Introduction to Lattice QCD

Constantia Alexandrou University of Cyprus and The Cyprus Institute

- Lecture 1: Introduction to the lattice formulation
 - Motivation
 - Standard Model of Elementary Particles
 - QCD versus QED
 - Path Integrals-An overview
 - Paths integrals in Quantum Mechanics
 - Rotation to Euclidean time
 - The Metropolis Algorithm
 - Statistical errors
 - Scalar field theory on the lattice
 - Coherent States
 - Bosons
 - Fermions
 - Formulation of Lattice Gauge Theories
 - Discrete symmetries of lattice theory
 - Local gauge symmetry
 - U(1) gauge theory
 - Evaluation of observables: String tension
 - Strong coupling expansion
 - Continuum limit and Renormalization
 - Asymptotic freedom
 - Continuum limit

2/6

Lecture 2: Fermions actions

- Fermion action
 - Symmetries of fermion action
 - Doubling of "naive" fermions
- Wilson fermions (WF)
 - Properties of Wilson Fermions
 - Symmetries of Wilson fermions
- Staggered fermions (SF)
 - Symmetries of Staggered Fermions
- Hopping-parameter expansion
- Improvement Program
 - Symanzik's improvement program
 - Elimination of redundant terms
- Improved fermion actions
 - The Sheikholeslami-Wohlert (clover) action
 - The twisted mass Wilson action
 - Chiral actions
- Improved gauge actions
 - Lüscher-Weisz action

3/6

Lecture 3: Hadron Spectroscopy

- Spectrum calculations
 - Introduction to the basic techniques
 - Smearing techniques
 - Stochastic sources
- Masses of low-lying hadrons
 - Setting the scale
 - Comparison of results
- Excited States
 - Variational principle
 - χ^2 -method
 - Excited states of the nucleon
- Exotics
 - Glueballs
 - Multi-quark states
- Resonances

Lecture 4: Hadron Structure

- Introduction to the basic techniques
 - Meson decay constants
 - Evaluation of three-point functions
- Meson sector
 - Pion form factor
 - ρ four point function and deformation
- Baryon sector
 - Nucleon form factors
 - Nucleon Generalized Parton Distributions-Definitions
 - Lattice evaluation
 - Results on nucleon form factors
 - Results on nucleon lower moments
 - N to ∆ form factors
 - ∆ form factors and structure
- Conclusions

Bibliography

- J. W. Negele, QCD and Hadrons on a lattice, NATO ASI Series B: Physics vol. 228, 369, eds. D. Vautherin, F. Lenz and J.W. Negele.
- 2 J. W. Negele Understanding Hadron Structure Using Lattice QCD, hep-lat/9804017.
- M. Lüscher, *Advanced Lattice QCD*, Les Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of Particle Interactions, Les Houches 1997, 229, hep-lat/9802029.
- B. Gupta, Introduction to Lattice QCD, hep-lat/9807028.
- P. Lepage, Lattice for Novices, hep-lat/0506036.
- H. J. Rothe, *Quantum Gauge Theories: An introduction*, World Scientific, 1997.
- I. Montvay and G. Münster, Quantum Fields on a Lattice, Cambridge University Press, 1994.
- C.Gattringer and C. B. Lange, Quantum Chromodynamics on the Lattice (An Introductory Presentation), Springer, 2009.