EW SMEFT — Exercise sheet 1

Invariance under basis change

A note on notation & conventions. In this sheet we will always use @;, C; to indicate Warsaw
basis operators and Wilson coefficients, and O;, f; to indicate HISZ basis operators and their
coefficients. We will also work with a U(3)® flavor symmetry for practicity, so all flavor indices are
implicitly contracted and we use {mw,mz,Gr} as EW inputs.

A list of Warsaw basis operators relevant to this exercise is provided in the appendix.

1. The following operators are present in the HISZ basis but not in the Warsaw one:
Op = iB,, D" D" ® Ow = iW,,D'd'e’ D" (1)

(a) Convince yourself that the i factor is required for the operators to be Hermitian.
(b) Translate them to the Warsaw basis:

Step 1. Start from the operators
Aw = (D"W,) (10T D7) Ap = (8"B,,)(io! D) 2)

and rewrite them in terms of Oy, Op and Warsaw basis operators. Use:

o' Do = ot (Do) — i(DY oo (3)

it Do = idlo! (D¥®) — i(D’®o!® (4)
i i

[D,,D,]® = [gwjyaf + gBW} o (5)

Step 2. Now write Ay, Ap as a function of Warsaw basis operators only. Use the
Equations of motion:

1 I
g = _O -0
D'W,, = 5@” D}®) +g (qQ%q + leyyl) (6)
P 1_ 2 1- 1. B
auBiy = %((I)T’L D V(I)) + g/ <6qf‘)/yq + gu’}/yu — gd’}/yd — il")’yl — 8’7V€> (7)

You will also need the relations [Bonus: prove them!]

(®1i' D, ®)> = 4Qup + Que (8)

(D, TDH®) DT = % —mj(®T0)? + A\Qu + (Qerr + Qua + Qau +hec)  (9)

(the term (®T®)? appears at d = 4 and remains explicitly in the solutions)



Step 3. Put everything together equating the two expressions for Ay, Ap that you got
at steps 1 and 2. Solve for Oy and Op.

(¢) Determine the Wilson coefficients of the Warsaw basis operators as a function of those
in the HISZ basis (i.e. Ci(fw, fB)).

2. Verify the invariance under basis change for the process ete™ — WTIW ™. For this exercise
and the next we will only look at Op, as the case of Oy is very similar.

For this first example it is sufficient to look at the Feynman rules stemming from the operators
in the two bases to verify that the basis change derived above leads exactly to the same
scattering amplitude.

a) Consider first the Feynman rules in the Warsaw basis. The relevant ones are:
Y
(only operators relevant for the basis conversion are retained, all momenta incoming)

VWiEW,de[n (pw —pw—) + 0" (py —pw+)” — 0" (py — pw—)*] [1 - (

Cuwn
to

C7(I'ID C71]:”/1/3
5 +
4t ty
e [n#0ply — P pk]
ZWIw- py _ P kP _ v_ . up B u |q Cup O
WIW igeo [ (pw+ — pw-)P + 0" (pz — pw+)” — P (pz — pw-)¥] + = +teCuwp

—ie n"Pp% — n"?p'y] Cuw i

eeyy ieyH {1 — <CHD + CHWB)}

4t2 to
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Rewrite them replacing the C; with the functions of fp determined at point (c¢) above.
(b) Now consider the rules for the operator Op:
g°co - v
= fe"pl = n*ph)

2

Yo WJ— W,

S =+
fe(n**py —n"Pph)

Z,Wiw, it

Verify that they coincide with those obtained at the previous point, starting from War-
saw basis operators. This directly proves that the two bases give identical predictions
at amplitude level.

(¢) Convince yourself that the equivalence holds for the v and Z diagrams individually and
also independently for each chirality in initial state.

3. Verify the invariance under basis change in uu — Zh.
This case is less triviall We will actually need to compute the amplitudes.

(a) Compute first the scattering amplitude with one Op insertion. The relevant Feynman
rules are:



A

ie

ZyZyh fB " ph - (P21 + Pz2) *PZP%Q - pﬁplél]

2vcy
19 =
Wl =5 fs [0 pa - py = PIP}]

A The rules are given for all momenta incoming. Change signs appropriately when
inserting in the diagrams.

(b) Now consider the FR for the Warsaw basis and convert them to fp:

ZuZyh igj; m [1 + (CHD + CYZDM + 42;0& (P10 — P21 - Pz2n™] (CwBCco + Crpso)

Yulvh —% (P40 — oy - P20 (c20Cw B + 520CHiB)

wz, i (5= 50) oo [1- 32 (o cun = - 2 )|
+%§83(7“PR) [1 + 4i§ (C_'Hu +Cup _2;—83 - Zig%éHWB)}

ig T - _
auZ, H T&q@ [cg;pr) + CHU(WPR)]

(¢) Using the Warsaw basis FR simplified at the previous point, compute the scattering
amplitude linear in fg.

A There are 3 diagrams here: with a Z, with a v and with a contact term.

(d) Verify that the total amplitudes computed directly with Op and through the translation
from the Warsaw basis are identical. This should be true independently for each chirality
in initial state.

Unlike in the previous example, here the equivalence does not occur diagram by diagram
or vertex by vertex, but requires to sum all contributions!

List of relevant Warsaw basis operators

Quw = WLW"H" oo Qup = (®'D,®)(D"dT®)
Qup = B,,B" 30 Quo = 0(0T0) (') Qy = (0Td)?
Quws = B, W olsld
D e R
QY = (10" D) (Iy,01) @ = (@' D) (gwo’q)
P R
Q) = (i@ D ) (1) Q) = (10" D7) (g7.9)
Qe = (107 D7®) (@) Qua = (10T DV ®)(dy,d)
Qe = (191 D) (Ev,e)
Qur = (7®Y]u)(dT®) Qan = (q®@Y, d)(®T®)



EW SMEFT — Exercise sheet 1 — Solutions

Invariance under basis change
1. (a)
Of = (~i) B (D"®)(D ) = iBB,,, (D" 27)(D"?) = Op (1)

and the same for Oy . If the i were not there, there would be an overall minus sign to
the right hand side.

(b) Step 1.
<=
Aw = —WL,D* (@Ti D f”cp) 2)
/
. g g
= —2iW,.,D'®To' D" ® + §WJVWI#"@T P+ 5WJ,,B””<I>T olo (3)
= 20w + %QHW + %QHWB : (4)
g
Ap = —B, D" (z’qﬂ D ”<I>> (5)
/
— —2iB,, D' D + %BWBW@T@ + ngyB“”@T o o (6)
_ g g
= —20p + 5QHB + §QHWB- (7)
Step 2.
Aw =g (2010 (D,0tDra) + 912 L L (o) 4 oW
w=g|(2 < m )+T+§(QHZ+QHq) ) (8)

=9 BQHD — 2m} (BB + 22Qu +2(Qer + Quir + Qur +he) + 5 QU] + Q) }
(9)

! +2QHD>- (10)

1 2 1
Ap=¢ (6Q%)q +3Q@nu — 5Qna — ~Q%) — Que + Qic

2

2



2.

Step 3.

1 ! 3 2
Ow = 3 [gQHW + %QHWB - ?gQHD + 2gm? (‘I)TCI’> —29\Qpu

—9(Qer + Qur + Qar +h.c.) —g <;QS; + ;@2) ] ; (11)

1 / /
Op = - [gQHB + %QHWB - %QHD —29'Qup

212
1 2 1 1
—d <6Q§)q + §QHu - gQHd - 5@23 - QHe> ] . (12)
(c) Conversion of the Wilson coefficients:
O = RQ
fO=CQ=CR 'O —~f=CR™', C=/fR (13)

where R is the basis rotation matrix between operators. Since we do not have the
complete HISZ basis, we can only convert C into f and not vice versa.

In order to translate from Warsaw to Oy one has to map simultaneously

/
3
Caw — %fw Cawp — ngw Cho — —ngW Cn = —gAfw  (14)
3 9 3 9
C}I; — = fw Cﬁﬂ) — o fw
Cun — —gfw Can — —gfw Cen — —gfw

(and add the quartic contribution to the potential).
In order to translate from Warsaw to Op one has to map simultaneously
g g g
Cup — ZfB Cuwp — ZfB Cuo — _ZfB Cup = —4'fB (15)
/ / / /

/
Cg; — —%fB OHu — —%fB CHd — %fB Cgl) N ngB CHe - %fB

(a) The shifts appearing in the FR map to

C7'HD CHWB

0 16
4t3 to - (16)
Cruwp — %fB (17)
_ C _
J(L}l) + %(3 — 283) + $90Crwn — 0 (18)
_ C _
CHe‘i_%(z—sg)—"SQQCHWB—)O (19)

so, of all contributions, only the corrections to WW+~ and WW Z survive and they
become



_ . v v g =
Y WIEW, e [n#Ppl — nPpl] EfB

Z,WiW, —ienpy —n"Ppl] %fB
(b) the rules for the operator Op are indeed identical to those derived at the previous point.

(¢) The equivalence holds for the v and Z diagrams individually because it happens sepa-
rately for the WW~ and WW Z vertices. It also holds independently for each chirality
in initial state, because the fermionic current is unaffected by the operators in any case.

(a) There are two diagrams, one with a Z and one with a 7 in s channel. Let’s compute
them separately. We will use ¢ = pz + k for the s channel momentum, pyz for the
momentum of the outgoing Z and k for the momentum of the outgoing Higgs. We also
shorten

Thuz.su = @ (gLPL + ghPr)v gf =5 — 5% gh= 5% (20)
2
Su'ypv (21)

p
U,y

0 ig —i q’q"\ e (g —pz)? 1 .
AZB:_*J5u25M72 ("“p > — B [ M= = qVP%JFQQ”QV ,(rz)

co PV g2 —m7, m% ) wveg 2
_J? I 2 1 Pa¥ 1 2
1ge
= I s S =Pyt 5d + q 4 QPZ) + I p, - 59 2 } e, (pz)
’UCG q —mZ L ’I’TLZ mZ mZ
_ T [ m2 rq’ (1 1 1 1
ige wZSM | My o vop 44 2 2 2 2 *
= —_—— —_— —_ _— —m — —m —_ . . _— E
e e ol e qu+mgz 5zt 54+ gmy =4 pz+a-pz =54 || € (pz)
_ de r JSUZ,SM i m% pv kPa? | &* 29
=—2lta o | R £,(pz) (22)
9 4" —mz L
and
A9B — _jeJ? ﬂﬂf =" q -k + " k") X (p2)
¥ uuy,SM q2 2 B q- q Pz
_JP 2 2 _ 2
€ ,SM Vq +m m v *
— iy e CETLZ I ote] ) (28)

(b) The converted FR are

L1

. 2 / .
Zg v g r 47’59 L
Z,Z,h =" |1 - = — pr . — . v
H 263 n |: 2fB:| + » [pz1ng Pzi1-Pz2N ]400

2 g
YuZvh == [pipY =Py p2n™] S fB

_ g (1 282 . g 2
wuz, 725 <2 - 3‘9> (v Pr) +z$§s§(yﬂPR)

1gS
TLUZMH — g 9 B |: (IYHPL) —+ (’}/MPR):|



()

g —1i Q" g\ e - 9
AWarsaW%fB —_Jgr uwp —(m2 — . m gVt o
Z oz g \ 1 TCOfB[ (m% —pz - Q1" — d"py] €, (p2)
: JP oV PV
1ge = Z,SM q q q-q
= - B |z k— 'y — = (pz - k) + —=q-pz| e, (p2)
vegt g2 —my, my, my

. 3 Jp
tge Z,SM
= 5[ 0"pz -k — "V + "¢ €5 (pz)

veg gt —my,
S (4 2.2 2
1ge wuZ,SM pyq My —my p V| _*
— ~~35JB 5 2 [77 + kPq :| gu(pZ)
veg" gt —my 2
= 9 [P (g1 P + gk Pr)o] | o | ehpz) + AGP (24)
= ch B|\WY'\9gL'L T 9grt'R 277 v\PZ A

Note that in the last line, in subtracting ASZ, we remained with a factor (¢% — m%) in

the numerator that canceled out with the propagator dependence in the denominator.
For the photon we have something similar:

_inﬂp _Zg _

AVWarsaWﬁfB — _ie‘]gu'y,SMT% B [nlwq ‘Pz — ql’p%] E;(pZ)

_JP 2 2 2
= €9 wuy,SM | up4 +mz —my VP | o 25
L [ 5 4Pz | €.(pz) (25)
€g - q”q°
= Z%fBJSH%SM |:7)yp - q2 :| + AE?B (26)

In the last row, the term in ¢”¢” can be removed because Jfu,q, = 0.
Now the contact terms: for these we need to split LH and RH up quarks:

1eg

AWt — 2 fp(any” PLo)el(pz) 27)
’ 121}00
Wi f eg z .
Avizitn ° = =302 (@ Pro)e, (p2) (28)
0

(d) Let’s put everything together, for LH and RH up quarks separately:

A\girsawﬁfg + A}y’\jzrsaw—)f]g + AZ\;aZri?gﬁfB (29)
. 2
) ) ieg - _ 1 2 1
= Az +AJL+ @fBE;(pZ)(U’YVPLU) —gfg t53 1 (30)
o @
= Az3 + A% (31)
and
A\éVa],%rsaW%fB + ija%rsawﬁfg + AZ\;aZr?YVRﬁ\fB (32)
0 ) eq - _ 1 cg 2 1
=Azrt AR @fB%(PZ)(UVVPRU) —911%5 t5373 (33)
o @
= Az AL (34)



as

2 2
g, % 1 1 1o, g 1
sty T i3ty =0 (35)

2
9r G 1 _1o ¢ 1

20 _ - _ Z 20 _ -0 36
5 T3 37 3%T3 3 (36)

It’s interesting to note that really all diagrams are needed in order for the contributions
to cancel.

The messages of these exercises are:

e Naive operator classifications into “bosonic operators” vs “fermionic operators” or “op-
erators affecting TGC” etc are basis dependent statements.

e When computing a SMEFT observable, in order to have a physical, basis independent
result, we need to retain contributions from all operators in the basis. In the example
above, if we had neglected one or more Warsaw basis operators, we wouldn’t have been
able to reconstruct properly the effect of Op.



EW SMEFT — Exercise sheet 2

The W mass in SMEFT

1. Compute the correction to m%[, in the Warsaw basis, at tree level and up to A=* corrections.

(a) Remember that, at LO, the W pole mass in the SMEFT Lagrangian is just mi, =
9211% /4, and leave the result written in terms of dg/g etc.

(b) Using the shift formulas in the appendix, specialize the result to the input parameters
set {a, Gp,mz} and write the correction to myy in terms of the Wilson coefficients.

(c¢) Do the same for the input parameters set {my, Grp, mz}. Verify that the correction to
myy vanishes in this case, as expected for any input quantities,

2. Now we will relate the myy correction to the p parameter.

a) Compute the relative correction to cos? f (i.e. dc2/c3) in the Warsaw basis, again at LO
0/Co
and up to A~% corrections.

Remember that the angle is defined by

/ 1 / _
f = arctan g + fLQC’HWB (1)

g 29°+(9)
As above, leave the result in the inputs-independent form, as a function of dg/g etc.
(b) Write dc3/c2 in terms of Wilson coefficients, specializing to the {o, G, mz} and {mw, Gp,mz}
input schemes.

(c) By comparing with the result of the previous exercise, verify that the following relation
holds in both schemes

om? 52 s
L= —Amy + —2 + %EHWB (2)
miy, c dcg

Can you give an intuitive interpretation of this formula?

(d) The p parameter can be defined @ la Veltman, from the ratio of Z (neutral) and W

(charged) currents, i.e.:

97 miy

a2 m2 (3)
g° my

p

Where myz, my are the pole masses and gz is defined such that, in unitary gauge, the
covariant derivative for a chiral fermionic field ¢ contains the term

Dy = —igzZ, (T3 — Qsg) ¥ + ... (4)

being T3 = £1/2 and @ the isospin and electric charge of v respectively.



Compute p to order A~2 in the Warsaw basis.

Use the Lagrangian expression before defining the input parameters and write the result
in terms of Wilson coefficients.
Hint: remember from lecture 1 that a generic covariant derivative contains the term

D, = —ié%ZM (T3 — Qs3) [1 + t;C‘HWB] b+ ... (5)

having defined the angle # as in (1).

(e) Now repeat the calculation with the Lagrangian defined after defining inputs: write p
as a function of hat quantities and dg/g etc.

(f) Write p in terms of Wilson coefficients, specializing to the {a, G, mz} and {mw,Gp,mz}
input schemes. Verify that, in both cases, you get the same result and that this also
coincides with the result found at point (a).

(g) Deduce the relation between dm3, /m%,, dcs/ci and (p — 1).

The W decay width in SMEFT

3. In this exercise we will compute the SMEFT correction to the total decay width of the W
boson. We will ignore all fermion masses and mixings.

(a) Compute the squared amplitude for a decay W~ — e~ 1., averaged over the polariza-
tions of the W boson, considering only one lepton flavor and expanding to linear order
in the SMEFT. The relevant Feynman rule is

_ ig 09 | ~(3)
W.U ev —E("}/'U’PL) |:1+g+CHl:| (6)

(b) Repeat for W~ — ud. The Feynman rule in this case is

- ig 09 . ~(3
Wids = E("P) [1 o+ C}I}J (7)
(c) Compute the decay widths I'(W ™ — e" 1) and I'(W™ — ud).

Remember that
Al?

= 16mmy

(d) Compute the total decay width I'yy and express it as FgVM 14 0Ty /Tw].
Then specialize the result to the {o, Gp,mz} and {mw,Gp,mz} input schemes.

Jacobian formulation of input shifts

A For this exercise you will need Mathematica to invert matrices.

One can ask whether there is a simple way to translate between different EW input schemes. In
fact, when working to O(A~2), the translation can be done quite easily using a Jacobian description
of the whole inputs procedure:



Let’s define the vector G = (g9,9',vr) of the 3 Lagrangian parameters in the EW sector of the
SM. In order to fix their numerical values, we need to relate them to 3 observables, that we don’t
specify yet. We will call O the vector formed by them.

Each of these observables can be computed in the SMEFT using the canonically normalized La-
grangian. The prediction for observable O,, has the form

On(G, C;) = O3M(G) + A0, (G, C)) (9)

where the first term is the SM prediction and the second is the O(A~2) correction.

What we do when fixing the input scheme is solving the system 6(@, C;) = O for G, where O are
the measured values for O. The solution can be written

G=G-J'AO (10)
where G is the SM solution and J is a Jacobian matrix defined by

DOSM
9C; (11)

Jnk =

4. Choose the input observables 6mw = {m%v, mZZ, Gr} and re-derive the shifts presented in
class (and given in the appendix) using the formula (10).

Remember the starting point:
2,2 2 1\2Y,.2
9~vr o _ (97 4+ (g))vr 2 1
my =-—-——""""2(14+Am Gr=——=(1+AG 12
Tom (L+am})  Gr=—y(1+8G) (12

=

You don’t need to open the A’s at this stage.

5. Using Eq. (10) you can see that the solution for the scheme with 0, = {a,m%,Gp} will be
given by
é = Ga - (ng)Aéa (13)

where G, is the new SM solution (which is trivial to find). More interestingly, deriving by

parts:
_903M  003M 903Y,  90M

Ja — = — it = ———Jnw (14)
oG 8(’);?%, oG 8051%
where trivially
sou (o B
aOa omy;,  Omy, F
= 1 (15)
6OmW 1

with all observable predictions computed in the SM. So the new Jacobian J, in « scheme
can be computed very easily, once the Jacobian J,,;y in my scheme is known.

Do this computation and verify that eq. (13) gives the result presented in the lecture for the
a scheme.

Hint: for the Jacobian, you will need to express « as a function of the O,y observables. To

7\2
do this, take a = %% and replace g, ¢’ with the SM solutions in my scheme.



6. Let’s use the Jacobian to define a new input scheme: 5new = {m%[,, mQZ, a}.

Start from the 6mW set, and replace G with a.

(a) Compute the SM solutions G in the new scheme.

3SM

(b) Compute the jacobian as Jyew = 00 e

= mWw -
005M,

(c) Put everything together in (10) to find the result for the parameters and their shfits.

A Input shift expressions

In the {o,mz, GF} scheme:

dg

og

g/

dur _

vr

In the {my,mz, Gr} scheme:

And the A’s are

g_

1 [—cg (AmQZ + AGF) + sngz]
2co9
1 [s5 (Am% + AGF) — cjAq]
2co9
AGp

2

dg _  AGp

g 2

5 1 Am?,
A0
dur _ AGr
vp 2

299’ HD
Am?Z = C —
my 2+ (g,)2 HWB + 9
299
B RN TIER



EW SMEFT — Exercise sheet 2 — Solutions

The W mass in SMEFT

1. (a)
2 222 ) )
iy = 9 g I [1+29+2”T]
vy 4 g uT
(b)
5252 2 2
m%, =7 ZT [1 — O AmZ + 20 (Ao - AGF)}
20 20
G202 1 - c2 - -
_9 4T [1 — 7 (SQ@CHWB + EGCHD + S%(QCSZ) — Cl/l))]
(c)
o @R[, AGr  AGr] _ 3%
Wy 2 2 4
2. (a) From the definition:
cos?f = g - %C’HWB
gP+)? A4
) /
g 2 (09 09 ﬂ S46 A
= e (- -2
P+ (92 [ 0< 7 oy CHWB
(b) {a, Gr,mz} scheme:
cos? 0 = L 1+i(Aa—AG —Amz)—&ﬁé
PH@?2 L d 20 g e
-2 2
g Sp < 1_ ~3) | Ar 2 _
=55 |1+ = (—5¢up —2Cy +C; — —Crws
g+ () [ cop \ 2 HE I o
{mw,Gp,mz} scheme:
cos? ) = g [1 + Am% SMCHWB]
g+ () dcj
A ~
g Cup ~
9>+ (9)? [ 2



(c) The formula is easy to verify using the expressions in terms of A’s.
As an intuitive interpretation, it can be derived differentiating the SM relation

miy, = camy. (11)

and noting that Am? enters with a minus sign because it’s the contribution to the input
quantity, and not a predicted shift. The term in Cywp is practically subtracting the
genuine correction to § from dc3/ci. This makes sense because the ¢y we have in the
SM relation actually stands for the ratio g2/(g% + (¢')?), and is unrelated to the mass
diagonalization in the neutral gauge sector. Since the Cyy p dependence comes from
the latter, it has to cancel in this equation.

(d)
1g° ( ty - >2 g*v2, 4
=214+ =C 12
P=ya 2 B )T (2 (0)2)eR(1+ Am) (12)
/
—1-AmZ+2—_¢ 13
my + Z+ () HWB (13)
Cup
L 14
(e)
9 | A2 ~\2 / . -9 2 /9
g*%g)[ 2(9") ( dg 59) 269" g°(1 + dmyy /myy)
- 1 _9%9 %9 _299 &
T ey T ) T Er et T a2y
259 2 59/ 5UT 2 -t
g g g
_ o) 2
=1-2 <69+50T) —Am2z+SQQCHWB+ 7n2W (16)
g v My

(f) {a,Gr,mz} scheme:

2 2

2
_ S
p=1+ "0 [Am} + AGr — Aa] + s0Crrwp — ~>Amy + - (Aa— AGF)  (17)
Cop C20 €29
_ C
=1—Am% + s29Crwp=1— % (18)
{mw,Gp,mz} scheme:
p= 1—Am2Z+829C_'HWB+0 (19)
:1_§g9 (20)
() 52 s
m c - -
(p—1)= sz - 729 +teCrwp = s20Cawp — Amy, (21)
W 9

This holds in any input scheme: in fact we can get it directly from (16) and (6).



The W decay width in SMEFT

3.
- NS Jr 0 | 5(3)
[AW™ = e ve)|* = 39 My 1+ 2; +2Cy, (22)
4.
1) _

AW~ = ad)|]? = ¢*m% [1 + 2?9 + 20}5’;} (23)
where this time the 3 from the average over polarizations goes away with the quark color
factor.

5.
- - Al? g 09 | 53, Omw
r o) = = 14+2—=+2 — 24
(W™= emve) 16mmwy 4871 T g +20y + mw (24)
- - A2 9w 09 | 5.3, Omw
rw d) = = 1+2—=+2C — 25
( — ud) 16mmpy 167 + g +2Chg T myy (25)

where we have noted that |A|?> was computed in terms of the Lagrangian parameter myy,
and we have replaced it here with the My (1 + omw /mw ).

6.
Ty = 30(W™ — e~ v) + 20(W™ — ad) (26)
3g% L[/, 09 5.3 , dmw 2 (.09 5.3 , Omw
= 1+- (22 +2 — W) 42 (22 42 — 2
T6m [+3<Q+CHl+mW +3 g+CHq+mW (27)
3¢ dg  dmw 2 ~(3) ~(3)
T [1+2 p + o + 3(CHZ +2C%,) (28)

{a,Gp,mz} scheme:

or 3 1 2 /_ _
Tor = 5o [0~ (AmE + AGH)] + 5ACK + 3 (Ci +2c) (29)
_ Bt 36 3G NG (3% _5\a», 40
= 5 Cawn 40290HD+ o0 1 5 o 3 Chi + 3CHq (30)
{mw,Gp,mz} scheme:
Tw 2 (A(2) | 5A03)
T = AGE+ (i +2¢) (31)
A A (AB) AR
L
=0+ 3 <CHq - Hl) (32)



Jacobian formulation of input shifts

7. The Jacobian and the input A’s are

1 9
2 vr
gU / 2+( /)2
Imw = TT 1 % % (33)
2v2
gvi,
- 2.2 "2 T
ACuw = (0 " Aamy, 508 ) (34)
T
Inverting the Jacobian:
2,4
1 oL
J_‘l/v — i _9 g 929\/% (35)
m 2 g g 2V2
T _ 9y
2v2
hence
L  —39AGE Gl — AGE/2]
G=G+ | -9 Am — $AGE | = | §'[L — Am%/(2s7) — AGE/2] (36)
Y AGF or[l + AGF/2]
5. Jda Jda Ja 2y cg gzv%sg
o0, _ (7 T ) (T S -
1
then
. 9(g")? 9%(9)
90, 1 (92+(g’%2)27r (92+(,9’)22)27r ) o
Jo = — Imw = 9 gvu gv (g% +(g')*)v (38)
80mw 72/\/5
’U3
The inverse Jacobian is
_2r 2 e
1 g gv% 2 \?2
-1_ = 2r 82085 _ gvpsple
ch - Cop gTe gv%e z:/g (39)
v3.Cog
0 0 — 7\"/5
and with the observables corrections
N 2(,/\2 92+(g/)2v2 1 T
one finally obtains
. [ 9(spAa = cg(AmF + AGF)/(2¢2)
G =G+ | d(s3(Am% + AGF) — ciAa)/(2ca0) (41)

vpAGp/2

which is the same result as in the appendix.



9. Let’s use the Jacobian to define a new input scheme: 5new = {m%[,, mQZ, a}.

Start from the 6mW set, and replace G with a.

(a) The SM solutions are

N TQ . 2my\/Ta R
g= 2 — g/ = ZVv V= mw
1 —mg, /m7, my
(b)
1 1
1 i [ 1 4
Jnew = 4 2 9 o JmW = 5
_ 9 % 9715 2 55 S20C3
T v 22 2 92
T T 7T'UT 7T'UT
Therefore
1 G 771)%
t 55 5
J;;N i 22 —t 529 27rv%
gurp 4 520 4
v Ch v _ mp
s2.9 s2g gsz
(c)
G(AmZ /12 — Aa)
Loz 1 [ 9\5Mzlly T B
GzG—i—i —§'(Am% + Aa)
f)T(AOé — AmQZ/tg)
Hence, in this scheme
sg 1 [Am? . 1 -
= =— —Aa | =-—C + —=C
g 5 ( tg % HWB 47% HD
og 1 9 Cup
g = §(Amz+A0¢)*—T
Svr 1 Am? 1 1
=— | Aa— Z)=——C —C
vr 2 2 tg TWE T g2 P

vr

UTC9

0

(44)



