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GGI LECTURES ON

SURJECTIVE SUBMERSIONS, BUNDLE GERBES,

GROUP COHOMOLOGY AND APPLICATIONS

PETER BOUWKNEGT

Abstract. These are notes of a series of lectures presented at the GGI School on “Emergent

Geometries from Strings and Quantum Fields”, 12-17 June 2023. In these lectures I will give an

introduction to various concepts from homological algebra, algebraic topology and differential

geometry, with applications to T-duality. [Based on work with my students Gianni Gagliardo

and Jaklyn Crilly.]

1. Surjective submersions

1.1. Introduction. Traditionally, we define a theory as given by an action S[Φ], depending on a

set of fields Φ on a manifold M , given by a Lagrangian density L[Φ] as follows

S[Φ] =

∫
M

L[Φ]

However, this is not quite precise, as usually (when the manifold M has nontrivial topology) the

fields are typically sections of bundles or connections on bundles which are only defined on M

locally.

So, instead, we should find a cover U = {Ui}i∈I of M , such that on each Ui we have well-defined

fields Φ and such that Li(Φ) = Lj(Φ) on overlaps Ui ∩ Uj by symmetries of the theory. Then we

choose a partition of unity {ρi}i∈I subordinate to the cover U = {Ui}i∈I . I.e. a set of functions

ρi : M → R such that Supp ρi ⊂ Ui and
∑
ρi = 1, and define

S[Φ] =
∑
i

∫
M

ρiLi[Φ]

[Alternatively one can work with simplicial decompositions of M .]

More generally, we could allow for

Li[Φ] = Lj [Φ] + dΛij [Φ]

on overlaps Ui ∩Uj , and include boundary terms in the action functional (cf. the definition of the

holonomy of a gauge field or bundle gerbe connection).

Despite this adequate set-up it is usually not the way one proceeds in practise. For example,

in the case of the simplest topologically nontrivial manifold, the circle (or the torus) one does

not proceed by choosing an open cover, instead one uses periodic boundary conditions. How to

interpret periodic boundary conditions in the context of surjective submersions is illustrated in

the example below.
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Example.

y

��

Y = R

π

��
e2πiy M = S1 = R/Z

A function f : R→ Z (or R,C,U(1), etc) defines a function on S1 iff f(y0) = f(y1) for all (y0, y1)

such that y0 − y1 ∈ Z (i.e. π(y0) = π(y1)).

Or equivalently, consider the fibered product Y [2] = Y ×M Y = {(y0, y1) ∈ Y ×Y | π(y0) = π(y1)},
then the condition on f : Y → Z to define a function f : M → Z is that f(y0) = f(y1) for all

(y0, y1) ∈ Y [2], i.e. we require the cocycle condition (δf)(y0, y1) = f(y1)− f(y0) = 0.

1.2. Surjective submersions.

Definition 1.1. (Surjective submersion) Let π : Y → M be a smooth map between smooth

manifolds. If dπx : TxY → Tπ(x)M is surjective for all x ∈ Y , then π is called a submersion. If, in

addition, π itself is surjective then it is called a surjective submersion.

Example.

• The canonical submersion π : Rk → R`, k ≥ `, given by π(x1, . . . , xk) = (x1, . . . , x`)

• Our example π : R→ S1, or more generally π : Rn → Tn.

• A principal G-bundle π : P →M . [Similarly for a vector bundle TM →M .]

• Y = YU = qiUi for an open cover U = {Ui}i∈I of M .

Theorem 1.2. (Local submersion theorem) Let π : Y →M be a submersion such that π(y) = x.

Then there exist local coordinates around y ∈ Y and x ∈M such that π(x1, . . . , xk) = (x1, . . . , x`)

locally.

Theorem 1.3. Let π : Y → M be a proper submersion and let M be connected, then π is

surjective.

[Recall that a map π : Y → M is proper if the inverse image π−1(K) of any compact subset

K ⊆M , is a compact subset of Y .]

A homomorphism between surjective submersions π̃ : Ỹ → M and π : Y → M is a smooth map

s : Ỹ → Y such that π ◦ s = π̃, i.e. such that the following diagram is commutative

Ỹ
s //

π̃ ��

Y

π��
M

Theorem 1.4. (Properties of Surjective submersions) (cf. [5, Thm 1.22])

(i) Diffeomorphisms are surjective submersions

(ii) If π̃ : Ỹ → Y and π : Y → M are surjective submersions, then the composition π ◦ π̃ :

Ỹ →M is a surjective submersion.
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(iii) Let π : Y → N be a surjective submersion. If f : M → N is a smooth map, then

YM ≡ Y ×N M = {(y,m) ∈ Y ×M : π(y) = f(m)} (1.1)

is a smooth submanifold of Y × M , and the projection π2 : YM → M is a surjective

submersion.

YM

π2

��

π1 // Y

π

��
M

f // N

(iv) For any surjective submersion π : Y →M , there exists an open cover U = {Ui}i∈I and a

smooth map s : YU → Y , where YU =
∐
i∈I Ui, such that π ◦ s = πU .

YU
s //

πU   

Y

π~~
M

(v) If π : Y →M is a surjective submersion, then

(a) A function f : M → R is smooth ⇐⇒ The function f ◦ π : Y → R is smooth.

(b) A map f : M → N is smooth ⇐⇒ f ◦ π : Y → N is smooth.

(c) A map f : M → N is a submersion ⇐⇒ f ◦ π : Y → N is a submersion.

(d) A map f : M → N is a surjective submersion ⇐⇒ f ◦ π : Y → N is a surjective

submersion.

(e) A subset U ⊆M is closed (respectively open) ⇐⇒ π−1(U) ⊆ Y is closed (respectively

open).

(f) A subset U ⊆ M is a smooth submanifold of M ⇐⇒ π−1(U) ⊆ Y is a smooth

submanifold of Y

Remark. The properties (i)-(iii) above show that surjective submersions define a Grothendieck

topology on the category of smooth manifolds [2, 3], while properties (iv)-(v) essentially say that

this topology is equivalent to the topology given by open sets.

There is a distinction between surjective submersions and locally trivial fibrations, which is often

not fully appreciated. For completeness we give the definition of a locally trivial fibration and the

main theorem linking the two.

Definition 1.5. (Locally trivial fibration). A locally trivial fibration π : Y → M is a smooth

map such that for each x ∈M , there exists a neighbourhood U ⊂M of x satisfying

(i) There exists a diffeomorphism f : π−1(U)→ U ×F , where F = π−1(x) is the fiber over x.

(ii) The following diagram commutes

π−1(U)
f //

π
##

U × F

πU
||

U

Theorem 1.6. (Ehresmann theorem). If π : Y →M is a proper surjective submersion, then it is

a locally trivial fibration.
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1.3. Submersion cohomology. We introduce the fibered product

Y [p] = Y ×M Y ×M . . .×M Y︸ ︷︷ ︸
p

= {(y1, . . . , yp) ∈ Y p |π(y1) = . . . = π(yp)}

and cochains Cp(Y,M ;F) = {f : Y [p+1] → F}, with values in an abelian group F (typically, we

take F to be Z,R,C or U(1)), with the group law written additively). Then we have differentials

δ : Cp(Y,M ;F)→ Cp+1(Y,M ;F), defined by

(δf)(y0, . . . , yp+1) =

p+1∏
i=0

(−1)ig(y0, . . . , ŷi, . . . , yp+1)

satisfying δ2 = 0 (EXERCISE). The corresponding cohomology will be denoted by Hp(Y,M ;F),

and we will refer to it as ‘submersion cohomology’.

Lemma 1.7. If there exists a global section s : M → Y , then Hp(Y,M ;F) = 0 for all p ≥ 1.

Proof. Note that for g ∈ Cp(Y,M ;F) with δg = 0 we have

0 = (δg)(y0, . . . , yp+1) =

p+1∑
i=0

(−1)ig(y0, . . . , ŷi, . . . , yp+1)

Now let x = π(y0) = . . . = π(yp+1), and define h ∈ Cp−1(Y,M ;F) by h(y1, . . . , yp) = g(s(x), y1, . . . , yp),

then

g(y1, . . . , yp+1) = −
p+1∑
i=1

(−1)ig(s(x), y1, . . . , ŷi, . . . , yp+1) = (δh)(y1, . . . , yp+1)

�

Question: How does Hp(Y,M ;F) depend on the surjective submersion π : Y → M , and how is

Hp(Y,M ;F) related to the Čech-cohomology of M?

Suppose we have a morphism of surjective submersions, s : Ỹ → Y , i.e. a commutative diagram

Ỹ
s //

π̃ ��

Y

π��
M

then we have an induced map s∗ : Hp(Y,M ;F) → Hp(Ỹ ,M ;F). This map can fail to be either

injective or surjective.

Theorem 1.8. If we have two homomorphisms of surjective submersions s, t : Ỹ → Y , then

s∗ = t∗

Proof. The proof is modelled on [1, p.73], which discusses the special case of a refinement V of an

open cover U . We define the homotopy operator hp : Cp(Y )→ Cp−1(Ỹ ) by

(hpg)(ỹ0, . . . , ỹp−1) =

p−1∑
i=0

(−1)ig(s(ỹ0), . . . , s(ỹi), t(ỹi), . . . , t(ỹp−1))

. . . // Cp−1(Y )
δ // Cp(Y )

δ //

s∗

��
t∗

��

hp

zz

Cp+1(Y ) //

hp+1zz

. . .

. . . // Cp−1(Ỹ )
δ̃

// Cp(Ỹ )
δ̃

// Cp+1(Ỹ ) // . . .
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We claim that it satisfies

δ̃hp + hp+1δ = t∗ − s∗

Then applying this to g ∈ Zp(Y ), i.e. δg = 0, we have

t∗g − s∗g = δ̃(hpg)

which would prove the assertion.

Let’s first prove the p = 1 case as an example

δ̃(h1g)(ỹ0, ỹ1) = (h1g)(ỹ1)− (h1g)(ỹ0)

= g(s(ỹ1), t(ỹ1))− g(s(ỹ0), t(ỹ0))

(h2δg)(ỹ0, ỹ1) = (δg)(s(ỹ0), t(ỹ0), t(ỹ1))− (δg)(s(ỹ0), s(ỹ1), t(ỹ1))

= (g(t(ỹ0), t(ỹ1))− g(s(ỹ0), t(ỹ1)) + g(s(ỹ0), t(ỹ0)))

− (g(s(ỹ1), t(ỹ1))− g(s(ỹ0), t(ỹ1)) + g(s(ỹ0), s(ỹ1)))

= g(t(ỹ0), t(ỹ1)) + g(s(ỹ0), t(ỹ0))− (s(ỹ1), t(ỹ1))− g(s(ỹ0), s(ỹ1))

Adding the two equations, we have

(δ̃h1g + h2δg)(ỹ0, ỹ1) = g(t(ỹ0), t(ỹ1))− g(s(ỹ0), s(ỹ1)) = (t∗g − s∗g)(ỹ0, ỹ1) .

More generally (EXERCISE)

(δ̃hpg)(ỹ0, . . . , ỹp) =

p∑
i=0

(−1)i(hpg)(ỹ0, . . . , ̂̃yi, . . . , ỹp)
=

p∑
i=0

i−1∑
j=0

(−1)i+jg(s(ỹ0), . . . , s(ỹj), t(ỹj), . . . , t̂(ỹi), . . . , t(ỹp))

+

p∑
i=0

p∑
j=i+1

(−1)i+j+1g(s(ỹ0), . . . , ŝ(ỹi), . . . , s(ỹj), t(ỹj), . . . , t(ỹp))

(hp+1δg)(ỹ0, . . . , ỹp) =

p∑
j=0

(−1)j(δg)(s(ỹ0), . . . , s(ỹj), t(ỹj), . . . , t(ỹp))

=

p∑
j=0

j∑
i=0

(−1)i+jg(s(ỹ0), . . . , ŝ(ỹi), . . . , s(ỹj), t(ỹj), . . . , t(ỹp))

+

p∑
j=0

p∑
i=j

(−1)i+j+1g)(s(ỹ0), . . . , s(ỹj), t(ỹj), . . . , t̂(ỹi), . . . , t(ỹp))

=

p∑
i=0

p∑
j=i

(−1)i+jg(s(ỹ0), . . . , ŝ(ỹi), . . . , s(ỹj), t(ỹj), . . . , t(ỹp))

+

p∑
i=0

i∑
j=0

(−1)i+j+1g(s(ỹ0), . . . , s(ỹj), t(ỹj), . . . , t̂(ỹi), . . . , t(ỹp))

Adding the two together, most of the terms cancel, except the ones for j = i, i.e.

(δ̃hpg + hp+1δg)(ỹ0, . . . , ỹp) =

p∑
i=0

g(s(ỹ0), . . . , ŝ(ỹi), t(ỹi), . . . , t(ỹp))

−
p∑
i=0

g(s(ỹ0), . . . , s(ỹi), t̂(ỹi), . . . , t(ỹp))
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The terms cancel pairwise, except for the very first and very last term, and we obtain

(δ̃hpg + hp+1δg)(ỹ0, . . . , ỹp) = g(t(ỹ0), . . . , t(ỹp))− g(s(ỹ0), . . . , s(ỹp))

= (t∗g − s∗g)(ỹ0, . . . , ỹp)

as asserted. �

In order to understand whether the map s∗ : Hp(Y,M ;F)→ Hp(Ỹ ,M ;F) is injective/surjective,

we need to study the double complex

Cp,q(Y, Ỹ ,M,F) = {f : Y [p+1] ×M Ỹ [q+1] → F}

We have differentials

δ :Cp,q → Cp+1,q

δ̃ :Cp,q → Cp,q+1

D = δ − (−1)pδ̃ :
⊕
p+q=r

Cp,q →
⊕

p+q=r+1

Cp,q

and we need to determine the conditions for zigzagging through this double complex to relate

Cp,−1 and C−1,p. [Challenging EXERCISE.]

1.4. Cup product. In case F has a multiplicative structure we can define a cup product ∪ :

Cp(Y,M ;F)× Cq(Y,M ;F)→ Cp+q(Y,M ;F) in analogy with the cup product on Čech cochains

(f ∪ g)(y0, . . . , yp+q) = f(y0, . . . , yp)g(yp, . . . , yp+q)

In fact, ∪ = ∪0, is part of a family of higher cup products

∪i : Cp(Y,M ;F)× Cq(Y,M ;F)→ Cp+q−i(Y,M ;F)

which are described combinatorially in [6]. Explicitly, ∪1 is given by

(f ∪1 g)(y0, . . . , yp+q−1) =

p−1∑
j=0

(−1)(p−j)(q+1)f(y0, . . . , yj , yj+q, . . . , yp+q−1)g(yj , . . . , yj+q)

For example, for f, g ∈ C1(Y,M ;F),

(f ∪1 g)(y0, y1) = f(y0, y1)g(y0, y1)

They satisfy the fundamental identity (i ≥ 1)

f ∪i−1 g + (−1)pq−ig ∪i−1 f = (−1)p+q−i
(
δ(f ∪i g)− δf ∪i g − (−1)pf ∪i δg

)
This identity can be interpreted in various ways. Either the rhs is the correction to ∪i−1 being

graded commutative, or the lhs is the correction to δ being a graded derivation of ∪i.
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