichmüller
and moduli spaces.
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2.1 Topological aspects

Real connected compact two-dimensional topological manifolds Σ are classified by three non-
negative integers: The numbers g of handles, b of boundaries, and c of crosscaps.

Remarks 2.1. 1. By cutting out a disc from a given surface one introduces a new bound-
ary component. (We insist that the boundaries obtained this way are genuine, physical
boundaries . They must never be confused with the small discs one often imagines around
insertions of fields, which merely serve to specify local coordinates around the insertion
points.)

2. Similarly, a crosscap can be inserted in a surface by first cutting out a disc and then
identifying opposite points of the boundary of the disc. The insertion of a crosscap makes
a manifold unorientable. Three crosscaps are topologically equivalent to a single crosscap
plus a handle, so that it is not necessary to consider more than two crosscaps.

3. World sheets with boundaries play an important role in the description of D-branes; world
sheets with crosscaps enter in the construction of string theories of ‘type I’.

Another notion we will frequently use is the one of the mapping class group Ω of Σ. Con-
sider the group Homeo(Σ) of all homeomorphisms of Σ. It has a normal subgroup Homeo0(Σ),
consisting of those homeomorphisms that are homotopic to the identity. If Σ is orientable, we
introduce the subgroup Homeo+(Σ) of orientation preserving homeomorphisms.

Definition 2.2. For orientable surfaces, we define the mapping class group as the quotient

Ω(Σ) := Homeo+(Σ)/Homeo0(Σ) ,

while for unorientable surfaces we define it to be

Ω(Σ) := Homeo(Σ)/Homeo0(Σ) .

Remark 2.3. The mapping class group Ω(Σ) acts in particular on the first homology H1(Σ,Z).
For orientable surfaces without boundary H1(Σ,Z) is torsion free and comes with a symplec-
tic form from the intersection of one-cycles. (For unorientable surfaces H1(Σ,Z) typically has
a torsion part.) The mapping class group preserves the intersection form, and hence we ob-
tain a natural group homomorphism from Ω(Σ) to the corresponding symplectic group; this
homomorphism is actually surjective so that we have

Ω(Σ)→→ Sp(2g,Z) .

For the torus, we even have identity:

Ω(T 2) = Sp(2,Z) = SL(2,Z) .

This group is called the modular group.

2.2 The Schottky double

We now turn to a construction that allows us to restrict our attention to the case when the
manifold Σ is oriented and has no boundary:

Definition 2.4. The Schottky double Σ̂ of Σ. The idea is to double the space, except for
the points on the boundary.
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• This mimics the method of mirror charges in classical electrodynamics.

• This is also known from the theory real schemes:

Examples 2.5. 1. For Σ a disc, the double Σ̂ is a sphere, obtained by gluing a disc and its
mirror image along their boundaries. Notice that the reflection σ about the equator of
this sphere is an orientation-reversing involution, σ2 = id.

2. For Σ the crosscap RP2, the double is again the sphere, but σ is now the antipodal map.

3. For Σ without boundary, the double is just the total space of the orientation bundle. The
orientation bundle is a Z2-bundle over Σ whose fiber over p∈Σ consists of two points,
corresponding to the two local orientations at p. Thus for orientable boundaryless Σ it
is a trivial bundle, the total space being the disconnected sum of two copies of Σ. An
orientation is a global section of this bundle.

Remarks 2.6. 1. The original surface Σ can be obtained as the quotient – or world sheet
orbifold, or parameter space orbifold – of the double:

Σ = Σ̂/σ . (1)

The fixed point set of σ gives precisely the boundary of Σ.

2. The total space of the orientation bundle is not only orientable, but even naturally ori-
ented . The Euler characteristic χ̂ of the Schottky cover Σ̂ is related to the Euler charac-
teristic χ= 2− 2g− b− c of Σ by χ̂= 2χ.
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The structures we have met so far all belong to the realm of two-dimensional topological
manifolds. We now turn to aspects of conformal and complex manifolds that we will need for
CFT. Thus let X be a two-dimensional conformal manifold, and X̂ its (topological) Schottky
double.

We will also need facts from complex geometry; they are the subject of the next subsection.

2.3 Complex geometry

We will be particularly interested in two-dimensional manifolds that are even complex mani-
folds, i.e. that possess a holomorphic structure.

Definition 2.7. A holomorphic structure is the choice of an atlas with maps that take
their values in subsets of the complex plane in such a manner that the transition functions are
holomorphic.

On such manifolds, all the additional power of complex geometry is at our disposal. In
particular, we will be able to construct conformal blocks. The following feature is special to
two dimensions:

Proposition 2.8. A holomorphic structure on an orientable manifold X is equivalent to the
choice of a conformal structure plus an orientation.

Proof. A classical theorem asserts that every metric on a real two-dimensional differentiable
manifold is locally conformally flat, i.e. we can find charts U such that the metric is of the form

g=λ(x, y) (dx2+ dy2)

with λ a positive real function on U . When X is oriented, we can choose the charts to be
compatible with the orientation. The transformations between different charts are then oriented
and conformal diffeomorphisms, i.e. biholomorphic transformations, so we have obtained a
complex structure on X; this complex structure depends only on the conformal equivalence
class of the metric. Conversely, it is easy to see that a complex structure implies an orientation
and a conformal structure. In contrast, higher-dimensional manifolds are not necessarily locally
conformally flat. Accordingly, additional integrability conditions must then be met to obtain a
complex structure.

Observation 2.9. Now the double X̂ of a conformal manifold X is oriented and inherits a
conformal structure from X. In other words, the double X̂ always has a complex structure,
i.e. the double is a complex curve! In particular, at the level of chiral CFT the full power
of holomorphy is available, even for the study of conformal field theories on surfaces with
boundary.

Example 2.10. In the case of the sphere, X =S2, the cover X̂ consists of two spheres with
opposite orientation. As quasi-global complex coordinates on the two components of X̂, we
choose z and z̃. Then the involution σ maps the point with coordinate z to a point on the
other component with complex conjugate coordinate: z̃= z∗. But one should be aware of the
fact that in chiral CFT z̃ and z are indeed two completely independent complex variables. A
frequent description in the literature is to say that “one starts with a single complex variable z
and its complex conjugate and then treats the two variables as formally independent”. When
it comes to concrete calculations this statement amounts to nothing else than working with the
Schottky double to treat the chiral aspects of CFT.

7



2.4 Teichmüller space and moduli space

One and the same oriented topological manifold Σ̂ without boundary can typically be endowed
in different, inequivalent ways with a complex structure. In fact, a lot of important information
about CFTs is gained by studying how structures change when one varies the underlying curve.
Points at which the underlying curve degenerates in not too bad a way are of special importance;
they lead to factorization constraints.

We first consider the space M̃(Σ̂) of all complex structures C on an orientable manifold
Σ̂. On the space M̃(Σ̂) the group Homeo(Σ̂) acts as follows. The complex structure f ∗(C) is
defined by the requirement that the map

f : (Σ̂, f ∗(C))→ (Σ̂, C)

is holomorphic if f preserves the orientation and antiholomorphic if f reverses the orientation.

Definition 2.11. One then defines the Teichmüller space T (Σ̂) as the quotient

T (Σ̂) := M̃(Σ̂)/Homeo0(Σ̂) .

Remarks 2.12. 1. One can show that the Teichmüller space is a complex manifold.

2. For ĝ= 0 it is just a point, while for ĝ= 1 it is isomorphic to the complex upper half
plane, T1 =H := {τ ∈C | Imτ > 0}. For every ĝ≥ 2 the Teichmüller space is isomorphic
to C 3ĝ−3 as a topologiccal manifold, and to R6ĝ−6 as a real analytic manifold, but not to
C 3ĝ−3 as a complex analytic manifold. In general, the geometry of Teichmüller spaces is
a rich area of geometry.

Definition 2.13. On the Teichmüller space, the mapping class group Ω(Σ̂) acts as the full
group of holomorphic automorphisms of T (Σ̂). The moduli space Mĝ(Σ̂) is obtained from
the Teichmüller space by dividing out the action of Ω(Σ̂):

Mĝ(Σ̂) = T (Σ̂)/Ω(Σ̂) = M̃(Σ̂)/Homeo+(Σ̂) .

Remarks 2.14. 1. If σ is an orientation reversing homeomorphism of Σ̂, it induces by the
same procedure an anti-holomorphic involution σ∗ on the Teichmüller space. This will be
important in the discussion of the double. One can show that for Σ̂ of genus ĝ, there are

[
3ĝ + 4

2
] inequivalent fixed-point free involutions. (For the torus, we obtain in this way

the Klein bottle.)

2. The Teichmüller space is simply connected and is in fact the universal covering space of
moduli space. This implies that the mapping class group is the fundamental group of the
moduli space:

π1(Mĝ) = Ω(Σ̂) . (2)

(As one is dealing with singular spaces, one must be careful with the definition of the
fundamental group. For details, see [28].)

3. For ĝ= 1, the action of Ω is the standard action

τ 7→
(
a b
c d

)
τ ≡ aτ + b

cτ + d
(3)

of SL(2,Z) on the upper half-plane H. The action of the mapping class group is not free,
and as a consequence the moduli spaceMĝ has orbifold singularities, which correspond
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to curves with non-trivial automorphisms. For genus one, these are the points τ = i and
τ = exp(2πi/3). However, these singular points are not the most interesting ones for
conformal field theory. Of far more interest are singularities that are cusps like the point
τ = i∞ for ĝ= 1, where the curve degenerates and where factorization constraints can be
formulated.

(Source: Wikipedia)

4. The Teichmüller space T (Σ) can be canonically identified with the fixed point set of T (Σ̂)
under the involution σ∗:

T (Σ) ∼= T (Σ̂)σ∗ .

One can show that this space is real-analytically isomorphic to R−3χ for Euler character-
istic χ(Σ)≤−1, isomorphic to R for Euler characteristic 0, and to a point for χ(Σ) = 1.

5. Finally, using the action of the mapping class group Ω(Σ) on T (Σ̂) one can canonically
identify Ω(Σ) with the commutant Ωσ(Σ̂) of σ∗ in Ω(Σ̂). This subgroup is also called the
relative modular group. We can therefore identify the moduli space M(Σ) with the
quotient

M(Σ) = T (Σ̂)σ∗/Ωσ(Σ̂) . (4)

3 Vertex operator algebras
This section is devoted to the study of algebraic and representation theoretic aspects of the
symmetries of a chiral CFT. The main notion we will introduce is the one of a vertex operator
algebra (VOA). It formalizes the notion of a chiral symmetry algebra.

3.1 The Virasoro algebra

First, however, we need a few facts about infinitesimal conformal symmetries in two dimensions
and its super-extensions. Conformal symmetry is encoded in the Virasoro algebra. This is
the central extension of the Lie algebra of vector fields on a circle S1 for which we choose a

basis (
1

i
einϕ∂ϕ)n∈Z = (zn+1∂z)n∈Z We compute

[zn+1∂, zm+1∂] = zn+1+m(m+ 1)∂ − zm+1+n(n+ 1)∂
= (n−m)zn+m+1∂

Definition 3.1. 1. The Virasoro algebra is the infinite-dimensional Lie algebra that is
spanned by generators Ln with n ∈ Z and a central element C, subject to the relations

[Ln, Lm] = (n−m)Ln+m +
1

12
(n3−n) δn+m,0C ,

[Ln, C] = 0 .
(5)
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2. If v is an eigenvector of L0 in a representation of the Virasoro algebra, then its eigenvalue
is called the conformal weight of v and denoted by ∆v.

Remark 3.2. 1. Using a formal variable z, we can combine the generators into a ‘field’

T (z) =
∑
n∈Z

Ln z
−n−2 ,

called the chiral stress-energy tensor.

2. There are various super-extensions of this construction. The simplest one, the N = 1
superconformal algebra (or N = 1 Virasoro algebra), is described by the superfield

T (z, ϑ) =
1

2
G(z) + ϑT (z) ,

whose first component G(z) has the expansion

G(z) =
∑
r∈Z+ε

Gr z
−r−3/2 .

The parameter ε∈{0, 1

2
} depends on the ‘sector’: ε= 0 in the Ramond sector, while

ε= 1/2 in the Neveu--Schwarz sector. Keep in mind that Ramond and Neveu--Schwarz
sector are distinguished by the monodromies of a specific field. The commutation relations
among G and T read

[Ln, Gr] = (
1

2
n− r)Gn+r ,

{Gr, Gs} = 2Lr+s +
1

3
(r2− 1

4
) δr+s,0C .

3.2 Vertex operator algebras

Definition 3.3. The basic data of a vertex algebra are
a complex vector space V and
a linear map Y : V⊗V−→V((z)), called the field map.
Here z is a formal variable; in the description of conformal blocks below it will be interpreted

as a formal local coordinate on a complex curve. V((z)) denotes V-valued power series in z
and z−1 with exponents bounded from below. The evaluation of the field map at a vector
a⊗ b∈V⊗V is denoted by

Y (a, z) b =
∑
n∈Z

anb z
−n−1. (6)

Regarding b as a free variable, this is rewritten as

Y (a, z) =
∑
n∈Z

an z
−n−1 ∈ End(V)[[z, z−1]] , an ∈End(V) . (7)

The identity element of V is called the vacuum vector and is frequently denoted by |0〉; it
satisfies

Y (|0〉, z) a = a and Y (a, z)|0〉 ∈ a+ zV[[z]] for all a∈V , (8)

where zV[[z]] is the subspace ofV((z)) consisting of allV-valued power series with only positive
powers of z. Thus, one recovers states by acting with the corresponding fields on the vacuum
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and ‘sending z to zero’,
Finally, we imposie locality – is that commutators of fields have poles of at most finite order.

More precisely, for any two
v1, v2 ∈V there must exist a number N =N(v1, v2) such that

(z1− z2)N [Y (v1, z1), Y (v2, z2)] = 0 . (9)

This is a kind of weak commutativity. Note that this constraint only makes sense because we
consider formal series in the zi, which can extend to both arbitrarily large positive and negative
powers. Had we restricted ourselves to ordinary Laurent series, i.e. series without arbitrarily
large negative powers, (9) would already imply that the commutator vanishes.

One now defines an endomorphism, called the shift operator

T : V→ V ;

by the requirement that T implements infinitesimal translations,

[T, Y (v, z)] = ∂zY (v, z) ; (10)

and that the vacuum is translation invariant, TvΩ = 0.
We sill need to build in the Virasoro algebra:

Definition 3.4. A vertex operator algebra is a vertex algebra with a conformal structure.
The conformal structure requires the existence of a vector ω ∈V such that the coefficients Ln
in the expansion

Y (ω, z) =
∑
n∈Z

Ln z
−n−2 (11)

satisfy the relations

[Lm, Ln] = (m−n)Lm+n +
1

12
(m3−m) δm+n,0C (12)

of the Virasoro Lie algebra. Here C is a central element; it acts on V (and on its modules,
introduced below) by multiplication with a complex number, called the (conformal) central
charge and denoted by c.

Remarks 3.5. 1. The axioms of a VOA then imply that (V, Y ) is essentially a unital com-
mutative associative complex algebra with a derivation and with an additional conformal
structure. In particular, unital commutative associative complex algebras with a deriva-
tion are examples of VOAs that do not necessarily have a conformal structure. However,
owing to the presence of formal variables, in general the commutativity and associativity
properties are more involved than in the standard commutative algebra case.

2. The conformal structure endows V with an integral grading (usually required to be non-
negative):

V =
⊕
n∈Z

Vn with Vn = {v ∈V |L0v=nv} . (13)

3. For a homogeneous vector b∈Vh it is common in the physics literature to shift the
indexing in the series expansion (7) in such a way that

Y (b, z) =
∑
n∈Z

b(n) z
−n−h. (14)

The so obtained coefficients b(n) are degree −n maps, that is, b(n)Vm⊂Vm−n.
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4. Let us also mention that the choice of vVir for a given VOA and a given shift operator T
is not necessarily unique. Ghost systems will provide an explicit example.

VOAs are formulated with the help of formal variables, respectively formal local coordinates.
An algebraic structure that captures the symmetries of a chiral CFT on a smooth algebraic
curve in a coordinate-independent way is the one of a chiral algebra [3]. This structure is
formulated with the help of the notion of a D-module. Chiral algebras on the affine line A1

that are equivariant with respect to translations are in bijection to vertex operator algebras.
The study of chiral algebras has triggered further developments, in particular it has led to the
notion of a factorisation algebra. For detailed information we refer to [3, 15].

We conclude this section with a word of warning. The notion of a VOA is a mathematical
formalization of a physical concept, the algebra of chiral symmetries. It is, however, not the
only available formalization of that physical concept. A rather different approach, based on
the notion of local observables [27], describes the chiral symmetries in terms of nets of von
Neumann algebras over a circle S1 (for details see e.g. [8]). The relation between these different
incarnations of chiral symmetries has been clarified in the past few years, but is beyond the
scope of these lectures.

3.3 Examples

It is time for presenting examples of VOAs.

Examples 3.6. 1. We start with the chiral CFT for a single free boson; it is based on the
Heisenberg algebra h, which has generators bn with n∈Z and relations

[bn, bm] = n δn+m,0 .

In this case HΩ is nothing but a Fock space

U(h)⊗U(h+) Cvω ,

and vΩ is the ground state in this Fock space. To define the field-state correspondence
one introduces abelian currents

J(z) =
∑
n∈Z

bn z
−n−1

and identifies Y (b−1vΩ, z) = J(z). More generally, one sets

Y (bn1· · · bnkvΩ, z) =
1

(n1−1)! · · · (nk−1)!
: ∂n1−1

z J(z) · · · ∂nk−1
z J(z) : ,

where the colons indicate a normal ordering. This prescription indeed yields the structure
of a VOA. (It is not a trivial exercise, though, to check that this works out.)

2. This example has an important generalization. Let L be a lattice, and V =L⊗ZR be
the associated real vector space with basis {b(i)}. Suppose that V has a non-degenerate
bilinear form κ. To the infinite-dimensional Lie algebra with basis b(i)

n , n∈Z, and relations

[b(i)
n , b

(j)
m ] = nκ(b(i), b(j)) δn+m,0

one associates a Fock space HΩ. One checks that it carries again the structure of a VOA.
This structure can be further generalized: Suppose that the bilinear form is such that L
is an even lattice, i.e. κ(v, w)∈Z and κ(v, v)∈ 2Z for all v, w∈L. Then the space

HΩ⊗C[L] ,
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where C[L] is the group algebra of L, has the structure of a VOA, too. It is called the
lattice VOA for L and describes dimV = rankL many compactified chiral free bosons.

3. Similar constructions are possible when choosing other infinite-dimensional Lie algebras
in place of the Heisenberg algebra. One can e.g. take the Virasoro algebra itself; then
T (z) roughly plays the role of the abelian current J(z). When the chiral algebra is
generated solely from the Virasoro algebra, then the model is called a Virasoro minimal
model . Another important class of examples is furnished by untwisted affine Lie algebras,
where non-abelian currents Ja(z) (a an adjoint label of the underlying finite-dimensional
simple Lie algebra) take over the role of J(z). The commutation relations are given in a
basis (Jan)n∈Z,a=1,... dim g:

[Jan, J
b
m] = fabc J

c
n+m + κa,bnδn+m,0

The models obtained this way are known as Wess--Zumino--Witten (WZW ) models.
The Heisenberg, Virasoro and affine Lie algebras belong to the so-called Lie algebras of
formal distributions; these are Lie algebras g that are spanned over C by the coefficients
of a collection of g-valued mutually local formal distributions {aα(z)}.

4. Our last example are the so-called first order systems. This is a family of VOAs,
labelled by two parameters λ∈Z/2 and η=±1. One starts with a Lie algebra generated
by two formal distributions

b(z) =
∑
n∈ε+Z

bnz
−n−λ , c(z) =

∑
n∈ε+Z

cnz
−n−(1−λ)

of conformal weight λ and 1−λ, respectively. These fields are bosonic for η=−1 and
fermionic for η= 1. In the former case, ε is zero, while in the latter it takes the values
0 for the Ramond sector and 1/2 for the Neveu--Schwarz sector. The modes of b and c
obey the (anti-)commutation relations {cm, bn}η = δn+m,0. The VOA is defined on a Fock
space, built on a highest weight vector vΩ with relations

bnvΩ = 0 for n≥ 1−λ , bnvΩ = 0 for n>λ .

As the stress-energy tensor one takes

T (z) = −λ :b ∂c:− (1−λ) :∂b c: ;

the Virasoro central charge is c= 1−3Q2 with Q := ε(1−2λ). This is an example of a
vertex algebra with different conformal structures.

There is a U(1) current with modes jn =
∑

m∈Z+ε

:cn−mbm: which is, however, anomalous:

[Ln, jm] =
1

2
Qn(n+1) δn+m,0 −mjn+m .

First order systems are of particular interest for the following values: λ= 2, η= 1 yields
the ghosts for bosonic reparametrizations of the string world sheet, λ= 3/2, η=−1 gives
the ones for gauging the fermionic operators of an N = 1 superconformal symmetry on
the world sheet, and λ= 1/2, η= 1 is just a complex free fermion.

13



3.4 Representation categories

As a generalisation of associative algebras, VOAs naturally admit modules. Recall that the
VOA is formalizing aspects of a chiral symmetry algebra, and symmetries in a quantum theory
should be represented on the space of states. We are thus lead to study the representation
theory of VOAs.

Definition 3.7. A module over a VOA (V, Y ) consists of a complex vector space M and a
linear map Y M : V⊗M −→M((z)) such that Y M represents the field map Y (the multiplication
on V) on M in the sense that the representation map

YM : HΩ → End(M)[[z, z−1]] ,

obeys
YM(v1, z1)YM(v2, z2) = YM(Y (v1, z1−z2)v2, z2) . (15)

Remarks 3.8. 1. Representations of VOAs form a category which has many subcategories.

2. The classification of V -modules is in general an extremely hard problem. But for inter-
esting classes of VOAs it can be made tractable by restricting the kind of modules to be
considered to those visible to the Zhu algebra formalism; see [23] for more information.

3. One can show that the VOA furnishes a representation of itself; this is called the vacuum
representation. This implies that the identity (15) is in particular valid for HΩ, i.e. (15)
remains true when YM is replaced by Y . This expresses a kind of associativity of the VOA.
Thus for VOAs ‘associativity’ in the sense of (15) is a consequence of ‘commutativity’ in
the sense of (9).

4. When the VOA is conformal, every module M is in particular, by restriction, a module
over the Virasoro algebra. It follows directly from the definition of a conformal VOA that
in each CFT model the central element C of the Virasoro algebra acts as C = c id with
one and the same value of the number c in every irreducible representation that occurs
in the model. Also recall that when v is an eigenstate of the Virasoro zero mode L0, its
eigenvalue ∆v is called the conformal weight of v. More generally, if the action of L0 can
be described by Jordan blocks, the principal value is called the conformal weight.

5. The conformal weights of different vectors in the same irreducible module differ by in-
tegers, or in other words, e2πiL0 acts as a multiple of the identity on every irreducible
module. We will therefore refer, somewhat abusing terminology, to the fractional part of
the conformal weight of any eigenvector of L0 in an irreducible moduleM as the conformal
weight ∆M of the module M .

3.5 Tensor products

Continuing the analogy to commutative algebras, it is natural to study V-multilinear maps, in
particular bilinear ones. Such maps are a crucial ingredient in the construction of conformal
blocks and are thus of central importance to chiral CFT, see below.

Definition 3.9. A V-bilinear map from a pair of V-modules M1 and M2 to a third module
M3 is a linear map

Y : M1⊗M2 −→M3{z}[log(z)] (16)

that is compatible with the action of V on each of the three modules.

14



Here log(z) is a formal variable satisfying ∂z log(z) = z−1 and M3{z}[log z] denotes polyno-
mials in log(z) whose coefficients are M3-valued power series in z for which the exponents can
be arbitrary complex numbers.

We recall the definition of the tensor product of vector spaces:

Definition 3.10. The tensor product of two K-vector spaces V,W is a pair, consisting of a
K-vector space V ⊗W and a bilinear map

κ : V ×W → V ⊗W
(v, w) 7→ v ⊗ w

with the following universal property: for any K-bilinear map

α : V ×W → X

there exists a unique linear map α̃ : V ⊗W → X such that

α = α̃ ◦ κ .

As a diagram:
V ×W κ //

α
))

V ⊗W
∃!α̃
��
X

The existence of bilinear maps allows one to define a V-tensor product, also called a fusion
product (see [5] for a summary and [30, 32] for an exhaustive discussion).

Definition 3.11. The fusion product is characterised by a direct generalisation of the universal
property for the tensor product over a ring: for any pair of modules M1 and M2 the fusion
product is a module M1⊗VM2 together with an intertwining operator

YM1,M2 : M1⊗M2−→M1⊗VM2{z}[log(z)]

such that for any module X and intertwining operator I : M1⊗M2−→X{z}[log(z)] there exists
a unique module morphism φ : M1⊗VM2 −→X such that the diagram

M1⊗M2 M1 ⊗V M2{z}[log(z)]

X{z}[log(z)]

YM1,M2

I
∃!φ (17)

commutes.

Remarks 3.12. 1. Being defined through a universal property, fusion products are unique
if they exist. Moreover, the tensor product is also defined on morphisms.

2. We introduce the notion
I

(
M3

M1,M2

)
for the vector space of intertwiners from M1 ⊗M2 to M3. The reader is invited to think
about them as invariant tensors,
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3. As a consequence, well chosen categories of modules (in particular, a morphism φ making
(17) commutative must exist within the category for every pair of objects) are furnished
with the structure of a monoidal category, and even of a balanced braided monoidal
category. This structure can be characterised as follows:

• The tensor unit is given by the VOA V. The left unit constraint ` identifies the
intertwining operator YV,M with the action Y M of V on M , that is,

`M(YV,M(a, z)m) = Y M(a, z)m for a∈V , m∈M . (18)

• The associativity constraint A corresponds to identifying compositions of intertwin-
ing operators:

AM1,M2,M3(YM1,M2⊗VM3(m1, z1)YM2,M3(m2, z2)m3)

= YM1⊗VM2,M3(YM1,M2(m1, z1−z2)m2, z2)m3 . (19)

Geometrically, thinking of the variables zi as complex coordinates, the left hand side
is expanded in a domain for which the insertion point z2 of M2 is close to that of
M3, i.e. 0, while the right hand side is in a domain where M1 (inserted at z1) is
close toM2. The existence of associator isomorphisms satisfying pentagon equations
is the main obstruction for a chosen category of V-modules to be monoidal. (The
map AM1,M2,M3 depends on the insertion points z1 and z2. The actual categorical
associator is a certain limit; for details see [5, Sect. 3.3]. For notational simplicity
we suppress this issue.)

• The braiding isomorphisms c correspond to identifying the intertwining operator
YM1,M2 at z with the intertwining operator YM2,M1 transported to −z, that is,

cM2,M1
(YM2,M1(m2, z)m1) = ezL−1YM1,M2(m1,−z)m2 . (20)

The geometric intuition for these isomorphisms is the exchange of the location of
the modules M1 and M2: Multiplying z by −1 is a rotation of z (where M1 is
located) by the angle π around 0 (where M2 is located), while the L−1-exponential
is a translation of both points by −z, so that altogether the locations of the two
points are switched. (A choice of logarithm needs to be made for −1 to distinguish
between clockwise and counter-clockwise rotations.)

• There is a twist isomorphism θ given by θM = exp(2πiL0)|M , which is balanced with
respect to the braiding, that is,

θM1⊗VM2 = cM2,M1
◦ cM1,M2

◦ (θM1 ⊗V θM2) . (21)

The twist thus defines a balanced structure on the category. In particular, if the
category is in addition rigid, then the twist defines a ribbon structure.

Definition 3.13. 1. Let C be a category and ⊗ : C × C → C a functor, called a tensor
product.

Note that this associates to any pair (V,W ) of objects an object V ⊗W and to any pair of
morphisms (f, g) a morphism f ⊗ g with source and target given by the tensor products
of the source and target objects. In particular, idV⊗W = idV ⊗ idW and for composable
morphisms

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g) .
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2. A monoidal category or tensor category consists of a category (C,⊗) with tensor
product, an object I ∈ C, called the tensor unit, and a natural isomorphism, called the
associator,

a : ⊗(⊗× id)→ ⊗(id×⊗) .

of functors C × C × C → C. Explicitly, this means that for any trupe U, V,W of objects
in C, we have isomorphisms

aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

compatible with morphisms in the category as well as natural isomorphisms

r : id⊗ I→ id and l : I⊗ id→ id

called unit constraints such that the following axioms hold:

• The pentagon axiom: for all quadruples of objects U, V,W,X ∈ Obj(C) the
following diagram commutes

(U ⊗ V )⊗ (W ⊗X)
aU,V,W⊗X

**
((U ⊗ V )⊗W )⊗X
aU,V,W⊗idX

��

aU⊗V,W,X
44

U ⊗ (V ⊗ (W ⊗X))

(U ⊗ (V ⊗W ))⊗X aU,V⊗W,X
// U ⊗ ((V ⊗W )⊗X)

idU⊗aV,W,X

OO

• The triangle axiom: for all pairs of objects V,W ∈ Obj(C) the following diagram
commutes

(V ⊗ I)⊗W
aV,I,W //

rV ⊗idW ''

V ⊗ (I⊗W )

idV ⊗lWww
V ⊗W

Definition 3.14. 1. A commutativity constraint for a tensor category (C,⊗) is a natural
isomorphism

c : ⊗ → ⊗opp

of functors C × C → C. Explicitly, we have for any pair (V,W ) of objects of C an
isomorphism

cV,W : V ⊗W ∼−→ W ⊗ V

such that for all morphisms V f−→ V ′ and W g−→ W ′ the diagrams

V ⊗W
cV,W //

f⊗g
��

W ⊗ V
g⊗f
��

V ′ ⊗W ′ cV ′,W ′ //W ′ ⊗ V ′

commute.
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2. Let C be, for simplicity, a strict tensor category. A braiding is a commutatitivity con-
straint such that for all objects U, V,W the compatibility relations with the tensor product

cU⊗V,W = (cU,W ⊗ idV ) ◦ (idU ⊗ cV,W )

cU,V⊗W = (idV ⊗ cU,W ) ◦ (cU,V ⊗ idW )

hold.

If the category is not strict, the following two hexagon axioms involving also the asso-
ciators have to hold:

U ⊗ (V ⊗W )
cU,V⊗W // (V ⊗W )⊗ U

aV,W,U

((
(U ⊗ V )⊗W

aU,V,W
66

cU,V ⊗idW ((

V ⊗ (W ⊗ U)

(V ⊗ U)⊗W
aV,U,W // V ⊗ (U ⊗W )

idV ⊗cU,W

66

and

(U ⊗ V )⊗W
cU⊗V,W //W ⊗ (U ⊗ V )

a−1
W,U,V

((
U ⊗ (V ⊗W )

a−1
U,V,W

66

idU⊗cV,W ((

(W ⊗ U)⊗ V

U ⊗ (W ⊗ V )
a−1
U,W,V // (U ⊗W )⊗ V

cU,W⊗idV

66

3. A braided tensor category is a tensor category together with the structure of a braid-
ing.

4. With cUV , also c−1
V U is a braiding. If the identity cU,V = c−1

V,U holds, the braided tensor
category is called symmetric.

An example of a braided category are Drinfeld centers of monoidal categories. The notion
is a categorification of the notion of a center of an associative algebra which is a commutative
algebra.

Example 3.15. 1. We consider a category Z(C) whose objects are pairs (V, c−,V ) consisting
of an object V of C and a natural isomorphism c−,V : − ⊗ V ∼→ V ⊗ −, called a half-
braiding for V , i.e. isomorphisms for all X ∈ C

cX,V : X ⊗ V → V ⊗X

natural in the sense that that for any morphism X
f→ Y in C the diagram

X ⊗ V
cX,V //

f⊗idV
��

V ⊗X
idV ⊗f
��

Y ⊗ V cY,V
// V ⊗ Y

commutes which obey the additional requirement that for all objects X, Y of C we have

cX⊗Y,V = (cX,V ⊗ idY ) ◦ (idX ⊗ cY,V ) . [Hex]
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2. A morphism (V, c−,V ) → (W, c−,W ) in Z(C) is a morphism f : V → W in C with the
property that for all objects X of C we have

(f ⊗ idX) ◦ cX,V = cX,W ◦ (idX ⊗ f) . (∗∗)

It is clear that the identity idV in C is a morphism in Z(C) and that if f, g are morphisms
in Z(C) that are composable in C, then f ◦ g is a morphism in Z(C). Thus Z(C) is a
category with composition and identities inherited from C.

3. Then the category Z(C) has a natural structure of a strict braided tensor category with

(a) Monoidal unit (I, idI).
(b) The tensor product of two objects (V, c−,V ) and (W, c−,W ) in Z(C) is given by

(V, c−,V )⊗ (W, c−,W ) := (V ⊗W, c−,V⊗W ) .

Here, given two objects (V, c−,V ) and (W, c−,W ) in Z(C), we define for any object
X ∈ C the morphism

cX,V⊗W : X ⊗ V ⊗W → V ⊗W ⊗X

by
cX,V⊗W := (idV ⊗ cX,W ) ◦ (cX,V ⊗ idW ) . (∗)

(c) The braiding on Z(C) is given by

cV,W : (V, c−,V )⊗ (W, c−,W )→ (W, c−,W )⊗ (V, c−,V ) .

This braided monoidal category is called the Drinfeld center of the monoidal category
C.

There are a number of additional conditions that V or its chosen of category of modules may
satisfy, leading to the existence of additional structure. For example, if the category is closed
under taking gradewise duals (also known as contragredient modules), then it is a ribbon
Grothendieck Verdier category (a type of monoidal category with a notion of duality that
can be weaker than rigidity).

Proposition 3.16 (Huang-Lepowsky-Zhang [31, Part I, Theorem 2.34]). Let A ≤ B be abelian
groups, V an A-graded VOA, letM be a B-graded weak V-module and define the vector spaces

M ′ =
⊕

b∈B,h∈C

(
M

(β)
h

)∗
,

(
M

(β)
h

)∗
= HomC(M

(β)
h ,C) . (22)

If M is strongly B-graded, then the canonical linear isomorphisms identifying a finite dimen-
sional vector space with its double dual extends to a canonical linear isomorphism M ∼= M ′′

of bigraded vector spaces. If, in addition, M is discretely strongly B-graded, then M ′ is also a
discretely strongly B-graded with field map YM ′ uniquely characterised by

〈YM ′(v, z)φ,m〉 = 〈φ, Y opp
M (v, z)m〉, v ∈ V, φ ∈M ′,m ∈M, (23)

where Y opp
M is the opposed field map

Y opp
M (v, z) = YM

(
ezL1

(
−z−2

)L0 v, z−1
)
. (24)

The module M ′ is called the contragredient of M . Opposing the field map is involutive, that
is, Y opp opp

M = YM , hence the canonical linear isomorphism M ∼= M ′′ above is an isomorphism of
V -modules.

It is important to notice that the opposed field map (and thus the GV structure) depends
on the choice of conformal structure.
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The contragredient dual obeys the following relation:

Theorem 3.17 (Huang-Lepowsky-Zhang [31, Part II Proposition 3.46]). Let M1,M2,M3 be
strongly graded generalised modules over some VOA V. Then there exists a natural linear
isomorphism

A : I

(
M3

M1,M2

)
→ I

(
M ′

2

M1,M ′
3

)
,

which on any intertwining operator Y ∈ I

(
M3

M1,M2

)
evaluates as

〈A(Y) (m1, x)m′3,m2〉M2 = 〈m′3,Y
(

exL1eiπL0
(
x−L0

)2
m1, x

−1
)
m2〉M3 , m1 ∈M1, m2 ∈M2, m

′
3 ∈M ′

3,

(25)
where the subscript indicates which module the pairings are evaluated in.

Definition 3.18. A GV category is a monoidal category C, together with a distinguished
object K ∈ C, called the dualising object satisfying the following conditions.

1. For any object Y ∈ C, the contravariant functor Hom(−⊗ Y,K) is representable, that is,
there exists an object DY ∈ C such that there is a natural isomorphism

Hom(−⊗ Y,K) ∼= Hom(−, DY ). (26)

By Yoneda’s Lemma there therefore exists a unique (up to natural isomorphism) con-
travariant functor D, called the dualising functor, which assigns to every Y ∈ C the
representing object DY , that is D(Y ) = DY .

2. The contravariant functor D above is an anti-equivalence.

Theorem 3.19. Let V be a VOA and C a choice of category of V-modules which contains
V as an object, is closed under taking contragredients and which satisfies the tensor product
theory of Huang-Lepowsky-Zhang. Then C is a ribbon GV category category with dualising
object V′ (the contragredient of the VOA as a module over itself), dualising functor given by
the taking of contragredients, and with twist θ = e2πiL0 .

In a pivotal GV category, we invariant tensors with cyclic invariance.
In the rest of this lecture, we will assume that we have the stronger property that the

category C is even rigid. In particular, the dualizing object equals the monoidal unit.

Definition 3.20. 1. Let C be a tensor category. An object V of C is called right dualiz-
able, if there exists an object V ∨ ∈ C and morphisms

bV : I→ V ⊗ V ∨ and dV : V ∨ ⊗ V → I

such that

rV ◦ (idV ⊗ dV ) ◦ aV,V ∨,V ◦ (bV ⊗ idV ) ◦ l−1
V = idV

lV ∨ ◦ (dV ⊗ idV ∨) ◦ a−1
V ∨,V,V ∨ ◦ (idV ∨ ⊗ bV ) ◦ r−1

V ∨ = idV ∨

Such an object V ∨ is called a right dual to V .

The morphism dV is called an evaluation, the morphism bV a coevaluation.

2. A monoidal category is called right-rigid or right-autonomous, if every object has a
right dual.
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3. A left dual to V is an object ∨V of C, together with two morphisms

b̃V : I→ ∨V ⊗ V and d̃V : V ⊗ ∨V → I

such that analogous equations hold. A left-rigid or left autonomous category is a monoidal
category in which every object has a left dual.

4. A monoidal category is rigid or autonomous, if it is both left and right rigid or au-
tonomous.

Remark 3.21. In a GV category, we also have evaluation morphisms

G(Y )⊗ Y → K and Y ⊗G−1(Y )→ K

There are, however, not necessarily coevaluations (for the ⊗ tensor product.)

Rigidity is a finiteness conditions: in the monoidal category of vector spaces, precisely the
finite-dimensional vector spaces are rigid. We will impose further finiteness conditions:

Definition 3.22. 1. Let K be a field. A K-linear category C is called a finite category, if

(a) C has finite-dimensional spaces of morphisms.

(b) Every object of C has finite length, i.e. for any object c ∈ C there exists a finite
filtration

0 = c0 ⊂ c1 ⊂ c1 ⊂ . . . ⊂ cn = c

by subobjects such that the quotient object ci/ci−1 is a simple object.

(c) C has enough projectives, i.e. every simple object has a projective cover. (A pro-
jective cover of an object c ∈ C is a projective object p(c) ∈ C, together with an
epimorphism π : p(c)→ c such that if g : p′ → c is an epimorphism from a projective
object p′ to c, then there exists an epimorphism h : p′ → p(c) such that π ◦ h = g.

(d) There are finitely many isomorphism classes of simple objects.

A K-linear category is finite, if and only if it is equivalent to the category A-mod of
finite-dimensional A-modules over a finite-dimensional K-algebra.

2. A finite tensor category is a finite rigid monoidal linear category.

3. A semisimple finite tensor category is called a fusion category.

Semisimplicity means that any object is a direct sum of simple objects. The category of
complex finite-dimensionak representations of a finite group is semisimple. Interesting vertex
algebras are not necessarily semisimple.

Remark 3.23. The braiding in conformal field theory is special: the category is factorizable:

1. Suppose that A and B are two algebras over the same field K. Then A⊗B is a K-algebra
as well. The Deligne product of two finite abelian categories is defined such that

A⊗B-mod ∼= A-mod�B-mod .

It can be characterized by a universal property for right exact functors A-mod×B-mod→
X where X is any finite category. For details, we refer to [9, section 5].
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2. Let C be a braided tensor category. Using the braiding on C as a half-braiding gives a
functor

C → Z(C)
V 7→ (V, c−V )

which is obviously a braided monoidal functor.

3. Taking the inverse braiding
crevd
U,V := c−1

V,U

on the same monoidal category, gives another structure of braided tensor category Crevd.
We get another functor

Crevd → Z(C)
V 7→ (V, crevd

−V )

which is again a braided monoidal functor.

4. Altogether, we obtain a braided monoidal functor

Crevd � C → Z(C) .

5. Suppose that C is the category of representations of a quasi-triangular Hopf algebra
(H,R). Then (H,R) is factorizable, if and only if the functor Crevd � C → Z(C) is an
equivalence of braided monoidal categories.

6. It can be shown that for any tensor category C the Drinfeld center Z(C) is factorizable
[10, Proposition 8.6.3].

Definition 3.24. A modular tensor category is a finite ribbon category in which the braid-
ing is non-degenerate in the sense that the braided monoidal functor

Crevd � C → Z(C)

from remark 3.23.7 is an equivalence.

Remark 3.25. A modular tensor category is pivotal, i.e. there is a monoidal natural isomor-
phism

ω : idC →?∨∨ .

A right rigid monoidal category together with a choice of pivotal structure is called a pivotal
category.

If V satisfies a technical condition called C2-cofiniteness, then there is a natural choice of
category (called admissible modules) that is finite, i.e. it has finitely many simple objects, every
object has finite length, and all morphism spaces are finite-dimensional.

Proposition 3.26. Finally, ifV is C2-cofinite and if the category Rep(V) of admissible modules
is semisimple, then it is a modular fusion category [29].

Definition 3.27. A VOA having this property is called a rational VOA.

Similar results yielding modular fusion categories can also be obtained in the framework of
nets of observables [35].
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Remarks 3.28. 1. A striking feature of rational VOAs is the behaviour of the characters
of their modules under modular transformations. The character of a V-module M is
the power series

χM(τ) = trMq
L0−c/24 with q = exp(2πiτ) , τ ∈H , (27)

defined on the complex upper half plane H.

2. For rational V, the prescriptions

S(χM(τ)) = χM(−1

τ
) and T (χM(τ)) = χM(τ+1) , (28)

called the modular S- and T -transformations, respectively, even give rise (after, if needed,
refining the information in the characters by considering dependence on further variables)
to an action of the group SL(2,Z)∼= 〈S, T |S4 = 1, (ST )3 =S2〉, which is the modular group
of the one-punctured torus, on the characters. More specifically, after picking a finite set
I = {Mi}i of representatives for the isomorphism classes of simple modules such that
M0 =V, the modular transformations (28) are realized by square matrices with complex
entries according to

S(χMi
) =

∑
j∈I

Si,j χMj
and T (χMi

) = Ti,i χMi
(29)

for i∈ I.

3. On the other hand, as the category Rep(V) for a rational VOA V is a modular fusion
category, via the trace of a double braiding and via the eigenvalues of the ribbon twist, one
can define categorical S- and T -matrices which again generate the modular group SL(2,Z).
After a canonical rescaling, these are equal to the modular transformation matrices of
the characters defined in (29), and as a consequence the tensor product in Rep(V) can
be expressed through the Verlinde formula, which depends only on the entries of the
modular S-matrix [29]. Thus in the rational case the decomposition rules for fusion
products can be computed from the modular behaviour of characters. Determining
the modular transformations of characters is significantly more tractable than computing
fusion products directly.

Characters are particular examples of torus chiral one-point correlators (see the section
on conformal blocks). Thus their modular behavior is a consequence of the geometry of
the curves they are defined on. Accordingly it is believed that the finiteness conditions
that make up rationality are not necessary conditions; they are, however, the only fully
understood case. Still, various proposals for Verlinde-like formulas beyond rationality
have been made, see e.g. [40] and the literature cited there.

4. The information encoded in the modular fusion category Rep(V) is often referred to as
the chiral data, or also Moore-Seiberg data, of a CFT [38]. The modular data of the
CFT are given by the subset of chiral data consisting of the matrices S and T and the
central charge c.

4 Conformal blocks
We now to combine the subjects of the two previous sections, VOAs and complex curves. This
will lead us to the central notion of a conformal block.
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4.1 Ward identities and conformal blocks

A common theme in quantum field theory is the quest for establishing a correspondence between
states and fields. Furthermore, one would like to formulate the theory on a whole class of
suitable manifolds. In the present context, this amounts to the idea to associate to every vector
v ∈Hλ in a VOA-module Hλ a suitable ‘field’ Φλ(v, p) depending on a point p on complex curve
X, and to assign, given any complex curve X of genus g and any choice of m pairwise distinct
points pi on X, to an m-fold product of such fields a ‘correlator’

〈Φλ1(v1, p1) · · ·Φλm(vm, pm)〉X .

As will be seen below, formalizing this physics idea naturally leads to quantities which do not
enjoy all properties that one would normally require for the correlators of a local quantum field
theory. Accordingly we have put the terms ‘field’ and ‘correlator’ in quotation marks.

The global chiral symmetries of the CFT that are encoded in a VOA V imply linear
relations that the ‘correlators’ must satisfy. These relations are called the chiral Ward identi-
ties; their solutions form vector spaces B~λ(X, ~p), called the spaces of conformal blocks. To
write the Ward identities in a compact form, we regard a conformal block as a linear form on
the vector space tensor product

~H~λ := Hλ1⊗C · · · ⊗CHλm (30)

of V-modules that depends on the complex structure of the curve X and on the positions
~p= (p1, p2, ... , pm) of the field insertions, that is, as a particular vector

βX,~p;~λ ∈ ~H∗~λ (31)

in the (algebraic) dual of the tensor product. It depends on the curve X̂ and on the positions
~p= (p1, p2, ... , pm) of the field insertions.

Then the ‘correlator’ is the scalar

〈Φλ1(v1, p1) · · ·Φλm(vm, pm)〉 = βX,~p;~λ(v1⊗ · · ·⊗ vm) . (32)

4.2 WZW conformal blocks as invariants

A crucial step in the construction of conformal blocks is to obtain for a given curve X a ‘global’
variant of the VOA. For a general vertex operator algebra, this has been analysed in terms of
bundles of VOAs in Chapter 6 of [15], and in terms of ‘chiral Lie algebras’ in [39, 6]. For the
present purposes, we content ourselves to convey the idea by spelling it out for the arguably
simplest class of CFTs, namely the one of chiral WZW models, as expounded in [2].

1. For these the VOA V is generated by currents Ja(z) whose zero modes Ja0 span a finite-
dimensional complex simple Lie algebra ḡ, and a V-module Hλ carries an action of the
untwisted affine Lie algebra g= ḡ(1) associated with ḡ.

2. In this situation we can combine the Lie algebra ḡ with the commutative associative
algebra FX,~p of holomorphic functions on X\ ~p that at each of the points pi have at most
a finite order pole, which yields a Lie algebra ḡ⊗FX,~p of ḡ-valued functions. This global
Lie algebra captures the global aspects of the VOA. (For analogous global Lie algebras
for general VOAs see [15, Ch. 19.4] and [6, Sect. 3].)
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3. An action of ḡ⊗FX,~p on the tensor product ~H~λ is obtained as follows: For each i choose
a local holomorphic coordinate ξi around the insertion point pi and expand f ∈FX,~p in a
Laurent series

f (i)(ξi) =
∑

n�−∞

a(i)
n ξni . (33)

Then associate to the element Ja0 ⊗ f of ḡ⊗FX,~p the element
∑

n�−∞

a(i)
n J

a
n of the affine Lie

algebra g(1), acting on the V-module Hλi . The action of Ja0 ⊗ f on ~H~λ is then defined as
the sum

m∑
i=1

1⊗ · · · ⊗
( ∑
n�−∞

a(i)
n J

a
n

)
⊗ · · · ⊗ 1 , (34)

where in the ith summand the non-trivial tensor factor is located at the ith position.

4. The space of conformal blocks can now be defined as the vector space of invariants for
the induced action on the dual space ~H∗~λ:

B~λ(X, ~p) := ( ~H∗~λ)0
. (35)

5. The action of ḡ⊗FX,~p depends on the choice of the local coordinates ξi, and thus the space
B~λ(X, ~p) of conformal blocks depends on that choice as well. However, for WZW models,
and, more generally, for C2-cofinite rational VOAs, the Virasoro algebra, obtained from
the conformal structure of the VOA, provides a natural action of the group of changes of
local coordinates on the VOA-modules, so that the conformal blocks transform covariantly
under such choices.

Remarks 4.1. 1. In all rational chiral CFTs, in accordance with the Verlinde formula, the
space V~λ is a finite-dimensional vector space; it is a subspace of ( ~H~λ)

∗
that depends on

the labels ~λ, on the curve X̂, and the positions ~p of the insertion points.

2. These vector spaces also turn out to be the spaces of physical states of certain three-
dimensional topological field theories (TFTs), the Chern--Simons theories. A mathe-
matically rigorous construction is the Reshetikhin-Turaev construction. It must be
emphasized, though, that this relation between TFT and chiral CFT does by no means
imply that the two theories are equivalent. Indeed, already the respective spaces of
physical states are rather different. For chiral CFT, the state space is provided by the
infinite-dimensional graded vector spaces Hλ that underly the VOA-modules.

3. The spaces of conformal blocks are of independent interest in mathematics; they provide
nonabelian generalizations of theta functions, i.e. they are naturally isomorphic to
spaces of sections over moduli spaces of (stable equivalence classes of holomorphic) G-
bundles over X̂, where G is the connected and simply connected complex Lie group whose
Lie algebra is ḡ. For more details, we refer to [41].

It is again time for an example.

Example 4.2. 1. Take the sphere X̂ =CP1, with the usual (quasi-)global coordinate z, and
two insertions at z1 = 0 and z2 =∞. As local coordinates, we choose ξ1 = z and ξ2 = 1/z.
The algebra F is in this case the algebra of all polynomials in z and z−1, F = 〈zn, n∈Z〉.
The element Ja ⊗ zn acts via Jan⊗1+1⊗Ja−n. The two-point blocks are then functionals
β ∈ (Hλ⊗Hµ)∗ with the property that

β ◦ (Jan ⊗1 + 1 ⊗ Ja−n) = 0 (36)
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for all a= 1, 2, ... , dim ḡ and all n∈Z. One can show that non-vanishing functionals β
obeying (36) exist only if λ and µ are conjugate ḡ-weights, µ=λ+.

2. Note that these linear functionals are in the algebraic dual of Hλ⊗Hλ+ ; the Hilbert space
dual is too small to contain them. Still, one abuses bra-ket notation and likes to write
them as vectors of Hλ⊗Hλ+ . In terms of these “vectors” |Bλ〉, formula (36) is written as

(Jan ⊗1 + 1 ⊗ Ja−n) |Bλ〉 = 0 . (37)

3. The quantities |Bλ〉 show up in various circumstances. In the context of conformally
invariant boundary conditions they are also known as Ishibashi states. The reader
should keep in mind that these are nothing but two-point blocks on the sphere. It is
sometimes possible to write down the Ishibashi state |Bλ〉 explicitly; e.g. for theories
based on a free boson, it can be written as a generalized coherent state,

|Bλ〉 = exp (−
∞∑
n=1

b−n ⊗ b−n) vλ ,

where vλ is the highest weight state in the tensor product of Fock spaces. Such a re-
alization is helpful when one is interested in calculating one-point functions on a disc
explicitly. It is, however, not necessary to know such an explicit realization if one wants
to determine the spectrum of boundary fields. In this case, it is sufficient to know how
|Bλ〉 behaves under factorization (see below). The crucial information that allows to
calculate concretely with boundary states is the following identity that relates two-point
blocks and characters:

χλ(2τ) = 〈Bλ| e2πiτ(L0⊗1+1⊗L0−c/12) |Bλ〉 .

4.3 Bundles of conformal blocks

Next we describe what happens if the shape of the complex curve X and the location of the
insertion points ~p, which have so far been kept fixed, are varied. These data specify a point in
the moduli spaceMg,m of curves of genus g with m distinct marked points, and together with
choices of local coordinates, a point in a larger moduli space M̃g,m.

Proposition 4.3. 1. The vector spaces B~λ(X, ~p) define a quasi-coherent sheaf on M̃g,m.

2. If the VOA is rational and C2-cofinite, then [6, Sect. 8.7] the sheaf is coherent and descends
to the moduli space Mg,m, so that the spaces B~λ(X, ~p) fit together into the total space
of a vector bundle Bg,~λ over the moduli spaceMg,m; hereby in particular the dependence
on choices of local coordinates is removed.

3. Moreover, the vector bundle Bg,~λ is equipped with the additional structure of a projectively
flat connection with regular singularities, which is called the Knizhnik-Zamolodchikov
connection. This can be traced back to the existence, for any VOA-module Hλ, of a flat
connection ∇= d +L−1⊗ dz on a vector bundle H̃λ overMg,m whose fibres are given by
Hλ.

Remark 4.4. The existence of the Knizhnik-Zamolodchikov connection amounts to a projective
action of the fundamental group ofMg,m, i.e. of the mapping class group Mapg,m of the m-
punctured curve X, on each fibre, i.e. on the vector space B~λ(X, ~p).
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Remarks 4.5. 1. The term ‘conformal block’ is frequently also used for the sheaves of local
horizontal sections in the vector bundles Bg,~λ. As the bundles Bg,~λ are generically non-
trivial, these sections are multivalued functions of the insertion points. Thus, as already
pointed out, they are not ordinary functions, in contrast to the correlators – also called
correlation functions – of a local quantum field theory. Via the Knizhnik-Zamolodchikov
connection, the horizontality of the sections translates to a first order differential equation
that the conformal blocks must satisfy, called theKnizhnik-Zamolodchikov equation.

2. For genus g= 1 and one insertion of the vacuum Ω, the (orbifold-)fundamental group is
SL(2,Z) [28]. For rational conformal field theories, one obtains a representation of the
modular group SL(2,Z) on a complex vector space of dimension |I|. In a natural basis,
the generator T , acting on the complex upper half plane H as T : τ 7→ τ+1 of SL(2,Z), is
represented by a unitary diagonal matrix Tλ,µ, and S, acting on H like

S : τ 7→ −1/τ ,

is represented by a unitary symmetric matrix Sλ,µ. It is an important conjecture that
the modular transformations of the characters are the same as those of the one-point
conformal blocks on the torus. This is the core of the Verlinde conjecture.

3. There is also a kind of converse of the above derivation of the conformal block spaces:
From a system of conformal blocks one can construct a VOA by restricting to insertions
of vectors that only produce a meromorphic dependence in correlation functions on the
sphere. The axioms of a VOA and its modules as well as further structures can then be
extracted from the desired properties of correlations functions. In fact, as demonstrated
in [24], to this end it is even sufficient to know the values of the linear forms (35) only on
certain finite-dimensional vector spaces, which are then recognized as particular subspaces
of the VOA.

4.4 Factorisation

In the considerations above, the curve X has implicitly been assumed to be smooth.

Remarks 4.6. 1. However, many arguments still go through if X is instead allowed to be
stable and thus can possess a mild form of singularities, known as ordinary double
points. Such a double point p on X can be ‘blown up’, which results in a smooth curve
X ′ with a projection onto X under which p has two pre-images p′±.

2. A further crucial aspect of conformal blocks is factorisation, which describes their be-
haviour in such a situation. At present, this is thoroughly understood only for C2-cofinite
rational VOAs V. In this case the conformal blocks even form vector bundles over the
moduli spaces Mg,m of stable pointed curves, the vector spaces of conformal blocks are
finite-dimensional.

Theorem 4.7. In this situation, there exist canonical isomorphisms [6, Thm. 8.4.1]

gX,X′ : B~λ(X, ~p)
∼=−−→

⊕
µ∈I

B~λ∪{µ,µ∨}(X
′, ~p ∪{p′+, p′−}) (38)

between the spaces of conformal blocks on X and X ′, where the (finite) summation is over the
isomorphism classes of simple objects of Rep(V).
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Remarks 4.8. 1. This structure tightly links the system of vector bundles Bg,~λ over the
moduli spacesMg,m for all possible values of the genus g and the number m of insertion
points.

2. The vector spaces B~λ(X, ~p), as well as the sheaves of horizontal sections of the bundles
Bg,~λ, depend functorially on the VOA-modules at the insertion points, i.e. on the objects
λi of the category Rep(V). From a categorical perspective, it is natural to expect that
the factorisation isomorphisms (38) can be generalised to classes of non-rational VOAs,
with the direct sum replaced by the categorical notion of a coend (similarly as in formula
(56) below).

3. An important consequence of factorisation is the Verlinde formula for rational VOAs,
which expresses the rank of the bundles Bg,~λ for any value of g and m through the entries
of the matrix S that according to (28) describes the effect of the modular transformation
τ 7→−1/τ on the characters of the VOA-modules Hµ. For details about the Verlinde
formula we refer to [29] and, for the case of WZW models, to [2, 41]. In the special
case g= 0 and m= 3, one obtains the statement that the matrix S diagonalises the
fusion rules of the CFT, i.e. the multiplicity matrices for the decompositions of the
tensor products λi⊗λj into simple objects. (The matrix S also coincides with the matrix
of Hopf link invariants obtained in the three-dimensional surgery topological field theory
based on the modular tensor category Rep(V); that the latter matrix diagonalises the
fusion rules follows quite directly [42, Ch. IV.12], irrespectively of the connection with
modular transformations.)

4. One consequence of factorization is that one can express the rank of V~λ,g for all values of
m and g in terms of the matrix S that we encountered in the description of the action of
the modular group. This results in the famous Verlinde formula, which reads

rankV~λ,g =
∑
µ∈I

|SΩ,µ|2−2g

m∏
i=1

Sλi,µ
SΩ,µ

. (39)

This implies in particular that the ranks of the bundles of conformal blocks are finite.

5. Using the assumption that the matrix S also describes the modular transformations of
the characters, for concrete models the matrix S can be computed explicitly with tools
from representation theory. For WZW models, S is given by the Kac--Peterson formula.
The combination of the Kac--Peterson formula for S with the general Verlinde formula
(39) then gives the Verlinde formula in the sense of algebraic geometry (for reviews see
[?, 41]).

4.5 The relation with modular functors

For a rational CFT there is a related more algebraic structure, also referred to as conformal
blocks, in which the spaces of conformal blocks are regarded just as finite-dimensional vector
spaces that are endowed with a representation of the mapping class group, obey factorisation,
and depend functorially on the representation-theoretic data at the insertion points. These
data are captured by the notion of a modular functor. Various versions of this notion have
been studied in the literature; roughly speaking, a modular functor is a three-dimensional
topological field theory that is only defined on a particular subclass of three-manifolds. For
our purposes, and in particular for the construction of CFT correlators further below, we work
with the following variant:
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Definition 4.9. An (anomaly-free) open-closed modular functor is a symmetric monoidal
pseudofunctor

Bl: Bordor
2,o/c −→ ProfC (40)

from the symmetric monoidal bicategory Bordor
2,o/c to the symmetric monoidal bicategory ProfC.

Remarks 4.10. 1. The bicategory Bordor
2,o/c has compact oriented 1-manifolds as objects,

open-closed oriented two-bordisms as 1-morphisms, and isotopy classes of homeomor-
phisms (relative to boundary parametrisation) as 2-morphisms.

2. The bicategory ProfC has (small) C-linear categories as objects, C-linear profunctors as
1-morphisms, and C-linear natural transformations as 2-morphisms (a linear profunctor
between linear categoriesA and B is a linear functor P : Aop×B−→VectC.) The horizontal
compositions in ProfC are given by coends.

3. It is widely believed that any rational chiral CFT, with associated modular fusion category
C, gives rise to a modular functor Bl = BlC such that the mapping class group representa-
tions are related by a Riemann-Hilbert correspondence to the monodromies of conformal
blocks that come from the projectively flat connection on the vector bundles Bg,~λ. Ac-
cordingly, yet another use of the term conformal blocks refers to the vector spaces that
are furnished by a modular functor. We will use modular functors to keep track
of the monodromies of conformal blocks.

5 Full CFT
We are now finally in a position to address full CFT. The most important point of this section
is that the construction of a full CFT from a chiral CFT can be formulated in completely
model-independent terms.

5.1 Consistent systems of correlators

As already stated, a full local conformal field theory is a consistent system of correlators – to
be precise, of correlators for the class of world sheets one is considering.

Remarks 5.1. 1. The dependence on the conformal structure of a world sheet is already
incorporated in the modular functor (40). Accordingly, from now on by a world sheet
we mean a topological world sheet S, which has an underlying compact oriented
topological 2-manifold ΣS with possibly non-empty boundary.

2. While in a chiral CFT the symmetries are encoded in a vertex operator algebra V, in a
full CFT we deal with the combined action of two VOAs VL and VR, which encode holo-
morphic and anti-holomorphic chiral symmetries, respectively, Accordingly the relevant
representation category is Rep(VL⊗C VR), which under suitable finiteness conditions is
equivalent to the Deligne product CL� CR. This is referred to as the combination of
left and right movers, or as holomorphic factorization. In the following we restrict
our attention to rational CFTs for which the left and right movers are governed by the
same VOA, such that CL = C and CR = Crev, where Crev equals C as a monoidal category,
but has reversed braiding. For a modular tensor category there is a canonical equivalence

Ξ: C � Crev '−−→ Z(C) (41)
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of ribbon categories between the Deligne product C� Crev and the Drinfeld center Z(C)
of C. (This relationship can be extended to heterotic theories, for which CL and Crev

R are
different [7, Cor. 3.30].) This observation will be the basis for the use of string net and
state-sum constructions.

Definition 5.2. We can then define a full CFT as a consistent system of correlators, i.e.
as an assignment

S 7−→ CorC(S) ∈ BlC(S) (42)

that specifies for every world sheet S a correlator CorC(S) as an element in the pertinent vector
space BlC(S) of conformal blocks.

Consistency of the system means that

• CorC(S) is required to be invariant under the action of the mapping class group Map(S)
of the world sheet,

• and that the assignment is compatible with the sewing of world sheets.

(In the presence of defects, Map(S) is typically a subgroup of the mapping class group Map(ΣS)
of the oriented topological surface ΣS .)

Remarks 5.3. 1. The mapping class group invariance of a correlator reflects the fact that
the corresponding correlation function is a global section of the pertinent bundle of con-
formal blocks.

2. Given the category C of chiral data, the problem of constructing a full CFT is of algebraic
nature and can be solved in a model-independent way.

Claims 5.4. 1. Let us suppose for the moment that C is a fusion category. For oriented
world sheets that are allowed to have physical boundaries, but no defects, a consistent
system of correlators (subject to the extra requirements of non-degeneracy of the sphere
and disk two-point correlators and the uniqueness of the closed state vacuum) is uniquely
determined [11, 12] by a simple special symmetric Frobenius algebra A internal
to the modular fusion category C, i.e. by a unital algebra object in C that has non-zero
quantum dimension, is simple as a bimodule over itself and is endowed with a counital
coalgebra structure such that the comultiplication is a morphism of bimodules and is right
inverse to the multiplication.

2. For unoriented world sheets, the algebra A must in addition be endowed with a so-called
Jandl structure.

3. The category mod-A of A-modules provides the conformal boundary conditions for such
a CFT, and the algebra A describes, up to Morita equivalence, the operator product
expansions for boundary fields that do not change the boundary condition. Equivalently,
such an open-closed full theory corresponds to an indecomposable semisimple C-module
categoryM of boundary conditions.

We will need the following definition:

Definition 5.5. Let (A, µ, η) be a unital associative algebra in a monoidal category C. A
κ-Frobenius structure on A is a pairing κ ∈ HomC(A ⊗ A, I) that is invariant (or associative)
i.e. satisfies

κ ◦ (µ⊗ idA) = κ ◦ (idA ⊗ µ) ,
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and that is non-degenerate in the sense that

Φκ := (id∨A ⊗ κ) ◦ (b̃A ⊗ idA) ∈ Hom(A, ∨A)

is an isomorphism. Equivalently, a Frobenius structure on an associative algebra can be defined
as the structure of a coassociative, counital coalgebra (∆, ε) such that ∆ : A → A ⊗ A is a
morphism of A-bimodules.

Claims 5.6. 1. A larger class of world sheets is obtained when one also allows for topological
defects, i.e. when one works on stratified manifolds such as (43). Defect conditions for
topological defects of arbitrary codimension comprise a pivotal bicategory Fr(C).

2. The objects of Fr(C) are simple symmetric special Frobenius algebras; they serve as
labels for the phases of the full CFT which live on the two-dimensional strata of the
world sheets. The 1- and 2-morphisms of Fr(C) are bimodules and bimodules morphisms,
which provide the defect conditions for line and point defects, respectively.

3. The pivotal bicategory of defects can be equivalently realised as the bicategory C-Modtr

of indecomposable semisimple C-module categories admitting a module trace, module
functors and module natural transformations.

5.2 RCFT Correlators from RT TFT and three-manifolds

One way to construct a consistent system of correlators [17, 11] for a rational CFT is to exploit
the connection with the three-dimensional topological field theory (TFT) of Reshetikhin-Turaev
(RT) type that is associated to the modular fusion category C. In this connection, the state
spaces of the TFT functor RTC provide the spaces of conformal blocks of the CFT: this is an
instance of the holographic principle in quantum field theories and subsumes the duality
between Chern-Simons TFTs and Wess-Zumino-Witten models as a special case.

In this approach, called the TFT-construction, one considers world sheets S with field
insertions. An illustrative example of such a world sheet is

S0 := N

M ′

M

Y

X

ψM,M ′

i
ϕAr,s φX,Yj,k

α

β

(43)

This world sheet S0 has the following attributes:

• two phases, labeled by Frobenius algebras A and B, respectively, which we also indicate
by using two different colors;

• three physical boundaries, with boundary conditions given by right A-modules M and
M ′ and a right B-module N ;

• two line defects, with defect conditions given by A-B-bimodules X and Y ,

• and two point defects, with defect conditions α∈Hommod-B(N,M ⊗AX) and β ∈Hommod-B(M ′⊗A Y,N).
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Finally, S0 has three field insertions:

1. A boundary field ψM,M ′

i which separates the two physical boundaries labeled by M and
M ′. It has one chiral label i∈ I(C) given by a simple object in C together with an element
of the degeneracy space

Hommod-A(i⊗M,M ′) . (44)

2. A defect field φX,Yj,k which separates two line defects labeled by X and Y . It has chiral
labels j, k∈ I(C) given by two simple objects in C, combined with an element of the
degeneracy space

HomA-mod-B(j⊗−X ⊗+k, Y ) . (45)

(The A-B-bimodule structure on j⊗−X ⊗+k is defined with the help of the braiding of
C; for details see e.g. [17].)

3. A bulk field ϕAr,s inserted in the region with phase A. It carries two chiral labels r, s∈ I(C)
and an element of the degeneracy space HomA-mod-A(r⊗−A⊗+s, A).

Remarks 5.7. 1. As suggested by the form of their degeneracy spaces, a bulk field is a
special case of a defect field: it separates two invisible defects, i.e. defect lines labeled by
the Frobenius algebra (as a bimodule over itself).

2. As an additional datum, the insertion point p of any field carries an arc-germ, i.e. an
equivalence class of curves passing through p (two such curves are equivalent if they
coincide in an open neighbourhood containing p). The arc-germ is what remains on the
topological world sheet from the germ of local coordinates on the original conformal world
sheet.

In the TFT-construction, holomorphic factorization is implemented topologically via the
notion of the double Σ̂S of a world sheet S: Σ̂S is a compact oriented topological surface
with marked points (together with arc-germs) that is obtained as a quotient of the orientation
bundle over the surface ΣS:

Σ̂S := Or(Σ)/∼ with (p, or)∼ (p,−or) for p∈ ∂ΣS. (46)

For instance, the double of the world sheet (43) is given by a sphere with five marked points:

Σ̂S0 =

s k

r j
i

(47)

The labels of the marked points come from the chiral labels of the field insertions. Boundary
points on Σ have a unique pre-image on Σ̂. Thus, in order to define conformal blocks, we
need to attach one chiral label to each boundary insertion. A bulk point, in contrast, has two
pre-images on Σ̂, and hence requires two chiral labels.

The space of conformal blocks for a world sheet S with field insertions is given by evaluating
the TFT functor on the double of S, i.e.

BlC(S) = RTC(Σ̂S) .
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In the TFT-construction, the correlator CorC(S) is obtained by evaluating RTC on a
specific three-bordism MS : ∅−→ Σ̂S with an embedded C-colored ribbon link;

RTC(MS) : RTC(∅) = C −→ RTC(Σ̂S)
1 7→ CorC(S)

This is a holographic description of correlators.
As an illustration, the correlator of the world sheet (43) is obtained from the three-bordism

∅ B3→ S2

MS0 =

s
k

r
j

i

N
M

′

M

Y

X
ψi

ϕr,s

φj,k

α

β

(48)

Remarks 5.8. 1. The world sheet S is a deformation retract of MS; it can be seen sitting
inside the solid ball.

2. Each of its two-dimensional regions is replaced by a network of ribbons located along
a sufficiently fine dual triangulation of the region, having trivalent vertices labeled by
structural morphisms of the corresponding Frobenius algebra.

3. Each field insertion is replaced by its associated (bi)module morphism, with the protrud-
ing legs colored with the respective chiral labels and attached to the marked points on
∂MS = Σ̂S. For example, zooming in on the defect field insertion φj,k ≡ φX,Yj,k reveals the
ribbon network

φj,k

Y

X

k

j

(49)

(This explains the particular braidings appearing in (45).)

Theorem 5.9. 1. Making use of the defining properties of the bicategory Fr(C), one shows
that the correlator CorC(S) = RTC(MS)(1)∈RTC(Σ̂S) does not depend on the choice
of triangulations and is invariant under the mapping class group Map(S) of the world
sheet, which is the subgroup of Map(ΣS) containing those elements which fix the physical
boundaries, defects and field insertions up to isotopies.

2. One also shows that factorization holds.
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Remarks 5.10. 1. One insight resulting from the TFT-construction is that in the absence
of field insertions the correlators for a rational CFT can be expressed in terms of surface
defects that separate Reshetikhin-Turaev type TFTs [34, 20]. When field insertions are
present, there are in addition the ribbons carrying the chiral labels attached to the surface
defect at the insertion points.

2. Also, instead of working with the doubles of world sheets, the holomorphic factorization
can alternatively be implemented by using the Reshetikhin-Turaev TFT for the Drinfeld
center Z(C). Here, one uses

RTZ(C)(Σ) = RTC�Crev(Σ) = RTC(Σ)⊗ RTC(Σ) = RT(Σ̂) .

where we first used that C is modular, Z(C) ∼= C � Crev, then a property of the Deligne
product and then the definition of the double. This observation will allow to use
state-sum constructions for the description of correlators. This is important,
since a three-dimensional topological field theory that is defined on all three-manifolds
can be constructed only for semisimple modular tensor categories.

5.3 Sewing boundaries and field contents

When studying modular functors in the framework of functorial field theory, it is convenient
to describe a field not via an insertion point carrying an arc-germ, but instead via a sewing
boundary. Instead of world sheets S with field insertions, we then deal with world sheets S
with sewing boundaries. For instance, the world sheet S0 in (43) gets replaced by the world
sheet

S0 = N

M ′

M

Y

X

α

β

(50)

S0 has

• one sewing interval which separates two physical boundaries

• and two sewing circles obtained from cutting out disks around the defect and bulk field
insertions.

World sheets can be sewn along sewing boundaries with matching boundary data. For every
sewing boundary there is a field content, i.e. a space of fields associated to it. For instance, the
field for the sewing boundaries of the world sheet (50) are:

1. The boundary field content BM,M ′ :=
⊕
i∈I(C)

Hommod-A(i⊗M,M ′)⊗C ∈ C .

2. The defect field content DX,Y :=
⊕

i,j∈I(C)

HomA-mod-B(i⊗−X ⊗+j, Y )⊗CΞ(i� j) ∈ Z(C) .
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3. The bulk field content DA,A :=
⊕

i,j∈I(C)

HomA-mod-A(i⊗−A⊗+j, A)⊗C Ξ(i� j) ∈ Z(C).

Here Ξ is the ribbon equivalence (41) between C� Crev and the Drinfeld center Z(C).
A boundary field content is an object in C= Rep(V) because we require the boundary
conditions to preserve the chiral VOA V. In contrast, while the spaces of defect and
bulk fields are naturally modules over V⊗C V, hence their field contents are objects in
Z(C)'C� Crev.

Remarks 5.11. 1. The field contents can also be expressed as internal Homs. For a left
module category M over a monoidal category A and a pair of objects m,n∈M, the
internal Hom HomM(m,n) (if it exists, which is the case especially whenM and A are
finitely semisimple) is an object in A that is defined up to unique isomorphisms by the
adjunction

HomM(c .m, n)∼= HomA(c,HomM(m,n)) .

2. Since mod-A is a finitely semisimple left module category over the fusion category C, we
have

BM,M ′ =
⊕
i∈I(C)

Hommod-A(i⊗M,M ′)⊗C i =

∫ c∈C
Hommod-A(c .M,M ′)⊗C c

∼=
∫ c∈C

HomC(c,Hommod-A(M,M ′))⊗C c = Hommod-A(M,M ′) ∈ C .

(51)

Here the integral sign denotes a categorical coend. We first rewrote the direct sum as a
coend, then the definition of an internal Hom and finally the Yoneda lemma.

3. IfM =M ′ and the quantum dimension dim(M) (ofM as an object in C) is non-zero, then
BM,M = Hommod-A(M,M) is a simple special symmetric Frobenius algebra that is
Morita equivalent to A.

4. By a similar, albeit less straightforward, procedure for the finite left Z(C)-module category
FunA,B of C-module functors from mod-A to mod-B it follows [19] that defect field
contents are internal natural transformations

DX,Y = Nat(−⊗AX,−⊗A Y ) := HomFunA,B(−⊗AX,−⊗A Y ) ∈ Z(C) . (52)

5. The bulk field content DA,A = Nat(idmod-A, idmod-A) =:Z(A)∈Z(C), called the full center
of the simple special symmetric Frobenius algebra A∈C, is a commutative symmetric
Frobenius algebra in the Drinfeld center Z(C); Z(A) is Lagrangian in the sense of [7,
Def. 4.6].

5.4 Modular functor, field maps and correlators

We now formulate the full local rational CFT with given modular fusion category C of chiral
data with the help of an open-closed modular functor BlC, as defined in (40). BlC provides the
conformal blocks of the CFT.

Remarks 5.12. 1. For obtaining correlators, BlC must in addition fulfill the following re-
quirements:
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• The categories assigned to the interval I = [0, 1]⊂R and to the circle S1 = {|z|= 1}⊂C
are equipped with equivalences

ΦI : BlC(I)
'−−→ C and ΦS1 : BlC(S

1)
'−−→ Z(C) (53)

of C-linear categories.
• The closed sector of the modular functor BlC is canonically equivalent to the Reshetikhin-
Turaev modular functor RTZ(C).

The equivalences (53) extend uniquely to equivalences Φ` : BlC(`)
'−→C×p×Z(C)×q for all

one-manifolds `= (I)tp t (S1)tq.

2. A second ingredient needed for the construction of correlators is a collection of field
maps which encode the field contents of all types of fields, including multi-pronged gen-
eralizations of defect fields, which are not considered traditionally.
To describe these we need the notion of an Fr(C)-boundary datum b on a compact
oriented one-manifold `; this is a finite set O⊂ int(`) of points in the interior of `, together
with a labeling of the connected components of the complement ` \O by the objects in
Fr(C), i.e. by simple special symmetric Frobenius algebras, and a labeling of the elements
of O by the 1-morphisms in Fr(C), i.e. by bimodules. Denote by Fr(C)` the set of
Fr(C)-boundary data on `. Given a world sheet S, a structure of an open-closed two-
bordism ΣS : `in−→ `out on its underlying surface uniquely determines Fr(C)-boundary
data bin ∈Fr(C)`in and bout ∈Fr(C)`out .
Field maps are a collection

{F` : Fr(C)`−→ obj(BlC(`))}`
of maps defined for every compact oriented one-manifold ` with any numbers p of intervals
and q of circles as connected components, such that for any world sheet S with its under-
lying surface viewed as an open-closed bordism, the objects Φ`ε ◦F`ε(bε)∈C×pε×Z(C)×qε ,
for ε∈{in, out}, are given by the correct field contents.

3. Given the open-closed modular functor BlC and the field maps {F`}, we obtain the vector
spaces of conformal blocks as follows. The space BlC(S) of conformal blocks for a world
sheet S with underlying bordism ΣS : `in−→ `out is the vector space

BlC(S) := BlC(ΣS ;F`in(bin),F`out(bout)) , (54)

where BlC(ΣS ,−;∼) : BlC(`in)op×BlC(`out)−→VectC is the profunctor obtained by evalu-
ating the modular functor on ΣS .

• By functoriality, the vector space BlC(S) carries an action of the mapping class
group Map(ΣS) = EndBordor

2,o/c
(ΣS).

• Also by functoriality, for any sewing of two world sheets S and S ′ along a sewing
boundary ` we get a sewing map

s : BlC(S)⊗C BlC(S ′)−→BlC(S ∪` S ′) (55)

of conformal blocks. These maps endow BlC(S ∪` S ′) with the structure of a coend,

BlC(S∪`S ′) =

∫ b∈BlC(`)

BlC(ΣS ;F`in(bin), b)⊗C BlC(ΣS ; b,F`′out
(b′out)) . (56)

Definition 5.13. A consistent system of correlators is then an assignment S 7→CorC(S)∈BlC(S),
as in (42), such that CorC(S) is invariant under the action of Map(S)⊂Map(ΣS) and such that
the sewing maps (55) take correlators to correlators.
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5.5 Correlators from string nets

Another approach to the construction of correlators, called the string-net construction
[21], uses a realization of the open-closed modular functor BlC via string nets. String-net models
arose in the study of topologically ordered phases of matter [37] and were later formulated as
two-dimensional skein theories [36].

Remarks 5.14. 1. The basic input datum of a string-net model is a spherical fusion cat-
egory. In our context this is the modular fusion category C of chiral data.

2. For any compact oriented surface Σ and C-boundary datum B◦ on ∂Σ (defined in the
same way as an Fr(C)-boundary datum, by regarding C as a one-object bicategory), the
string-net model for C defines a finite-dimensional vector space SN◦C(Σ,B

◦), called the
bare string-net space associated to (Σ,B◦), as a quotient of the free vector space
generated by C-colored string diagrams drawn on the surface Σ with boundary
datum B◦, by a subspace that encodes the local graphical calculus of C. Thus a
string net, i.e. an element of SN◦C(Σ,B

◦), is a linear combination of equivalence classes of
string diagrams on Σ, where two string diagrams are equivalent if they can be transformed
into each other by applying the graphical calculus of C within disk-shaped regions.

3. For every compact oriented one-manifold ` one can then define a linear category Cyl◦(C, `),
called the bare cylinder category over `, whose objects are C-boundary data on ` and
whose morphisms are string nets on the cylinder `× I. Composition in Cyl◦(C, `) is
given by sewing the cylinders and concatenating the string diagrams.

Definition 5.15. 1. The cylinder category Cyl(C, `) over ` is the idempotent completion
of Cyl◦(C, `), whose objects are idempotents in Cyl◦(C, `). We have canonical equivalences
Cyl(C, `) '−→C and Cyl(C, S1)

'−→Z(C) of linear categories.

2. Accordingly one defines the string-net space SNC(Σ,B), which takes an object B in
Cyl(C, `) as its boundary datum, as the subspace of the bare string-net space that consists
of elements which are invariant under sewing with the string net on a cylinder that is
given by B.

Remarks 5.16. 1. The so defined string-net spaces carry a mapping class group action
obtained by pushforward.

2. When Σ is equipped with the structure of an open-closed bordism, one obtains a pro-
functor

SNC(Σ) : Cyl(C, `in)op × Cyl(C, `out) −→ Vect . (57)

The assignments ` 7→Cyl(C, `) and Σ 7→ SNC(Σ) define an open-closed modular functor
SNC.

3. Moreover, the closed sector of SNC extends to a once-extended three-dimensional TFT
that is equivalent to the Turaev-Viro TFT TVC which, in turn, is equivalent to RTZ(C).
Thus one can use the string-net modular functor SNC as the model for conformal blocks.

In the string-net approach, the construction of correlators is fairly straightforward.
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The correlator CorC(S) is a C-colored string net that is represented by a string diagram
ΓC(S) that is obtained

• by replacing each two-dimensional stratum of S with a network of strings labeled
by the relevant Frobenius algebra according to a fine triangulation,

• and, when S has physical boundaries, by adding two-dimensional strata labeled by
the trivial Frobenius algebra 1 which turn a physical boundary (a right A-module)
into a defect line (a 1-A-bimodule).

As an illustration, a string diagram for the world sheet

S1 =

M1

M2

X1

X6

X2

X3

X4

X5

ϕ1

ϕ2

ϕ3

(58)

is given by

ΓC(S1) =

M1

X1

X6

X2

X3

X4

X5

ϕ̊1

ϕ̊2

ϕ̊3

M2

(59)

Theorem 5.17. Due to the defining properties of the underlying algebraic structures, the so
obtained string net is well defined and is invariant under the action of Map(S). Also, it is in the
string-net space SNC(ΣS ,F∂ΣS (bS)), which is taken to be the space BlC(S) of conformal blocks,
where the boundary datum F∂ΣS (bS)∈Cyl(C, ∂ΣS)'C×p×Z(C)×q produces the correct field
contents.

Remarks 5.18. 1. The string-net description of correlators for world sheets of particular
interest, such as those that correspond to operator products, provides explicit expres-
sions which match results proposed in the literature. For instance, operator products of
defect fields correspond to the vertical and horizontal compositions of internal natural
transformations, and in the special case of a bulk field they reduce to the commutative
product of the full center.

2. The torus partition function CorC(TA)∈ SNC(T), where the world sheet TA is a torus T
without defect lines whose phase is given by a Frobenius algebra A∈Fr(C), decomposes
as CorC(TA) =

∑
i,j∈I(C)

Zi,j(A) ei,j, with the integers

Zi,j(A) = dimC(HomA-mod-A(i⊗−A⊗+j, A)) (60)
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being dimensions of degeneracy spaces for bulk fields (compare (45)). Here {ei,j}i,j∈I(C) is
a distinguished basis of SNC(T) that corresponds to holomorphic/antiholomorphic pairs of
characters (27) of VOA-modules and transforms under the modular group Map(T) =SL(2,Z)
via conjugation by the modular S- and T -matrices of C. The mapping class group invari-
ance of the string net CorC(TA) immediately implies the well known modular invariance
relations [Z(A), S] = 0 = [Z(A), T ].

Remarks 5.19. 1. For the implementation of categorical symmetries [16, 14] via topo-
logical defects, a desirable property of the system of correlators is that one can modify
the defect network in accordance with the local graphical calculus for the category C on
any world sheet without altering its correlator.

2. The string-net correlators indeed enjoy this property; this can be shown with the help of
generalised string-net models which take, instead of a spherical fusion category, a pivotal
bicategory as input datum [22].

Taking this input bicategory to be Fr(C), one defines for any compact oriented surface Σ
and Fr(C)-boundary datum b a vector space SN◦Fr(C)(Σ, b) of Fr(C)-colored string nets
on Σ.

3. The string-net space SN◦Fr(C)(Σ, b) can be interpreted as the space of equivalence classes
of world sheets with underlying surface Σ and boundary datum b, with the equivalence
relation given by the local graphical calculus of the pivotal bicategory Fr(C). It is thus
appropriate to call an element of the space SN◦Fr(C)(Σ, b) a quantum world sheet.

4. The assignment of the correlators provides a linear map

CorC(Σ, b) : CGFr(C)(Σ, b)−→ SNC(Σ,F∂Σ(b)) ,

where CGFr(C)(Σ, b) is the vector space generated by the set of Fr(C)-colored string
diagrams on Σ. This map factors through the canonical quotient map

q(Σ, b) : CGFr(C)(Σ, b)� SN◦Fr(C)(Σ, b)

i.e. there is a unique linear map

U(Σ, b) : SN◦Fr(C)(Σ, b) −→ SNC(Σ,F∂Σ(b)) (61)

such that CorC(Σ, b) = U(Σ, b) ◦ q(Σ, b). As a consequence, the correlator of a world sheet
only depends on the quantum world sheet it represents, and is therefore unchanged under
modifications via the local graphical calculus. The map U(Σ, b) is called a universal
correlator. It intertwines with the action of the mapping class group.

6 Conclusion
We have presented various algebraic structures that play a role in conformal field theory, con-
sidering both chiral and full local CFTs. It is worth pointing out that all of these are perfectly
customary mathematical structures and that they can be analysed with standard mathematical
tools.

Needless to say, our exposition is highly biased by the authors’ taste and restricted knowl-
edge. Many interesting aspects and important developments as well as a substantial portion
of pertinent literature had to be omitted owing to limitations of length and of expertise of the
authors.
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