
EW SMEFT – Exercise sheet 1

Invariance under basis change

A note on notation & conventions. In this sheet we will always use Qi, Ci to indicate Warsaw
basis operators and Wilson coefficients, and Oi, fi to indicate HISZ basis operators and their
coefficients. We will also work with a U(3)5 flavor symmetry for practicity, so all flavor indices are
implicitly contracted and we use {mW ,mZ , GF } as EW inputs.
A list of Warsaw basis operators relevant to this exercise is provided in the appendix.

1. The following operators are present in the HISZ basis but not in the Warsaw one:

OB = iBµνD
µΦ†DνΦ OW = iW I

µνD
µΦ†σIDνΦ (1)

(a) Convince yourself that the i factor is required for the operators to be Hermitian.

(b) Translate them to the Warsaw basis:

Step 1. Start from the operators

AW = (DµW I
µν)(iΦ†

←→
D IνΦ) AB = (∂µBµν)(iΦ†

←→
D νΦ) (2)

and rewrite them in terms of OW , OB and Warsaw basis operators. Use:

iΦ†
←→
D νΦ = iΦ†(DνΦ)− i(DνΦ†)Φ (3)

iΦ†
←→
D IνΦ = iΦ†σI(DνΦ)− i(DνΦ†)σIΦ (4)

[Dµ, Dν ]Φ =

[
ig

2
W I
µνσ

I +
ig′

2
Bµν

]
Φ (5)

Step 2. Now write AW , AB as a function of Warsaw basis operators only. Use the
Equations of motion:

DµW I
µν =

g

2
(Φ†i
←→
D I

νΦ) + g

(
q̄
σI

2
γνq + l̄

σI

2
γν l

)
(6)

∂µBI
µν =

g′

2
(Φ†i
←→
D νΦ) + g′

(
1

6
q̄γνq +

2

3
ūγνu−

1

3
d̄γνd−

1

2
l̄γν l − ēγνe

)
(7)

You will also need the relations [Bonus: prove them!]

(Φ†i
←→
D νΦ)2 = 4QHD +QH� (8)

(DµΦ†DµΦ)Φ†Φ =
QH�

2
−m2

h(Φ†Φ)2 + λQH + (QeH +QuH +QdH + h.c.) (9)

(the term (Φ†Φ)2 appears at d = 4 and remains explicitly in the solutions)
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Step 3. Put everything together equating the two expressions for AW , AB that you got
at steps 1 and 2. Solve for OW and OB.

(c) Determine the Wilson coefficients of the Warsaw basis operators as a function of those
in the HISZ basis (i.e. Ci(fW , fB)).

2. Verify the invariance under basis change for the process e+e− → W+W−. For this exercise
and the next we will only look at OB, as the case of OW is very similar.

For this first example it is sufficient to look at the Feynman rules stemming from the operators
in the two bases to verify that the basis change derived above leads exactly to the same
scattering amplitude.

(a) Consider first the Feynman rules in the Warsaw basis. The relevant ones are:
(only operators relevant for the basis conversion are retained, all momenta incoming)

γρW
+
µ W

−
ν ie [ηµν(pW+ − pW−)ρ + ηµρ(pγ − pW+)ν − ηνρ(pγ − pW−)µ]

[
1−

(
C̄HD
4t2θ

+
C̄HWB

tθ

)]
+ie

[
ηµρpνγ − ηνρpµγ

] C̄HWB

tθ

ZρW
+
µ W

−
ν igcθ [ηµν(pW+ − pW−)ρ + ηµρ(pZ − pW+)ν − ηνρ(pZ − pW−)µ]

[
1 +

C̄HD
4

+ tθC̄HWB

]
−ie [ηµρpνZ − ηνρp

µ
Z ] C̄HWB

ēeγµ ieγµ
[
1−

(
C̄HD
4t2θ

+
C̄HWB

tθ

)]
ēeZµ i

g

cθ

c2θ
2

(γµPL)

[
1 +

1

c2θ

(
C̄

(1)
Hl +

C̄HD
4

(3− 2s2θ) + s2θC̄HWB

)]
−i g
cθ
s2θ(γ

µPR)

[
1− 1

2s2θ

(
C̄He +

C̄HD
2

(2− s2θ) + s2θC̄HWB

)]
Rewrite them replacing the Ci with the functions of fB determined at point (c) above.

(b) Now consider the rules for the operator OB:

γρW
+
µ W

−
ν i

g2cθ
4
f̄B(ηµρpνγ − ηνρpµγ)

ZρW
+
µ W

−
ν −ig

2sθ
4

f̄B(ηµρpνZ − ηνρp
µ
Z)

Verify that they coincide with those obtained at the previous point, starting from War-
saw basis operators. This directly proves that the two bases give identical predictions
at amplitude level.

(c) Convince yourself that the equivalence holds for the γ and Z diagrams individually and
also independently for each chirality in initial state.

3. Verify the invariance under basis change in ūu→ Zh.
This case is less trivial! We will actually need to compute the amplitudes.

(a) Compute first the scattering amplitude with one OB insertion. The relevant Feynman
rules are:
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ZµZνh
ie

2vcθ
f̄B [ηµνph · (pZ1 + pZ2)− pνhp

µ
Z2 − p

µ
hp
ν
Z1]

γµZνh − ig
2v
f̄B
[
ηµνph · pγ − pνγp

µ
h

]
o The rules are given for all momenta incoming. Change signs appropriately when
inserting in the diagrams.

(b) Now consider the FR for the Warsaw basis and convert them to fB:

ZµZνh
ig2v

2c2θ
ηµν

[
1 +

(
C̄H� +

C̄HD
4

)]
+

4isθ
v

[pνZ1p
µ
Z2 − pZ1 · pZ2η

µν ]
(
C̄HWBcθ + C̄HBsθ

)
γµZνh −2i

v

[
pνγp

µ
Z − pγ · pZηµν

] (
c2θC̄HWB + s2θC̄HB

)
ūuZµ −i g

cθ

(
1

2
− 2s2θ

3

)
(γµPL)

[
1− 3

3− 4s2θ

(
C̄

(1)
Hq + C̄HD

−5 + 4s2θ
12

− 2s2θ
3
C̄HWB

)]
+i

g

cθ

2

3
s2θ(γ

µPR)

[
1 +

3

4s2θ

(
C̄Hu + C̄HD

−2 + s2θ
3

− 2s2θ
3
C̄HWB

)]
ūuZµH

ig

vcθ

[
C̄

(1)
Hq(γ

µPL) + C̄Hu(γµPR)
]

(c) Using the Warsaw basis FR simplified at the previous point, compute the scattering
amplitude linear in fB.

o There are 3 diagrams here: with a Z, with a γ and with a contact term.

(d) Verify that the total amplitudes computed directly with OB and through the translation
from the Warsaw basis are identical. This should be true independently for each chirality
in initial state.

Unlike in the previous example, here the equivalence does not occur diagram by diagram
or vertex by vertex, but requires to sum all contributions!

A List of relevant Warsaw basis operators

QHW = W I
µνW

IµνΦ†Φ QHD = (Φ†DµΦ)(DµΦ†Φ)

QHB = BµνB
µνΦ†Φ QH� = �(Φ†Φ)(Φ†Φ) QH = (Φ†Φ)3

QHWB = BµνW
IµνΦ†σIΦ

Q
(3)
Hl = (iΦ†

←→
D IνΦ)(l̄γνσ

I l) Q
(3)
Hq = (iΦ†

←→
D IνΦ)(q̄γνσ

Iq)

Q
(1)
Hl = (iΦ†

←→
D νΦ)(l̄γν l) Q

(1)
Hq = (iΦ†

←→
D νΦ)(q̄γνq)

QHu = (iΦ†
←→
D νΦ)(ūγνu) QHd = (iΦ†

←→
D νΦ)(d̄γνd)

QHe = (iΦ†
←→
D νΦ)(ēγνe)

QuH = (q̄Φ̃Y †uu)(Φ†Φ) QdH = (q̄ΦY †d d)(Φ†Φ)

QeH = (l̄ΦY †e e)(Φ
†Φ)
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EW SMEFT – Exercise sheet 1 – Solutions

Invariance under basis change

1. (a)

O†B = (−i)Bµν(DµΦ)(DνΦ†) = iBµν(DνΦ†)(DµΦ) = OB (1)

and the same for OW . If the i were not there, there would be an overall minus sign to
the right hand side.

(b)Step 1.

AW = −W I
µνD

µ
(

Φ†i
←→
D IνΦ

)
(2)

= −2iW I
µνD

µΦ†σIDνΦ +
g

2
W I
µνW

IµνΦ†Φ +
g′

2
W I
µνB

µνΦ†σIΦ (3)

= −2OW +
g

2
QHW +

g

2
QHWB , (4)

AB = −BµνDµ
(
iΦ†
←→
D νΦ

)
(5)

= −2iBµνD
µΦ†DνΦ +

g′

2
BµνB

µνΦ†Φ +
g

2
W I
µνB

µνΦ†σIΦ (6)

= −2OB +
g′

2
QHB +

g

2
QHWB. (7)

Step 2.

AW = g

(
2Φ†Φ

(
DµΦ†DµΦ

)
+
QH�

2
+

1

2

(
Q

(3)
Hl +Q

(3)
Hq

))
, (8)

= g

[
3

2
QH� − 2m2

h(Φ†Φ)2 + 2λQH + 2 (QeH +QuH +QdH + h.c.) +
1

2

(
Q

(3)
Hl +Q

(3)
Hq

)]
(9)

AB = g′

(
1

6
Q

(1)
Hq +

2

3
QHu −

1

3
QHd −

1

2
Q

(1)
Hl −QHe +

QH�

2
+ 2QHD

)
. (10)
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Step 3.

OW =
1

2

[
g

2
QHW +

g′

2
QHWB −

3g

2
QH� + 2gm2

(
Φ†Φ

)2
− 2gλQH

− g (QeH +QuH +QdH + h.c.)− g
(

1

2
Q

(3)
Hl +

1

2
Q

(3)
Hq

)]
, (11)

OB =
1

2

[
g′

2
QHB +

g

2
QHWB −

g′

2
QH� − 2g′QHD

− g′
(

1

6
Q

(1)
Hq +

2

3
QHu −

1

3
QHd −

1

2
Q

(1)
Hl −QHe

)]
. (12)

(c) Conversion of the Wilson coefficients:

O = RQ

fO = CQ = CR−1O → f = CR−1, C = fR (13)

where R is the basis rotation matrix between operators. Since we do not have the
complete HISZ basis, we can only convert C into f and not vice versa.

In order to translate from Warsaw to OW one has to map simultaneously

CHW →
g

4
fW CHWB →

g′

4
fW CH� → −

3g

4
fW CH → −gλfW (14)

C
(3)
Hq → −

g

4
fW C

(3)
Hl →

g

4
fW

CuH → −
g

2
fW CdH → −

g

2
fW CeH → −

g

2
fW

(and add the quartic contribution to the potential).

In order to translate from Warsaw to OB one has to map simultaneously

CHB →
g′

4
fB CHWB →

g

4
fB CH� → −

g′

4
fB CHD → −g′fB (15)

C
(1)
Hq → −

g′

12
fB CHu → −

g′

3
fB CHd →

g′

6
fB C

(1)
Hl →

g′

4
fB CHe →

g′

2
fB

2. (a) The shifts appearing in the FR map to

C̄HD
4t2θ

+
C̄HWB

tθ
→ 0 (16)

C̄HWB →
g

4
f̄B (17)

C̄
(1)
Hl +

C̄HD
4

(3− 2s2θ) + s2θC̄HWB → 0 (18)

C̄He +
C̄HD

2
(2− s2θ) + s2θC̄HWB → 0 (19)

so, of all contributions, only the corrections to WWγ and WWZ survive and they
become
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γρW
+
µ W

−
ν ie

[
ηµρpνγ − ηνρpµγ

] g

4tθ
f̄B

ZρW
+
µ W

−
ν −ie [ηµρpνZ − ηνρp

µ
Z ]
g

4
f̄B

(b) the rules for the operator OB are indeed identical to those derived at the previous point.

(c) The equivalence holds for the γ and Z diagrams individually because it happens sepa-
rately for the WWγ and WWZ vertices. It also holds independently for each chirality
in initial state, because the fermionic current is unaffected by the operators in any case.

3. (a) There are two diagrams, one with a Z and one with a γ in s channel. Let’s compute
them separately. We will use q = pZ + k for the s channel momentum, pZ for the
momentum of the outgoing Z and k for the momentum of the outgoing Higgs. We also
shorten

JρuuZ,SM = ūγρ(guLPL + guRPR)v guL =
1

2
− 2

3
s2θ guR = −2

3
s2θ (20)

Jρuu,γ =
2

3
ūγρv (21)

AOB
Z = − ig

cθ
JρuuZ,SM

−i
q2 −m2

Z

(
ηµρ − qρqµ

m2
Z

)
ie

vcθ
f̄B

[
−ηµν (q − pZ)2

2
− qνpµZ +

1

2
qµqν

]
ε∗ν(pZ)

= − ige
vc2θ

f̄B
JρuuZ,SM
q2 −m2

Z

[
−ηρν k

2

2
− qνpρZ +

1

2
qνqρ +

qρqν

m2
Z

(q − pZ)2

2
+
qρqν

m2
Z

q · pZ −
1

2
qρqν

q2

m2
Z

]
ε∗ν(pZ)

= − ige
vc2θ

f̄B
JρuuZ,SM
q2 −m2

Z

[
−
m2
h

2
ηρν − qνpρZ +

qρqν

m2
Z

(
1

2
m2
Z +

1

2
q2 +

1

2
m2
Z − q · pZ + q · pZ −

1

2
q2
)]

ε∗ν(pZ)

= − ige
vc2θ

f̄B
JρuuZ,SM
q2 −m2

Z

[
−
m2
h

2
ηρν + kρqν

]
ε∗ν(pZ) (22)

and

AOB
γ = −ieJρuuγ,SM

−iηµρ

q2
−ig
2v

f̄B [−ηµνq · k + qνkµ] ε∗ν(pZ)

= i
eg

2v
f̄B
Jρuuγ,SM
q2

[
−ηρν

q2 +m2
h −m2

Z

2
+ qνkρ

]
ε∗ν(pZ) (23)

(b) The converted FR are

ZµZνh
ig2v

2c2θ
ηµν

[
1− g′

2
f̄B

]
+

4isθ
v

[pνZ1p
µ
Z2 − pZ1 · pZ2η

µν ]
g

4cθ
f̄B

γµZνh −2i

v

[
pνγp

µ
Z − pγ · pZηµν

] g
4
f̄B

ūuZµ −i g
cθ

(
1

2
− 2s2θ

3

)
(γµPL) + i

g

cθ

2

3
s2θ(γ

µPR)

ūuZµH − igsθ
3vc2θ

f̄B

[
1

4
(γµPL) + (γµPR)

]
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(c)

AWarsaw→fB
Z = − ig

cθ
JρuuZ,SM

−i
q2 −m2

Z

(
ηµρ − qρqµ

m2
Z

)
ie

vcθ
f̄B
[
−(m2

Z − pZ · q)ηµν − qνp
µ
Z

]
ε∗ν(pZ)

= − ige
vc2θ

f̄B
JρuuZ,SM
q2 −m2

Z

[
ηρνpZ · k − qνpρZ −

qρqν

m2
Z

(pZ · k) +
qρqν

m2
Z

q · pZ
]
ε∗ν(pZ)

= − ige
vc2θ

f̄B
JρuuZ,SM
q2 −m2

Z

[
ηρνpZ · k − qνpρZ + qρqν

]
ε∗ν(pZ)

= − ige
vc2θ

f̄B
JρuuZ,SM
q2 −m2

Z

[
ηρν

q2 −m2
Z −m2

h

2
+ kρqν

]
ε∗ν(pZ)

= − ige
vc2θ

f̄B [ūγρ(guLPL + guRPR)v]

[
1

2
ηρν
]
ε∗ν(pZ) +AOB

Z (24)

Note that in the last line, in subtracting AOB
Z , we remained with a factor (q2 −m2

Z) in
the numerator that canceled out with the propagator dependence in the denominator.

For the photon we have something similar:

AWarsaw→fB
γ = −ieJρuuγ,SM

−iηµρ

q2
−ig
2v

f̄B
[
ηµνq · pZ − qνpµZ

]
ε∗ν(pZ)

= i
eg

2v
f̄B
Jρuuγ,SM
q2

[
ηνρ

q2 +m2
Z −m2

h

2
− qνpρZ

]
ε∗ν(pZ) (25)

= i
eg

2v
f̄BJ

ρ
uuγ,SM

[
ηνρ − qνqρ

q2

]
+AOB

γ (26)

In the last row, the term in qνqρ can be removed because Jρuuγqρ = 0.

Now the contact terms: for these we need to split LH and RH up quarks:

AWarsaw→fB
uuZH,L = − ieg

12vc2θ
f̄B(ūγνPLv)ε∗ν(pZ) (27)

AWarsaw→fB
uuZH,R = − ieg

3vc2θ
f̄B(ūγνPRv)ε∗ν(pZ) (28)

(d) Let’s put everything together, for LH and RH up quarks separately:

AWarsaw→fB
Z,L +AWarsaw→fB

γ,L +AWarsaw→fB
uuZH,L (29)

= AOB
Z,L +AOB

γ,L +
ieg

vc2θ
f̄Bε

∗
ν(pZ)(ūγνPLv)

[
−guL

1

2
+
c2θ
2

2

3
− 1

12

]
(30)

= AOB
Z,L +AOB

γ,L (31)

and

AWarsaw→fB
Z,R +AWarsaw→fB

γ,R +AWarsaw→fB
uuZH,R (32)

= AOB
Z,R +AOB

γ,R +
ieg

vc2θ
f̄Bε

∗
ν(pZ)(ūγνPRv)

[
−guR

1

2
+
c2θ
2

2

3
− 1

3

]
(33)

= AOB
Z,L +AOB

γ,L (34)
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as

−
guL
2

+
c2θ
3
− 1

12
= −1

4
+

1

3
s2θ +

c2θ
3
− 1

12
= 0 (35)

−
guR
2

+
c2θ
3
− 1

3
=

1

3
s2θ +

c2θ
3
− 1

3
= 0 (36)

It’s interesting to note that really all diagrams are needed in order for the contributions
to cancel.

The messages of these exercises are:

• Naive operator classifications into “bosonic operators” vs “fermionic operators” or “op-
erators affecting TGC” etc are basis dependent statements.

• When computing a SMEFT observable, in order to have a physical, basis independent
result, we need to retain contributions from all operators in the basis. In the example
above, if we had neglected one or more Warsaw basis operators, we wouldn’t have been
able to reconstruct properly the effect of OB.
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EW SMEFT – Exercise sheet 2

The W mass in SMEFT

1. Compute the correction to m2
W in the Warsaw basis, at tree level and up to Λ−4 corrections.

(a) Remember that, at LO, the W pole mass in the SMEFT Lagrangian is just m2
W =

g2v2T /4, and leave the result written in terms of δg/g etc.

(b) Using the shift formulas in the appendix, specialize the result to the input parameters
set {α,GF ,mZ} and write the correction to mW in terms of the Wilson coefficients.

(c) Do the same for the input parameters set {mW , GF ,mZ}. Verify that the correction to
mW vanishes in this case, as expected for any input quantities,

2. Now we will relate the mW correction to the ρ parameter.

(a) Compute the relative correction to cos2 θ (i.e. δc2θ/c
2
θ) in the Warsaw basis, again at LO

and up to Λ−4 corrections.

Remember that the angle is defined by

θ = arctan

[
g′

g
+

1

2

gg′

g2 + (g′)2
C̄HWB

]
(1)

As above, leave the result in the inputs-independent form, as a function of δg/g etc.

(b) Write δc2θ/c
2
θ in terms of Wilson coefficients, specializing to the {α,GF ,mZ} and {mW , GF ,mZ}

input schemes.

(c) By comparing with the result of the previous exercise, verify that the following relation
holds in both schemes

δm2
W

m2
W

= −∆m2
Z +

δc2θ
c2θ

+
s4θ
4c2θ

c̄HWB (2)

Can you give an intuitive interpretation of this formula?

(d) The ρ parameter can be defined à la Veltman, from the ratio of Z (neutral) and W
(charged) currents, i.e.:

ρ ≡
g2Z
g2
m2
W

m2
Z

(3)

Where mZ ,mW are the pole masses and gZ is defined such that, in unitary gauge, the
covariant derivative for a chiral fermionic field ψ contains the term

Dµψ = −igZZµ
(
T3 −Qs2θ

)
ψ + . . . (4)

being T3 = ±1/2 and Q the isospin and electric charge of ψ respectively.
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Compute ρ to order Λ−2 in the Warsaw basis.

Use the Lagrangian expression before defining the input parameters and write the result
in terms of Wilson coefficients.
Hint: remember from lecture 1 that a generic covariant derivative contains the term

Dµψ = −i g
cθ
Zµ
(
T3 −Qs2θ

) [
1 +

tθ
2
C̄HWB

]
ψ + . . . (5)

having defined the angle θ as in (1).

(e) Now repeat the calculation with the Lagrangian defined after defining inputs: write ρ
as a function of hat quantities and δg/g etc.

(f) Write ρ in terms of Wilson coefficients, specializing to the {α,GF ,mZ} and {mW , GF ,mZ}
input schemes. Verify that, in both cases, you get the same result and that this also
coincides with the result found at point (a).

(g) Deduce the relation between δm2
W /m

2
W , δc2θ/c

2
θ and (ρ− 1).

The W decay width in SMEFT

3. In this exercise we will compute the SMEFT correction to the total decay width of the W
boson. We will ignore all fermion masses and mixings.

(a) Compute the squared amplitude for a decay W− → e−νe, averaged over the polariza-
tions of the W boson, considering only one lepton flavor and expanding to linear order
in the SMEFT. The relevant Feynman rule is

W−µ ēν − ig√
2

(γµPL)

[
1 +

δg

g
+ C̄

(3)
Hl

]
(6)

(b) Repeat for W− → ūd. The Feynman rule in this case is

W−µ d̄u − ig√
2

(γµPL)

[
1 +

δg

g
+ C̄

(3)
Hq

]
(7)

(c) Compute the decay widths Γ(W− → e−νe) and Γ(W− → ūd).

Remember that

Γ =
|A|2

16πmW
(8)

(d) Compute the total decay width ΓW and express it as ΓSMW [1 + δΓW /ΓW ].

Then specialize the result to the {α,GF ,mZ} and {mW , GF ,mZ} input schemes.

Jacobian formulation of input shifts

o For this exercise you will need Mathematica to invert matrices.
One can ask whether there is a simple way to translate between different EW input schemes. In
fact, when working to O(Λ−2), the translation can be done quite easily using a Jacobian description
of the whole inputs procedure:
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Let’s define the vector ~G = (g, g′, vT ) of the 3 Lagrangian parameters in the EW sector of the
SM. In order to fix their numerical values, we need to relate them to 3 observables, that we don’t
specify yet. We will call ~O the vector formed by them.
Each of these observables can be computed in the SMEFT using the canonically normalized La-
grangian. The prediction for observable On has the form

On(~G,Ci) = OSMn (~G) + ∆On(~G,Ci) (9)

where the first term is the SM prediction and the second is the O(Λ−2) correction.

What we do when fixing the input scheme is solving the system ~O(~G,Ci) =
~̂
O for ~G, where

~̂
O are

the measured values for ~O. The solution can be written

~G =
~̂
G− J−1∆ ~O (10)

where
~̂
G is the SM solution and J is a Jacobian matrix defined by

Jnk =
∂OSMn
∂Gk

(11)

4. Choose the input observables ~OmW = {m2
W ,m

2
Z , GF } and re-derive the shifts presented in

class (and given in the appendix) using the formula (10).

Remember the starting point:

m2
W =

g2v2T
4

m2
Z =

(g2 + (g′)2)v2T
4

(1 + ∆m2
Z) GF =

1√
2v2T

(1 + ∆GF ) (12)

You don’t need to open the ∆’s at this stage.

5. Using Eq. (10) you can see that the solution for the scheme with ~Oa = {α,m2
Z , GF } will be

given by

~G =
~̂
Ga − (J−1α )∆ ~Oα (13)

where
~̂
Ga is the new SM solution (which is trivial to find). More interestingly, deriving by

parts:

Jα =
∂ ~OSMα

∂ ~G
=
∂ ~OSMα

∂ ~OSMmW

∂ ~OSMmW
∂ ~G

=
∂ ~OSMα

∂ ~OSMmW
JmW (14)

where trivially

∂ ~OSMα

∂ ~OSMmW
=

 ∂α
∂m2

W

∂α
∂m2

Z

∂α
∂GF

1
1

 (15)

with all observable predictions computed in the SM. So the new Jacobian Jα in α scheme
can be computed very easily, once the Jacobian JmW in mW scheme is known.

Do this computation and verify that eq. (13) gives the result presented in the lecture for the
α scheme.

Hint: for the Jacobian, you will need to express α as a function of the OmW observables. To

do this, take α = 1
4π

(gg′)2

g2+(g′)2 and replace g, g′ with the SM solutions in mW scheme.
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6. Let’s use the Jacobian to define a new input scheme: ~Onew = {m2
W ,m

2
Z , α}.

Start from the ~OmW set, and replace GF with α.

(a) Compute the SM solutions
~̂
G in the new scheme.

(b) Compute the jacobian as Jnew = ∂ ~OSM
new

∂ ~OSM
mW

JmW .

(c) Put everything together in (10) to find the result for the parameters and their shfits.

A Input shift expressions

In the {α,mZ , GF } scheme:

δg

g
=

1

2c2θ

[
−c2θ

(
∆m2

Z + ∆GF
)

+ s2θ∆α
]

(16)

δg′

g′
=

1

2c2θ

[
s2θ
(
∆m2

Z + ∆GF
)
− c2θ∆α

]
(17)

δvT
vT

=
∆GF

2
(18)

In the {mW ,mZ , GF } scheme:

δg

g
= −∆GF

2
(19)

δg′

g′
= −1

2

[
∆GF +

∆m2
Z

s2θ

]
(20)

δvT
vT

=
∆GF

2
(21)

And the ∆’s are

∆GF = 2C̄
(3)
Hl − C̄

′
ll (22)

∆m2
Z =

2gg′

g2 + (g′)2
C̄HWB +

C̄HD
2

(23)

∆α = − 2gg′

g2 + (g′)2
C̄HWB (24)
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EW SMEFT – Exercise sheet 2 – Solutions

The W mass in SMEFT

1. (a)

m2
W =

g2

v2
T

4 =
ĝ2v̂2

T

4

[
1 + 2

δg

g
+ 2

δvT
vT

]
(1)

(b)

m2
W =

ĝ2v̂2
T

4

[
1−

c2
θ

c2θ
∆m2

Z +
s2
θ

c2θ
(∆α−∆GF )

]
(2)

=
ĝ2v̂2

T

4

[
1− 1

c2θ

(
s2θC̄HWB +

c2
θ

2
C̄HD + s2

θ(2C̄
(3)
Hl − C̄

′
ll)

)]
(3)

(c)

m2
W =

ĝ2v̂2
T

4

[
1− ∆GF

2
+

∆GF
2

]
=
ĝ2v̂2

T

4
(4)

2. (a) From the definition:

cos2 θ =
g2

g2 + (g′)2
− s4θ

4
C̄HWB (5)

=
ĝ2

ĝ2 + (ĝ′)2

[
1 + 2s2

θ

(
δg

g
− δg′

g′

)]
− s4θ

4
C̄HWB (6)

(b) {α,GF ,mZ} scheme:

cos2 θ =
ĝ2

ĝ2 + (ĝ′)2

[
1 +

s2
θ

c2θ
(∆α−∆GF −∆m2

Z)− s4θ

4c2
θ

C̄HWB

]
(7)

=
ĝ2

ĝ2 + (ĝ′)2

[
1 +

s2
θ

c2θ

(
−1

2
c̄HD − 2C̄

(3)
Hl + C̄ ′ll −

2

s2θ
C̄HWB

)]
(8)

{mW , GF ,mZ} scheme:

cos2 θ =
ĝ2

ĝ2 + (ĝ′)2

[
1 + ∆m2

Z −
s4θ

4c2
θ

C̄HWB

]
(9)

=
ĝ2

ĝ2 + (ĝ′)2

[
1 +

C̄HD
2

+ tθC̄HWB

]
(10)

1



(c) The formula is easy to verify using the expressions in terms of ∆’s.

As an intuitive interpretation, it can be derived differentiating the SM relation

m2
W = c2

θm
2
Z . (11)

and noting that ∆m2
Z enters with a minus sign because it’s the contribution to the input

quantity, and not a predicted shift. The term in C̄HWB is practically subtracting the
genuine correction to θ from δc2

θ/c
2
θ. This makes sense because the cθ we have in the

SM relation actually stands for the ratio g2/(g2 + (g′)2), and is unrelated to the mass
diagonalization in the neutral gauge sector. Since the C̄HWB dependence comes from
the latter, it has to cancel in this equation.

(d)

ρ =
1

g2

g2

c2
θ

(
1 +

tθ
2
C̄HWB

)2 g2v2
T

4

4

(g2 + (g′)2)v2
T (1 + ∆m2

Z)
(12)

= 1−∆m2
Z + 2

gg′

g2 + (g′)2
C̄HWB (13)

= 1− C̄HD
2

(14)

(e)

ρ =
ĝ2 + (ĝ′)2

ĝ2

[
1 +

2(ĝ′)2

ĝ2 + (ĝ′)2

(
−δg
g

+
δg′

g′

)
+

2ĝĝ′

ĝ2 + (ĝ′)2
C̄HWB

]
ĝ2(1 + δm2

W /m
2
W )

ĝ2 + (ĝ′)2
×

×
[
1 + 2c2

θ

δg

g
+ s2

θ2
δg′

g′
+ 2

δvT
vT

+ ∆m2
Z

]−1

(15)

= 1− 2

(
δg

g
+
δvT
vT

)
−∆m2

Z + s2θC̄HWB +
δm2

W

m2
W

(16)

(f) {α,GF ,mZ} scheme:

ρ = 1 +
s2
θ

c2θ

[
∆m2

Z + ∆GF −∆α
]

+ s2θC̄HWB −
c2
θ

c2θ
∆m2

Z +
s2
θ

c2θ
(∆α−∆GF ) (17)

= 1−∆m2
Z + s2θC̄HWB = 1− C̄HD

2
(18)

{mW , GF ,mZ} scheme:

ρ = 1−∆m2
Z + s2θC̄HWB + 0 (19)

= 1− C̄HD
2

(20)

(g)

(ρ− 1) =
δm2

W

m2
W

−
δc2
θ

c2
θ

+ tθC̄HWB = s2θC̄HWB −∆m2
Z (21)

This holds in any input scheme: in fact we can get it directly from (16) and (6).
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The W decay width in SMEFT

3.

|A(W− → e−νe)|2 =
1

3
g2m2

W

[
1 + 2

δg

g
+ 2̄C

(3)
Hl

]
(22)

4.

|A(W− → ūd)|2 = g2m2
W

[
1 + 2

δg

g
+ 2̄C

(3)
Hq

]
(23)

where this time the 3 from the average over polarizations goes away with the quark color
factor.

5.

Γ(W− → e−νe) =
|A|2

16πmW
=
g2m̂W

48π

[
1 + 2

δg

g
+ 2̄C

(3)
Hl +

δmW

mW

]
(24)

Γ(W− → ūd) =
|A|2

16πmW
=
g2m̂W

16π

[
1 + 2

δg

g
+ 2̄C

(3)
Hq +

δmW

mW

]
(25)

where we have noted that |A|2 was computed in terms of the Lagrangian parameter mW ,
and we have replaced it here with the m̂W (1 + δmW /mW ).

6.

ΓW = 3Γ(W− → e−νe) + 2Γ(W− → ūd) (26)

=
3g2m̂W

16π

[
1 +

1

3

(
2
δg

g
+ 2̄C

(3)
Hl +

δmW

mW

)
+

2

3

(
2
δg

g
+ 2̄C

(3)
Hq +

δmW

mW

)]
(27)

=
3g2m̂W

16π

[
1 + 2

δg

g
+
δmW

mW
+

2

3
(C̄

(3)
Hl + 2C̄

(3)
Hq)

]
(28)

{α,GF ,mZ} scheme:

δΓW
ΓW

=
3

2c2θ

[
s2
θ∆α− c2

θ(∆m
2
Z + ∆GF )

]
+

1

2
∆GF +

2

3

(
C̄

(3)
Hl + 2C̄

(3)
Hq

)
(29)

= −3t2θ
2
C̄HWB −

3

4

c2
θ

c2θ
C̄HD +

(
3c2
θ

c2θ
− 1

)
C̄ ′ll
2
−
(

3c2
θ

c2θ
− 5

3

)
C̄

(3)
Hl +

4

3
C̄

(3)
Hq (30)

{mW , GF ,mZ} scheme:

δΓW
ΓW

= −∆GF +
2

3

(
C̄

(2)
Hl + 2C̄

(3)
Hq

)
(31)

= C̄ ′ll +
4

3

(
C̄

(3)
Hq − C̄

(3)
Hl

)
(32)
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Jacobian formulation of input shifts

7. The Jacobian and the input ∆’s are

JmW =
gv2
T

2


1 g

vT

1 g′

g
g2+(g′)2

gvT

−2
√

2
gv5T

 (33)

∆ ~OmW =
(

0
v2T (g2+(g′)2

4 ∆m2
Z ,

∆GF√
2v2T

)T
(34)

Inverting the Jacobian:

J−1
mW =

2

gv2
T


1

g2v4T
2
√

2

− g
g′

g
g′

gg′v4T
2
√

2

− gv5T
2
√

2

 (35)

hence

~G =
~̂
G+

 −1
2g∆GF

− (g2+(g′)2)
2g′ ∆m2

Z −
g′

2 ∆GF
vT
2 ∆GF

 =

 ĝ [1−∆GF /2]
ĝ′[1−∆m2

Z/(2s
2
θ)−∆GF /2]

v̂T [1 + ∆GF /2]

 (36)

8.

∂ ~Oα

∂ ~OmW
=

 ∂α
∂m2

W

∂α
∂m2

Z

∂α
∂GF

1
1

 =

− c2θ
πv2T

c4θ
πv2T

g2v2T s
2
θ

2
√

2π

1
1

 (37)

then

Jα =
∂ ~Oα

∂ ~OmW
JmW =

1

2


g(g′)4

(g2+(g′)2)2π
g4(g′)

(g2+(g′)2)2π

gv2 g′v2 (g2 + (g′)2)v

−2/
√

2
v3

 (38)

The inverse Jacobian is

J−1
α =

1

c2θ


−2π

g
2c4θ
gv2T

gv2T c
2
θ√

2

2π
gtθ

− s2θs
2
θ

gv2T
−gv2T s

2
θtθ√
2

0 0 −v2T c2θ√
2

 (39)

and with the observables corrections

∆ ~Oα =
(

g2(g′)2

4π(g2+(g′)2)
∆α

g2+(g′)2v2T
4 ∆m2

Z
1√
2v3T

∆GF
)T

(40)

one finally obtains

~G =
~̂
G+

 g(s2
θ∆α− c2

θ(∆m
2
Z + ∆GF )/(2c2θ)

g′(s2
θ(∆m

2
Z + ∆GF )− c2

θ∆α)/(2c2θ)
vT∆GF /2

 (41)

which is the same result as in the appendix.
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9. Let’s use the Jacobian to define a new input scheme: ~Onew = {m2
W ,m

2
Z , α}.

Start from the ~OmW set, and replace GF with α.

(a) The SM solutions are

ĝ = 2

√
πα

1−m2
W /m

2
Z

ĝ′ =
2mZ

√
πα

mW
v̂ = mW

√
1−m2

W /m
2
Z

πα
(42)

(b)

Jnew =

 1
1

− c2θ
πv2T

c4θ
πv2T

g2v2T s
2
θ

2
√

2π

 JmW =
gv2
T

2


1 0 g

vT
1 tθ

g
vT c

2
θ

s4θ
πv2T

s2θc
2
θ

2πv2T
0

 (43)

Therefore

J−1
new =

2

gv2
T


1
t2θ

− c4θ
s2θ

πv2T
s2θ

−tθ s2θ
2

2πv2T
s2θ

− c2θ
s2θ

vT
g

c4θ
s2θ

vT
g −πv3T

gs2θ

 (44)

(c)

~G =
~̂
G+

1

2

 ĝ(∆m2
Z/t

2
θ −∆α)

−ĝ′(∆m2
Z + ∆α)

v̂T (∆α−∆m2
Z/t

2
θ)

 (45)

Hence, in this scheme

δg

g
=

1

2

(
∆m2

Z

t2θ
−∆α

)
=

1

tθ
C̄HWB +

1

4t2θ
C̄HD (46)

δg′

g′
= −1

2
(∆m2

Z + ∆α) = − C̄HD
4

(47)

δvT
vT

=
1

2

(
∆α−

∆m2
Z

t2θ

)
= − 1

tθ
C̄HWB −

1

4t2θ
C̄HD (48)
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