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I. INTRODUCTION

Baryons can now be constructed from quarks by
using the combinations qqq, qqqqq̄, etc., while
mesons are constructed out of qq̄, qqq̄q̄, etc.

M. Gell-Mann, 1964 [1].

Quantum corrections, however, make so that any hadron will be a superposition of states with arbitrary numbers
of qq̄ pairs, if meson, and qqq + qq̄ pairs, if baryon. Can we find a meaningful way to count the number of quarks
confined inside a hadron?

A first possibility relies on the fact that heavy quark pairs are difficult to be created or destroyed by QCD forces
inside hadrons. As a consequence, hadrons decaying with one J/ψ (or Υ) in the final state are good candidates to
contain a leading, or valence, cc̄ (or bb̄) pair. Since we have a good theoretical control on the spectrum of pure cc̄
(charmonia) and bb̄ (bottomonia) states, any hidden charm or bottom state not fitting in the theoretical spectrum is
a good candidate for being an exotic, multiquark state. These unanticipated charmonia or bottomonia are the X and
Y mesons discovered in the last two decades, the first examples being the X(3872) meson discovered by Belle in 2003
and the Y (4260) meson, discovered by BaBar in 2005.

Another definitely unambiguous class of exotic states are hidden charm or bottom states which are also electrically
charged. Charged charmonia/botttomonia, unanticipated by default, are indicated as Z particles, the first example
being Z(4430), discovered by Belle in 2008 and confirmed by LHCb in 2014. The pentaquarks observed by LHCb in
2015 and 2019 complete the list. Fig. 1 gives an updated compilation of the observed, predicted and unanticipated
charmonia prepared for the present Lecture Notes (older compilations can be found in [3–5]).

A short characterization of X, Y and Z particles goes as follows.

• X, e.g. X(3872): neutral, typically seen to decay into ψ + pions, positive parity, JPC = 0++, 1+±, 2++;

• Y , e.g. Y (4260): neutral, seen in e+e− annihilation (possibly with extra Initial State Radiation, that lowers the
nominal center-of-mass energy of the collision): e+e− → Y , therefore JPC = 1−−;

FIG. 1. Anticipated and unexpected charmonia. In green the observed ordinary charmonium lines. Compilation and figure adapted
from [2].
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• Z, e.g. Z(4430): isospin triplet (charged and neutral), typically positive parity, manifest four-valence quarks,
mostly seen to decay into ψ + π, some into hc(1P ) + π and into open charm mesons, valence quarks cc̄ud̄;

• Zb observed by Belle: Zb(10610), Zb(10650), decaying into Υ(nS)π, hb(nP )π and open bottom mesons, valence
quarks bb̄ud̄;

• X resonances with hidden charm and hidden strangeness have been seen by LHCb, e.g. X(4140) → ψ + φ,
JPC = 1++

• Hidden charm–open strangeness (cc̄us̄) seen in 2021 by BES III: Z+
cs(3985)→ ψ+K+ and by LHCb: Z+

cs(4003)→
ψ +K+.

In addition:

• four-charm tetraquarks have been seen as di-J/ψ resonances by LHCb, e.g. X(6900)→ ψ + ψ → 2(µ+µ−)

• Pentaquark resonances have been observed by LHCb [6] in the decay channel J/ψ + p, valence quarks (cuudc̄).

In the present Lectures, I will concentrate on X, Z and doubly charmed tetraquarks, presenting present studies about
their mass spectrum and other properties.

Generating multiquark hadrons in QCD. A reasonable description of QCD forces acting inside mesons and
baryons can be made in terms of oriented strings originating from quarks and ending into antiquarks. The end of
QCD strings carries a representation 3 of SU(3)c, so that strings originating from the three quarks in the baryon can
join in one point in a SU(3)c-invariant way,1 see baryons in Fig. 2.

New QCD singlets can be obtained from meson or baryon configurations by substituting an antiquark with a color
3̄ diquark, where the strings originating from the two quarks are attached to the string that was ending with the
antiquark to form an invariant three-string junction, Fig. 3. The new configuration should correspond to a bound
state, similarly to the original one. In particular, this does apply in the limit where the quarks in the diquark become
heavy, thereby fusing into a single 3̄ source equivalent to the original antiquark source, except possibly for spin-spin
interactions that vanish for infinite quark mass (Lectures II and VI). In this way, starting from the antibaryon all the
known exotics, X, Y, Z, pentaquarks and more (the dibaryon) are reproduced, each corresponding to a new series of
the complete hadron spectrum.

The X and Z correspond to tetraquark ground states in S-wave (positive parity), the Y to negative parity P -
waves. Pentaquarks have negative parity in the ground S-wave and positive parity in P -wave. Dibaryons close the
spectroscopic series, with positive parity in the ground, S-wave, state.

Molecules and Hadrocharmonia. In B meson decays, a D∗D̄ pair with low relative momentum coud form a
hadron molecule, a shallow bound state made possible by attractive one-pion exchange forces, similar to a deuteron
formed from a low-momentum pn pair. As proposed in [7], X(3872) would be composed by four quarks arranged in
two color singlet mesons bound by forces similar to those that bind atomic nuclei. The closeness of X(3872) mass to
the D∗D̄ threshold would be a natural consequence of this picture.

Another possibility, suggested by the fact that several exotic states seem to decay into a single channel with an
ordinary cc̄ state, is the hadrocharmonium hypothesis [8] where some exotic hadrons are supposed to be made by a

FIG. 2. Color strings in ordinary mesons and baryons.

1 Three representations 3 are combined in color singlet by the antisymmetric, invariant tensor εijk, see Lecture II.
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FIG. 3. Color strings in multiquark states.

FIG. 4. Schematic representation of hadron molecules (see [10]), compact tetraquarks (see [11]), hadrocharmonium and quarkonium
adjoint mesons (see [8, 9]).

cc̄ meson core, surrounded by a cloud of light quark and antiquark pairs. Similarly, adjoint hadrocharmonia with the
cc̄ core in color octet have been proposed [9]. These possibilities are illustrated in Fig. 4.

There is no consensus yet. In these lectures, focused on the compact tetraquark picture, we shall examine several
facts which may eventually lead to a clarification and to the choice of the correct theory of exotic hadrons.
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II. MASSES OF MESONS AND BARYONS IN THE CONSTITUENT QUARK MODEL

Starting from a brief description of the way we arrived to the Standard Theory, I illustrate in this Lecture the Con-
stituent Quark Model for meson and baryon spectrum. The model was first intruduced by Sakharov and Zeldovich [12].
It was formulated in QCD in [13] and applied to tetraquarks in [11] (see also [14, 15]).

First attempts. Fermi and Yang, in 1949, proposed nucleons to be an elementary doublet: F = (p, n) and mesons
to be composite nucleon-antinucleon states

π =
(
FF̄
)

The natural symmetry of the Fermi-Yang model is Isospin, the group SU(2) of unitary 2× 2 complex matrices with
unit determinant, acting on the basic nucleon doublet

(
p
n

)
→ U

(
p
n

)
, U ∈ SU(2) (1)

To include strange mesons, in 1956 Sakata introduced the Λ baryon as a new constituent, carrying negative unit of
strangeness: S = (p, n,Λ), with:

π, K, · · · = (SS̄), Baryons =
(
SSS̄

)
(2)

The basic symmetry of the Sakata model was the extension of isotopic spin to SU(3), the unitary, 3×3 transformations
of the Sakata triplet:  p

n
Λ

→ U

 p
n
Λ

 , U ∈ SU(3) (3)

The Sakata model reproduced well the quantum numbers of the pseudoscalar mesons observed at the time (pions
and Kaons). However, a clear prediction of the model was that there must exist baryons with strangeness S = +1,
which, unfortunately, is a wrong prediction: no such particles have been seen until today!

A. The Eightfold Way (Gell-Mann and Ne’eman, 1962).

Gell-Mann and Ne’eman reject the idea that there may be hadrons which are elementary and others that are
composite. Treating all hadrons on the same footing (a principle called Nuclear Democracy), they keep Sakata’s SU(3)
as the basic symmetry and try to find, in an abstract way, representations of the group (i.e. particle multiplets) that
fit the observed quantum numbers of mesons and baryons.2

For mesons, the assignement in (2) corresponds to the eight-dimensional, octet, and one-dimensional, singlet,
representations, Fig. 5.

Gell-Mann and Ne’eman observed that the same octet representation could describe the lowest-lying spin-1/2
baryons (this is the Eigthfold Way), Fig. 6(left). In addition, a ten-dimensional representation (decuplet) could
accomodate the then observed spin-3/2 baryon resonances, the ∆ and the negative strangeness Y ∗ hyperons, Fig. 6
(right), together with other, not yet observed, particles: a S = −2 isospin doublet (Ξ∗) and and an S = −3 isosinglet
(Ω−)

Assuming SU(3) broken by octet interaction (see later and Lect. IV), Gell-Mann and Okubo derived a very well
verified mass-formula for the octet baryons:

N + Ξ

2
(1128 MeV) =

3Λ + Σ

4
(1136 MeV) (4)

In the same approximation, decuplet masses are equally spaced: from ∆ and Σ∗ masses one could predict Ξ∗ and Ω
masses.

The discovery of two Ξ∗ particles was presented at the Ginevra Conference, 1962, and Gell-Mann observed there
that their mass verify the equal spacing rule. Ω− was discovered in 1964 with the expected mass:

2 In his imaginative style, Gell-Mann says that the procedure is similar to the recipe of the French cuisine to cook a pheasant by putting
it inside two veal steaks. When it is cooked, you eat the pheasant and throw the steaks away. In their case, the steaks were the
Sakata constituents, needed to identify the symmetry, and the pheasant the SU(3) symmetry, that you keep after throwing away the
constituents. Gell-Mann and Zweig succeeded later to find the good constituents to go with the correct symmetry.
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• Predicted (Gell-Mann, 1962) M = 1679 MeV;

• Observed (BNL, N. Samios and Coll., 1964) M = 1672 MeV.

It was the first prediction of mass and quantum number in particle physics, SU(3) symmetry was established.

B. Interactions of Fundamental Particles, a first look

In general terms, three interactions are operative at particle level, distinguished by strength and selection rules.

1. Strong interactions, O(1): act on hadrons. Conserved quantities:

• P (parity), C (charge conjugation), T (time reversal);

• I (isospin), symmetry group SU(2): I2 = I(I + 1), −I ≤ I3 ≤ +I, n(I) = 2I + 1

• Q (electric charge), S (strangeness), B (baryon number);

• also introduced Y (hypercharge) with:

Q = I3 +
S +B

2
= I3 +

Y

2
(Gell-Mann and Nishijima formula) (5)

• Le,µ,τ (lepton numbers) and B (baryon number)

• typical lifetime ∼ 10−23 sec (Γ ∼ 100 MeV).

2. Electromagnetic interactions, O(1/137): act on hadrons and charged leptons (e, µ). E.m. interactions violate
I and conserve:

• P , C, T ;

• Q and S;

FIG. 5. The Eightfold Way: (left) the octet of pseudoscalar mesons; (right) the octet of vector mesons.

FIG. 6. The Eight Fold Way:(left) the octet of spin-1/2 baryons; (right) the decuplet of spin-3/2 baryons.
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• Le,µ,τ and B;

• typical lifetimes ∼ 10−18 sec.

3. Weak Interactions (Fermi, 1932) O(10−5). WI act on all particles, including neutrinos, with:

• P , CP and T violated; CPT conserved

• B conserved,

• WI violate: S, Le,µ τ (because of neutrino oscillations, but total L is conserved).

• typical lifetimes ∼ 10−12 sec or longer.

C. Quarks!

SU(3) representations and symmetry breaking can be studied by pure group theory, but quarks are much simpler
to handle.

Quarks were introduced as hypothetical spin-1/2 particles in the basic SU(3) triplet, the first fundamental repre-
sentation,3 3. Antiquarks are in an anti-triplet the second fundamental representation, 3̄:

q =

 u
d
s

 , q̄ =
(
ū, d̄, s̄

)
(6)

With quarks and antiquarks of spin 1/2, we should be able to construct all hadrons (forget Fermi statistics for a
while, we’ll come back). How do we make mesons and baryons? Following Gell-Mann, baryons are (qqq), see Eq. (8)
below, while mesons are (qq̄) [1]. The same combinations have been independently suggested by George Zweig, who
used the name aces for the particles of the fundamental triplet [16].

Irreducible SU(3) tensors and multi quark/antiquark constructions. SU(3) is a group with two commuting
generators: I3 and Y . The irreducible multiplets are characterised by two integers n1, n2 and are represented by
standard tensors with n1 upper and n2 lower indices, symmetric in the upper and in the lower indices and traceless,
see [17]:

T̂
a1a2...an1

b1b2...bn2
, T̂

aa2...an1

ab2...bn2
= 0 (7)

(sum over repeated indices understood). Quarks (antiquarks) are represented by three-dimensional vectors: qb (q̄a).
Products of quarks and antiquarks are tensors with both upper and lower indices, in general neither symmetric nor
traceless. To express them as sums of standard tensors, we project with the SU(3) invariant operations:

• symmetrisation/antisymmetrisation

• contraction with δab (eliminates one upper and one lower indices)

• contraction with εabc (transforms 1 (2) lower indices in 2 (1) upper indices)

• contraction with εabc (same for upper indices into lower indices).

To warm up, we work out explicitly a few tensor product decompositions. We put the hat over the standard tensors,
symmetric and traceless.

quark I3 Y (S) Q

u 1/2 1/3 (0) +2/3

d −1/2 1/3 (0) −1/3

s 0 −2/3 (−1) −1/3

TABLE I. Quark quantum numbers.

3 We denote SU(3) representations by their dimensionality and indicate the complex conjugate representation with a bar.
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• MESONS: 3⊗ 3̄

qbq̄
a = T̂ ab +

1

3
δab (δcdT

d
c ) = T̂ ab +

1

3
δabT, (T̂ ab traceless)

dim T̂ = 3 · 3− 1, i.e. 3⊗ 3̄ = 8⊕ 1

• TWO QUARKS: 3⊗ 3

qaqb = S{ab} +A[ab], S = symmetric, A = antisymmetric

A[ab] = εabcT̂
c

A symmetric tensor with two indices has 6 independent components, so that:

3⊗ 3 = 6⊕ 3̄

• PRELIMINARY TO THREE QUARKS: 3⊗ 6

qaT{bc} =
1

3
Tabc +

(
εabdT

d
c + εacdT

d
b

)
where : T dc =

1

3
εkldqkT{lc}, note : T dd = 0

so that: 3⊗ 6 = 8⊕ 10 (why the fully symmetric tensor T{abc} has 10 dimension?4)

Are quarks real? States with three quarks are composed according to

3⊗ 3⊗ 3 = (3̄⊕ 6)⊗ 3 = 1⊕ 8⊕ 8⊕ 10 (8)

This is really an extraordinary result:

• three quarks reproduce the baryon multiplets with negative or vanishing strangeness (octets, decuplets, singlets),
as required by data;

• all observed baryons are treated equally (in agreement with nuclear democracy).

Two puzzling features remain:

• quarks are fractionally charged: the lightest quark is absolutely stable; stable quarks liberated from cosmic rays
high energy collisions should remain dispersed in matter;

• however, Millikan’s like experiments have not been able to observe fractionally charged quarks in the environ-
ment;

• no fractionally charged stable or metastable particles has ever been observed in high energy collisions.

The other problem arises from the observation that the lowest resonance ∆++, reasonably supposed to be an S-wave
state (symmetric under coordinate exchange), should be composed as:

∆++ = u↑u↑u↑ (9)

What about Fermi statistics?
The opinion prevailing in the Sixties was to consider quarks purely as a mathematical shorthand to summarise the

solutions of the (unknown) basic equations of strong interactions, in presence of an SU(3) symmetry.

4 Start from the tensor component T333 (1 component), then consider T33i, i = 1, 2 (two components), then T3ij , i,= 1, 2: these are the
same as the components of a spin 1 (3 components), finally Tijk, i, j, k,= 1, 2 these are the components of a spin 3/2 (4 components).
We have enumerated all independent components of the fully symmetric tensor with three indices. In total: 1 + 2 + 3 + 4 = 10.
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FIG. 7. Asymptotic Freedom is signalled by the decrease of the coupling constant at large q2.

D. Fermi Statistics leads to quark colour and QCD

The Fermi statistics problem hints at the existence of further quantum numbers for u (and d and s) quarks. This
was first suggested by Han and Nambu (HN) who made the hypothesis that the additional indices could be associated
with a hidden gauge group, they called SU(3)′, responsible for the strong interactions among quarks.

In 1972, Gell-Mann, Fritzsch and Leutwyler reproposed the HN scheme with the additional assumption that the
hidden gauge group commutes with the gauge group SU(2)L ⊗ U(1)Y introduced by Weinberg and Salam for elec-
troweak unification. The quantum number of the hidden group was called colour and the group SU(3)colour by
G-MFL. The authors introduced the term Quantum ChromoDynamics, QCD, to underline the analogy to Quantum
ElectroDynamics of the colour forces generated by the exchange of the quanta of SU(3)c.

The notion of hidden three colours was almost immediately supported by experiments at e+e− colliders, ADONE in
Frascati and SPEAR in Stanford, that showed that the opening of the threshold for the production of pairs of quarks
with a given flavour (u, d, s and, later, charm) was associated with an increase of the cross-section approximately
equal to

∆σQ = 3×Q2 × σ(e+e− → µ+µ−)

where Q is the electric charge reported in Tab. I.
In 1973, Gross and Wilczek [18] and, independently, Politzer [19], discovered that non-abelian gauge groups, such

as SU(3)c, are asymptotically free at large euclidean momenta, if the number of fermions is not too large. The result
showed the potential for QCD to explain the scaling rules observed in deep inelastic scattering processes of electrons
on protons, which had indicated quasi-free behaviour of the constituents of the proton observed at large, negative
values (euclidean!) of the momentum transfer squared, q2. A proton at rest is made by 3 quarks dressed by strong
QCD interactions. Increasing q2, quarks radiate gluons (the Altarelli-Parisi picture of scaling violations). At large q2,
we see quarks and neutral gluons as almost free partons. Already Han and Nambu had observed that quark states
in a color non-trivial representation should most likely have an infinite energy. This would imply the permanent
confinement of color triplet quarks inside finite-energy, color singlet bound states. Confinement in QCD has not
yet been proved but it is made plausible by several qualitative considerations. There are in fact indications that a
gauge Yang-Mills theory coupled with matter fields can live in two phases only: a spontanously broken Higgs phase
if coupled to scalar particles (such as the electroweak sector), or a confined phase (such as QCD).

The asymptotically free behaviour of QCD has been confirmed by the data of deep inelastic hadron production, at
LEP in e+e− collisions, and at the LHC (proton-proton collisions), as shown in Fig. 7. Quarks carry SU(3) colour

symmetry and are confined inside color singlet hadrons, e.g. ∆++ = εαβγu↑αu
↑
βu
↑
γ . Fermi statistics is obeyed. There is

only one way to make a color singlet with three quarks, so there is no particle proliferation due to the new quantum
number. The elementary interactions of quarks with the gauge fields of SU(2)L ⊗ U(1)Y ⊗ SU(3)c, that we indicate
as the Standard Theory of fundamental interactions, are illustrated in Fig. 8.

E. The Constituent Quark Model

Forces between coloured objects in the one gluon exchange approximation.
The one-gluon exchange process between two coloured objects gives an amplitude of the form

M1,2 =
g2
s

k2
·
〈
R
∣∣TA1 TA2

∣∣R〉 (10)
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FIG. 8. Elementary interactions of quarks with the gauge fields of the Standard Theory, with gauge group SU(2)L ⊗ U(1)Y ⊗ SU(3)c.

where TA1,2 are the matrices representing the generators of SU(3)c on objects 1 or 2, and the sum over the repeated

indices A is understood 5. R indicates the colour representation of initial and final states, which is the same since
colour is conserved. The generator of the whole 1 + 2 system is, of course

TA1+2 = TA1 + TA2 (11)

and obviously (sum over A understood):

TA1+2 T
A
1+2 = TA1 TA1 + TA2 TA2 + 2TA1 TA2

so that 〈
R
∣∣TA1 TA2

∣∣R〉 =
1

2
[C2(R)− C2(1)− C2(2)] (12)

where for a generic color representation R, we have defined

C2(R) = TAR TAR (13)

C2(R) is called the quadratic Casimir operator of the representation R.
The amplitude (10) is finally written as

M1,2 =
g2
s

k2
· 1

2
[C2(R)− C2(1)− C2(2)] =

g2
s

k2
· λ(R) (14)

As indicated in Tab. II, the Casimir dependence of the amplitude shows an interesting pattern of forces vs. R.

5 TA1,2 act on different spaces. One should write, more precisely TA1 = TA1 ⊗ 12, TA2 = 11 ⊗ TA2 . TA1 and TA2 obviously commute.
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1. quark-antiquark:

• R = singlet: attractive (−4/3)

• R = octet: repulsive (+1/6)

2. quark-quark

• R = anti-triplet attractive (−2/3)

• R = sextet: repulsive (+1/3)

In conclusion: quark-antiquark pairs bind in color singlet mesons, while diquarks may bind:

• to another quark, to make a color-singlet baryon

• to an antidiquark, to make a color-singlet tetraquark.

Non perturbatively, color lines of force are supposed to condense in strings going from quarks to antiquarks.
Color string forces produce an overall spin-independent potential that confines quarks inside a definite volume

(bag), with some wave functions. Residual quark-quark or quark-antiquark interactions are local chromomagnetic,
spin-spin, interactions of the form [20]:

Hij = −2

3

g2
s

mimj

(
TA1 TA2

)
(s1 · s2) δ(3)(x1 − x2)

The TA and s are color and spin operators, and gs the strong coupling. This form is derived from the non relativistic
limit of QCD. If i, j are in a color representation R, the formula simplifies to;

Hij = 2κij (si · sj) , κij = −λ(R)× g2
s

3mimj
|ψ(0)|2 (15)

The Hamiltonian can be developed to first order in the small mass difference ms −mu,d, there is also a first order
contribution from the spin-spin interaction, which is very crucial for the mass difference of Σ-Λ baryons. The formula
works well for mesons and baryons, as we shall see now.

Few parameters: mu,d, ms, mc, mb, κij reproduce masses of different hadrons with a ∼ 30 MeV accuracy, κij scale
approximately like 1/mimj and are not far from scaling with the color factors.

One usually assumes that the wave function overlap is the same for all mesons and for all baryons, but this is
dubious in the case of hadrons with a very heavy quark, c or b. We consider explicitly the cases of light mesons and
baryons. The basic ingredient is the formula

2(s1 · s2) = J2 − s2
1 − s2

2 = J(J + 1)− s1(s1 + 1)− s2(s2 + 1) =

{
+1/2 (J = 1)

−3/2 (J = 0)
(16)

Light meson masses
We assume (q = u, d):

• π = (qq̄), S-wave spin-singlet, J = 0;

• ρ, ω = (qq̄), S-wave spin-triplet, J = 1

R C2(R) λ(R)

1 0 −4/3

8 3 +1/6

3, 3̄ 4/3 −2/3

6 10/3 +1/3

TABLE II. Casimir eigenvalues and effective charge values, depending on the representation of the two (anti)quarks.
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and find:

mπ = 2mq −
3

2
κqq̄; mρ = mω = 2mq +

1

2
κqq̄ (17)

We leave out η, mixed in a complicated way with η′. Similarly for (qs̄) mesons, we find

mK = mq +ms −
3

2
κqs̄; mK∗ = mq +ms +

1

2
κqs̄

mφ = 2ms +
1

2
κss̄ (18)

With 5 parameters (2 masses and 3 kappas) and 6 masses, we get the equality of ρ and ω masses. However, to first
order in the mass difference: κqs̄ − κqq̄ = δκ and κss̄ − κqq̄ = 2δκ. This leaves us with one parameter less and another
relation. In conclusion we find (masses in MeV):

mρ(775) = mω(783)

mφ −mK∗(128) = mK∗ −mρ(117) (19)

Octet, spin 1/2 baryons.

1. p, uud : J = 1/2 and su1 +su2 = 1 (Fermi statistics, u1 and u2 are antisymmetric in color, so must be symmetric
in spin!)

HN = 3mq + 2κqq

[
s1 · s2 + sd(su1 + su2)

]
mN = 3mq + κqq

[
(2− 3

2
) + (

3

4
− 2− 3

4
)
]

= 3mq −
3

2
κqq (20)

2. Σ+, uus: same trick as p, with d→ s

mΣ = 2mq +ms +
1

2
κqq − 2κqs (21)

3. Λ, uds: ud is in Isospin 0 → su + sd = 0 (Fermi statistics, again)

mΛ = 2mq +ms −
3

2
κqq + (

3

4
− 3

4
)κqs = 2mq +ms −

3

2
κqq (22)

4. Ξ, uss, with ss in spin 1: proceed like Σ, with u→ s

mΞ = mq + 2ms − 2κqs +
1

2
κss (23)

We have 4 masses (N,Λ,Σ,Ξ) and 4 parameters: mq − 1/2κqq,ms −mq, κqs − κqq, κss − κqq. However, if we use
the relation κqs − κqq = δκ, and κss − κqq = 2δκ, we obtain one relation: the Gell-Mann-Okubo relation, anticipated
in Eq. (4)

N + Ξ

2
(1128 MeV) =

3Λ + Σ

4
(1136 MeV)

Decuplet, spin 3/2 baryons.

• ∆ = uuu:

m∆ = 3mq +
3

2
κqq (24)

This gives the right combination to separate mq from κqq and we can compute all decuplet masses in term of
known parameters

• we find equally spaced masses with spacing

∆m = ms −mq + κqs − κqq = 139 (25)
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• experimentally

mΣ∗ −m∆ = 153 (26)

mΞ −mΣ∗ = 145

mΩ −mΞ = 142

• The addition to Gell-Mann Okubo is the prediction of the mass difference in (26) (i.e. 139=153), of similar
quality as the other octet and decuplet mass relations: 8 masses, 4 parameters, 4 relations, satisfied within 20
MeV.

F. Spectroscopy of charm and beauty mesons and baryons

Particle states are displayed in the 3 dimensional space of diagonal quantum numbers: I3, Y , Charm (c) or Beauty
(b).

• Charmed mesons: quark-antiquark states; lowest states (JP = 0−) and first resonances (JP = 1−) fall both
in 15⊕ 1 dimensional multiplets, Fig. 9.

• Particles made by a pair with the same quark flavor are neutral and fall in the center of the multiplets.

• Baryons. Are 3 quark states, classified in two different 20-dimensional multiplets, Fig. 10;

• c and b baryons are being observed in several different experiments, multiplets not yet completely filled.

FIG. 9.

FIG. 10.



15

B and D meson masses
Considering D, D∗ mesons, we have three new couplings (mc and 2κs) and two new masses ( with respect to the

c = 0 case), and we find one relation

3mD∗s
+mDs

− (3mD∗ +mD

4
= 101 =

=
3mK∗ +mK − (3mρ +mπ)

4
= 177 (27)

Similarly, for B mesons

3mB∗s
+mBs

− (3mB∗ +mB)

4
= 90 =

=
3mK∗ +mK − (3mρ +mπ)

4
= 177 (28)

The discrepancies seem to indicate that the mass of the strange quark, in presence of a heavy antiquark, is smaller .
Karliner and Rosner attribute the effect to the different QCD interactions of the strange quark with heavy quark

inside the hadrons [21]. The strange quark goes closer to a heavy than to a light quark and the stronger interaction
detracts from its rest energy, reducing the observed constituent mass.

A similar effect is also seen for the value of the strange quark mass, derived from c = 0 and c = 1 baryons and for
the charm quark mass derived from c = 1, b = 0 and c = 1, b = 1 mesons.

Quark masses summary
Quark masses and spin-spin couplings are summarised in the following tables.

q s c b

MESONS: quark mass (MeV) 308 484 1667 5005

BARYONS: quark mass (MeV) 362 540 1710 5044

difference (MeV) 54 56 43 39

TABLE III. S-wave Mesons and Baryons: constituent quark masses.

MESONS (qq̄)1 (qs̄)1 (ss̄)1 (qc̄)1 (sc̄)1 (cc̄)1 (qb̄)1 (sb̄)1 (bb̄)1

κij (MeV) 318 200 103 70 72 56a 23 24 30b

κijmimj/Λ
3
QCD 1.9 1.9 1.5 2.3 3.7 9.9 2.2 3.8 49

BARYONS (qq)3̄ (qs)3̄ (ss)3̄ (qc)3̄ (sc)3̄ (cc)3̄ (qb)3̄ (sb)3̄ (bb))3̄

κij (MeV) 98 59 23 15 50 28a 2.5 38 15b

κijmimj/Λ
3
QCD 0.82 0.74 0.43 0.57 2.7 5.2 0.29 6.6 24

Ratio: κMES
κBAR

3.2 3.4 4.5 4.7 1.6 2.0 9.2 0.6 2.0

TABLE IV. S-wave Mesons and Baryons: spin-spin couplings. ΛQCD = 250 MeV.

For future use, we have taken:

κcc̄ = 1/2(J/ψ − ηc); κcc = 1/2κcc̄;

κbb̄ = 1/2(Υ− ηb); κbb = 1/2κbb̄.

A few comments.

• The third line of the Tab. III supports the existence of a constant difference between the constituent quark mass
of a given flavor in Mesons and Baryons [22].

• Mass differences of constituent quarks with different flavor, e.g. ms − mq, taken in Mesons and Baryons are
much the same, as if the effect of string self energy would cancel, giving results more similar to the quark bare
masses, e.g. those derived from current algebra.

• The scaling law implied by (15) applies well to the light quarks, persists to charm and gets lost for beauty.
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• The ratio of spin-spin couplings in Mesons, qq̄ in color 1, and Baryons, qq in color 3̄, should reflect the ratio of
the C2 values and be equal to 2, as indicated in Tab. II. Tab. IV gives a value 3 to 4 for light to charm quarks,
supporting sizeable, but not dramatic, non perturbative corrections.

All in all, the picture delineated in the Constituent Quark Model with one gluon exchange gives a reasonable description
of the lowest lying hadrons with different flavours.
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III. LIGHT AND HEAVY TETRAQUARKS

In the quark model, scalar mesons are to be expected as qq̄, P -wave bound states, predicted in the early days of the
quark model [23]. The first scalar mesons to be established are f0(980) (I = 0) and a0(980) (I = 1). Lightest scalar
states, with S = 0 and S = 1 and have been going in and out until reasonably established as f0(600) (S = I = 0),
often called σ0, and K∗0 (700) (S = 1, I = 1/2), often called κ.

A. Light scalar mesons and tetraquarks

FIG. 11. Mass spectra of the scalar multiplets vs. a typical (qq̄) nonet.

FIG. 12. Mass spectrum of Jaffe’s tetraquark.

.

Compared to the pseudoscalar and vector mesons mass spectra, Fig. 11, the scalar meson mass distribution reserved
the surprise that the I = 1 isovector, supposed to be the light quark qq̄ state, is heavier than the sq̄ state that should
describe the κ meson, contrary to what happens in the established qq̄ nonets. As noted by R. Jaffe [24, 25] (see
also [15]), tetraquarks could reproduce neatly the anomalous behaviour, as shown in Fig. 12.

To avoid states with I=2, Jaffe assumes that good diquarks (colour 3̄, spinqq = 0) do bind and bad diquarks

(colour 3̄, spinqq = 1) do not. Due to Fermi statistics, the good diquarks have the quark pair antisymmetric in

SU(3) indices, i.e: diquarks are in 3̄ and antidiquarks in 3 SU(3) representations (see Lect.2). As a consequence, the
diquark-antidiquark state is in a SU(3) nonet.

The trick works very well. The I = 1 state is made by

a+
0 =

[us][d̄s̄]√
2

(29)

and is heavier that the strange member

κ+ = [ud][d̄s̄] (30)

There are two I = 0 states, one light, σ, and one heavy, f0, degenerate with a0, see Fig. 12:

σ = [ud]ūd̄], f0 =
[us][ūs̄]− [ds][d̄s̄]√

2
(31)
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Tetraquarks vs Hadron Molecules: a first look.

To form hadrons, good or bad diquarks need to combine with other colored objects to form color singlets:

FIG. 13. .

• with another quark, to produce a baryon in a Y-shape configuration

• with an antidiquark to form e.g. a scalar meson, an H-shape configuration as proposed by Rossi and Veneziano,
Fig. 13(a);

• We expect many diquark-antidiquark states: the string joining diquarks may have radial and orbital excitations;

• the tetraquark string topology is more related to BB̄ and would favour the decays T → BB̄, Fig. 13 (c).

• an allowed decay is also the de-excitation of a tetraquark with meson emission, Fig. 13 (d)

The possibility of bound states of colourless hadrons was raised long ago by De Rujula, Georgi and Glashow.
Meson-meson molecules have a different string topology, as shown in Fig. 13 (b).

Nuclei obviously are hadron molecules, being made by color singlet protons and neutrons. We expect very few
molecular states: similarly to nuclei, no orbital or radial excitations are expected.

Do hadron molecules exist? We come back later in this lecture to a comparison of nuclei vs. putative hadron
molecule production in high energy collisions.

B. Tetraquark constituent picture of unexpected quarkonia

We start with a number of assumptions.

We consider hidden charm tetraquarks of the form

[cq]3̄S=0,1[c̄q̄′]3S=0,1 (32)

in S-wave (i.e. positive parity) and q = u, d is a light quark. The total spin of each diquark may be S = 0, 1:
heavy-light bad diquarks are admitted.

The neutral states are mixtures of isotriplet and isosinglet. Mass splittings are described by the Hamiltonian:

H = 2mcq +
∑
ij

2κij(si · sj) (33)

where mcq is the (constituent) diquark mass.
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For fixed flavour, in the basis of the states |S, S̄ >J with definite diquark and antidiquark spin ( S, S̄) and total
angular momentum J , we have the following states

JP = 0+, C = + : X0 = |0, 0 >0 X ′0 = |1, 1 >0

JP = 1+, C = + : X1 =
|1, 0 >1 +|0, 1 >1√

2

JP = 1+, C = − : Z =
|1, 0 >1 −|0, 1 >1√

2
; Z ′ = |1, 1 >1;

JP = 2+, C = + : X ′2 = |1, 1 >2 . (34)

We propose to identify:

X(3872) = X1;Z(3900), Z(4020) = linear combinations of Z, Z ′ that diagonalize H

X±(4050) = X ′0 ?? (35)

C. Can we guess tetraquark’s spectrum from the spin-spin couplings of mesons and baryons ??

Recall the formula given in Lect. 2:

κij = CF (R)× g2

mimj
|ψ(0)|2

Spin-spin (or hyperfine, hf) interactions are proportional to the overlap probability |ψ(0)|2 of the two quark/antiquark
constituents involved. No symmetry principle says that the overlap functions in tetraquarks have to be the same as in
baryons or mesons. Spin-spin couplings in tetraquarks are free parameters to be determined from the mass spectrum.

The effect of a dominant qq̄′ hyperfine interaction, as for mesons, is easily seen in a basis in which the qq̄′ and cc̄
spin are diagonal.

Such a basis is obtained from the basis in (34) by a transformation analogous to the Fierz Transformation introduced
in the Fermi theory of weak interactions. A useful shortcut is to use Charge Conjugation. The basis in which qq̄′ and
C-conjugation are diagonal is easily found since, for fermion antifermion pairs in S-wave and total spin s, we have:
C = (−1)s. One finds:

C = +1 : X1 ↔ [q̄′q]1[c̄c]1 (+1/2)

C = −1 : Z, Z ′ ↔ [q̄′q]1[c̄c]0 (+1/2), [q̄′q]0[c̄c]1 (−3/2) (36)

In parenthesis we have reported the corresponding eigenvalue of the hyperfine operator 2 <
σq

2 ·
σq′

2 >, see Lect. 2.
Neglecting charmed quarks hf interaction (inversely proportional to mass squared), one concludes that a dominant

qq̄′ hf interaction leads to: degenerate X1 and Z (sq̄′q = 1) and lighter Z ′ (sq̄′q = 0).
The observed pattern instead is: X(3872) ∼ Z(3900) < Z(4020), i.e. degenerate X, Z and heavier Z ′!
The right ansatz. The correct mass ordering is obtained under the hypohesis that dominant spin-spin interactions

are those inside the diquark or the antidiquark [26].
A simple explanation of the dominance of intra-diquark interaction is that diquarks and antidiquarks are at a

relatively large distance in the hadron, so as to suppress the overlap probability of constituents in different diquarks,
unlike what happens, e.g., in the usual baryons.

With this hypothesis, H is diagonal in the diquark spin basis used before and the Hamiltonian takes the form:

H = 2mcq + 2κcq(sc · sq + sc̄ · sq̄) (37)

In words: H counts the number of spin 1 diquarks/antidiquarks.
Parameters.
Assuming

X(3872) = X1; M(3872) = 2mcq − κcq
Z(3900) = Z; M(X1) = M(Z)

Z(4020) = Z ′; M(4020) = 2mcq + κcq

From the experimental masses we find:

m[cq] = 1980 MeV, κcq = 67 MeV (38)
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The difference: |M(X1)−M(Z)| ∼ 18 MeV quantifies the error of our ansatz (37).
For the other states, we predict

M(X0) = M(X1)− 2κcq = 3738 MeV

M(X ′0) = M(X2) = M(Z ′) = 4020 MeV

The pattern of the 1S states predicted in the simple ansatz (37) is illustrated in Fig. 14 (left panel).

• The lowest spin 0 tetraquark, X0 could decay into a DD̄ pair. No resonance has been seen thus far in this
channel. The D0D̄0 threshold, however, is at 3730 MeV, and non leading corrections to Eq. (37) could easily
bring the X0 mass below threshold.

• The positive parity, charged exotic meson reported in Pdg as X±(4050):

X±(4050)→ π±χc1(1P ), M(4050) = 4051+24
−40 (39)

could very well be identified with X ′±0 or X±2 .

FIG. 14.

The first radially excited states, 2S, Fig. 14 (right panel) are shifted up by a common quantity, the radial excitation
energy, ∆Er, expected to be mildly dependent on the diquark mass: ∆Er(cq) ∼ ∆Er(cs). From the mass of Z±(4430):

∆Er(cq) = 530 MeV. (40)

We predict further the masses (in MeV):

X0(2S) = 4296; X1(2S) ∼ Z(2S) = 4430; X ′0(2S) = Z ′(2S) = X2(2S) = 4564 (41)

The positive parity, charged exotic meson reported in Pdg as X±(4250):

X±(4250)→ π±χc1(1P ), M(4250) = 4248+190
−50 (42)

could be identified with X±0 (2S)
To summarize:

• A simple ansatz reproduces the ordering of Z states: spin-spin interaction is dominated by inter-diquark inter-
action;

• constituents are not uniformly mixed in the hadron bag, rather clump into two separate entities: diquarkonium.

• The spectrum of 1S ground states is characterised by the diquark mass, mcq and the spin-spin interaction, κcq.

• The first radially excited, 2S, states are shifted up by a radial excitation energy, ∆Er, very similar to the radial
excitation energy of charmonium.
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D. New J/ψ − φ structures

In 2016, LHCb has reported the observation of four new resonances decaying in J/ψ − φ The structures have
positive parity, J = 0 and 1, and obviously positive charge conjugation [27]. The lowest one, X(4140) had been seen
previously by CDF, D0, CMS and by Belle.

Judging from the masses, we suggest to fit the structures into two new tetraquark multiplets, S-wave ground state and
first radial excitations and flavour composition [cs][c̄s̄], illustrated in Fig 15. Together with the previously identified
[cq][c̄q̄] multiplet, the new resonances would make a step towards a full nonet of S-wave tetraquarks made by cc̄ and
a pair of light (u, d, s) quarks [28]. We found a surprise and made a proposal.

FIG. 15.

Applying the ansatz (37) with q → s, from the three input masses, marked in green in Fig. 15, we find:

∆m = mcs −mcq = 129 MeV. (43)

κcs = 50 MeV (44)

∆r(cs) = 460 MeV (45)

With these value, we can predict all C = + members of the two tetraquark multiplets. Using (44) For 1S, we obtain

X0(1S) = 4040; X ′(1S) = X2(1S) = 4240 (46)

X0(1S) is predicted below the J/ψ − φ threshold.
LHCb quotes four resonances. Beside the three we have used as input (in green in Fig 15), they quote X(4274), JP =

1+. The mass is in the 1S range but among the 1S tetraquark there is only one 1+ state, already identified with
X(4140).

A second 1+ would be present for tetraquarks made by diquarks in colour 6. We consider this an unlikely possibility,
given the repulsive force obtained in Lect. 2, Tab II. Rather, we suggest that the peak identified with X(4274) is
produced by the two degenerate states predicted at 4240 in Eq. (46), to be fitted as a superposition of 0+ and 2+

states. Non conclusive evidence, pro or con, has been produced until present.
First hint of a nonet.
We note the result:

X(4140)−X(3872) = 270 MeV (47)

to be compared to:

φ− ρ = 244 MeV (48)

The near equality of the mass differences nicely confirms the hypothesis that X(4140) and X(3872) are the ss̄ and qq̄
components of the same SU(3) nonet, similar to ρ and φ of the vector meson nonet.

This leads to a firm prediction of the mass of the strange components of the tetraquark [29] nonet, with composition:
Xs = [cs][c̄q̄], X̄s = [cq][c̄s̄]:

M(Xs) =
X(3872) +X(4140)

2
= 4010 MeV (49)

(more about that in Lect.4)
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E. Few remarks about molecules

The most studied Exotic Hadron is no doubt the X(3872), yet we have not achieved a conclusive evidence in favour
or against its molecular structure.

The present mass value: M = 3871.69 ± 0.17 MeV is very close to the DD̄∗ threshold, so as to suggest its nature
as a molecular state:

M(D0) +M(D̄∗0) = 3871.68; M(D+) +M(D∗−) = 3979.91 (50)

if X is a D0D̄∗0 + D̄0D∗0 molecule, its binding energy is very small indeed

|B| < 0.17 MeV (51)

and, correspondingly, its radius very large:

R ∼
√

2µ|B| ∼ 10 fm ∼ 15× (proton radius) (52)

(µ is the D −D∗ reduced mass ∼M(D)/2).
How about X(3872) production in collisions at large pT ? The issue has been studied in [30] comparing data on the

production of light nuclei in Heavy Ion high energy collisions (from ALICE Collaboration), with data about X(3872)
production in p− p collisions at large pT (from CMS Collaboration).

FIG. 16.

The heavy ion cross sections have been translated in p − p cross sections using Glauber’s model and put together
with the CMS cross section in Fig. 16. (very similar results are obtained with other extrapolation methods, such as
the blast-wave function extrapolation, see [30].)

There is a vast difference in the probability of producing X(3872) and that of producing light nuclei, true hadronic
molecules, in high energy collisions at large pT . The crosse section of light nuclei falls exponentially with pT , as
expected for loosely bound objects with a radius

R ∼ 1 fm >>
1

pT
∼ 0.20

pT (GeV)
fm (53)

On the contrary, the X(3872) cross section falls slowly and is of the same order as the ψ(2S) cross section, i.e a
compact system with elementary components held together by confining QCD forces.

To save the molecular interpretation the suggestion has been made of a strong (∼ 30%) mixing of a molecular
state with a charmonium state with the same quantum numbers, e.g. ψ(2P ). The charmonium component would
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be produced strongly, but the final asymptotic state would reconstruct the full molecule. The result in (52) implies
however a very large cc̄ distence on the molecule, making its overlap with any charmonium state quite unlikely.

The high energy production of suspected exotic hadrons from quark-gluon plasma in Heavy Ion collisions at colliders
can be a very effective tool to discriminate different models, particularly for charged states wihch cannot mix with
charmonia.

We have already a long list of suspects: f0(980), Z±(3900), Z±(4020), Z±(4430), X(4140), . . . .
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IV. TETRAQUARKS AND THE EIGHTFOLD WAY. DI-J/ψ RESONANCES

A. QCD and light quark masses.

LQCD =
1

4
Tr[GµνG

µν ] +
∑
u,d,s

(iq̄iDqi +miq̄iqi)

LQCD = L0
QCD + Lm (54)

The light quark mass Lagrangian can be rewritten as:

Lm = m̄
∑
u,d,s

q̄iqi +m3(ūu− d̄d) +m8(2s̄s− ūu− d̄d) =

= Lm̄ + L3 + L8

with

m3 =
mu −md

2
; m8 =

2ms −mu −md

6
(55)

L0
QCD is invariant under the light flavours symmetry (the EightFold Way) and creates complete multiplets of SU(3)f ,

with the heavy quarks c, b behaving as SU(3)f singlets.
L3 +L8 are color singlets and can be treated as perturbations that split the degenerate SU(3)f multiplets created

by L0
QCD , like an external, weak magnetic field that splits the atomic levels.

Quark mas differences are universal, i.e equal for mesons and baryons. Neglecting Isospin breaking, we found in
Lect.2:

(ms −mq)baryon ∼ (ms −mq)meson = 180 MeV (56)

Constituent quark masses, on the other hand, are sensitive to the energy stored in the QCD field, and have larger
variations, as we have seen in Lect. 2:

• Mesons: (mq ∼ 308, ms ∼ 484)

• Baryons: (mq ∼ 362, ms ∼ 540)

Nuclei are not like that. Forces exchanged between color singlets, e.g. nuclei, are strongly dependent from the
mass of the exchanged particle, e.g. π, ρ, η . . . that is they are strongly flavour dependent. Bound states, nuclei or
hadron molecules, are thus not expected to form multiplets with a regular pattern of mass differences.

Assuming flavour singlet forces between color singlets, as done sometime, has no fundamental basis.
Exotic mesons: the New Wave. Starting from 2016, new kinds of exotic hadrons have been discovered: J/ψ φ

resonances, di-J/ψ resonances, open strangeness Exotics: Zcs(3082) and Zcs(4003). There are no pion exchange forces
that could bind them as hadron molecules of color singlet mesons: molecular models have to stand on the existence
of phenomenological forces with undetermined parameters.

The New Exotics arise very naturally as ([cq]3̄[c̄q̄′]3)1 bound in color singlet. The compact tetraquark model makes
a firm prediction: hidden charm tetraquarks must form complete multiplets of flavour SU(3), with mass differences
determined by the quark mass difference. With Zcs(3082) and Zcs(4003) we can almost fill two tetraquark nonets
with the expected scale of mass differences.

Tetraquarks with strangeness and hidden charm: The first resonance with valence quarks (csc̄ū) has been
seen in 2021 by BES III in e+e− → K+ . . . : an excess over the known contributions of conventional charmed mesons
is observed near the D∗−s D0 and D−s D

∗0 thresholds, in the K+ recoil mass spectrum [31]. A similar resonance,
Zcs(4003), has been observed by LHCb in B+ decay [32]:

B+ → φ+ Zcs(4003)→ φ+K+ + ψ (57)

LHCb may have a third candidate in the K+ ψ channel, Zcs(4220).
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B. Hidden charm tetraquarks make SU(3)f nonets

The mass spectrum of the vector meson nonets with mass diagonal ω−φ mixing , can be simply plotted versus the
number of strange quarks or antiquarks

m = C(ns + ns̄)(ms −mu) (58)

with C a constant of order unity.
Eq. (58) gives the equal spacing rule, well obeyed in vector, 1−−, and tensor, 2++, mesons, e.g.

∆(1−) = φ(1020)− ρ(775) = 244 MeV;
ρ(775) + φ(1020)

2
−K∗(892) = 4 MeV (59)

∆(2+) = f ′2(1525)− a2(1320) = 199 MeV;
f ′2(1525) + a2(1320)

2
−K∗2 (1430) = −10 MeV (60)

We expect a similar pattern to be obeyed by the hidden charm tetraquarks listed in (34), when we let q, q′ = u, d, s.
Concentrating on the better known states, we shall consider the three nonets associated, respctively, to X(3872),
Z(3900) and Z(4020), focussing initially to the first two, to which we propose to associate Zcs(4003) and Zcs(3985).
We find two solutions [33].

Solution 1. Has the LHCb resonance associated with the X(3872) nonet, Fig. 17. The mass of Zcs(4003) fits very
well with the equal spacing prediction given in Eq. (49) and completes the steps in the mass ladder. The BESIII
resonance also fits reasonably in the nonet of Z(3900). The spacing in this nonet, Zcs(3982)−Zc(3900) ∼ 82 MeV, is
comparable to ∆(2+)/2, the spacing of the tensor mesons, and it is still in the range of the mass difference of strange
to light quark. The equal spacing rule for the Z(3900) nonet predicts its ss̄ component to the mass

Xss̄(J
P = 1+−) = 4076 MeV (61)

FIG. 17.

Solution 2. The alternative association of Zcs(3982) to the X(3872) nonet, disagrees by ∼ 27 MeV from the equal
spacing rule (49). This is larger than the violation of the rule in the vector meson none, but we think it could still
still be acceptable. Associating Zcs(4003) to the Z(3900) nonet, we predict:

Xss̄(J
PC = 1+−) = 4121 MeV. (62)

For both solutions, Xss̄(J
PC = 1+−) should be seen in the decay channels ηc φ, η J/ψ. Concerning D̄∗sDs decay,

the mass value predicted by Solution 1 is below threshold (MD∗s
+ MDs

= 4080 MeV). The decay is possible for the
mass value predicted by Solution 2.

The third nonet. Zc(4020) must be part of a third nonet, therefore there must be a third Zcs with JP = 1+

at a somewhat higher energy then the two just discussed. Taking Solution 1 as a basis, we would expect a mass of
4150− 4170 MeV. Indeed LHCb sees a Zcs(4220) with JP = 1+or 1−. Is it too heavy ?

This problem could go together with the fact that, in our preferred Solution 1, Zcs(3982) is a perhaps too light to
be associated with Z(3900). A bold possibility is that there is a mixing between the two Zcs belonging to negative
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FIG. 18.

charge conjugation nonets: after mixing, levels repel each other, and the effect is that one Zcs goes down and the
other goes up, Fig. 19, in better agreement with the mass of their partners. A small mixing angle θ ∼ 300 is needed
to do the job as shown by a simple calculation and illustrated by Fig. 19. Take:

M = M0 +
(
a b

b −a

)
(63)

Mdiag = M0 + U†(θ)MU(θ); U(θ) =
(

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
diagonalising M requires

tan θ =
b

a
;

∆Md = (Mdiag)11 − (Mdiag)22 = 2a

√
1 + (

b

a
)2

Requiring: 2a = (4160− 4038); ∆Md = (4220− 3982) one finds

tan θ ∼ 1.7 → θ ∼ 600, i.e. mixing angle = θ/2 ∼ 300

FIG. 19.

C. Charge conjugation for SU(3)f nonets (mesons or tetraquarks)

The Zcs we have considered are associated with two nonets with the neutral components, X(3872) and Z0
c (3900),

of opposite charge conjugation. One may wonder if this fact has consequences on production or decay modes that
can distinguish between Solution 1 and Solution 2. We consider this matter in exact and first order broken SU(3)f
symmetry.

A charge conjugation quantum number can be given to each self conjugate SU(3) multiplet under the transformation:

CTC = ηT T̃ , T̃ = transpose matrix, ηT = ±1 (64)
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η is the sign taken by neutral members, but it can be attributed to all members of the multiplet. η = −1 is given to
the electromagnetic current .

For the pseudoscalar mesons: CPC = +P̃ ;

( π0
√

2
+ η√

3
π+ K+

π− − π0
√

2
+ η√

3
K0

K− K̄0 − 2η√
3

)
; P̃ = CPC = +

( + π0
√

2
+ η√

3
π− K−

π+ − π0
√

2
+ η√

3
K̄0

K+ K̄0 − 2η√
3

)
(65)

Trilinear couplings for nonets Given three nonets A, B, C with C-signs ηA, ηB , ηC , there are two SU(3)f
invariant couplings: Tr(ABC),Tr(ACB), and one may form two C-invariant combinations (i.e. C-conserving effective
couplings):

D = Tr
(
A{B,C}

)
, for ηAηBηC = +1

F = Tr
(
A[B,C]

)
, for ηAηBηC = −1 (66)

these couplings are used in the classical applications of SU(3)f symmetry to Vector (C = −1) and Tensor (C = +1)
meson decays and mixing (see e.g. [34]; mixing of two Kaons belonging to different nonets is considered in [35]), where
the allowed couplings are:

• Vector→ 2 Pseudoscalars: allowed coupling Tr(V µ[P, ∂µP ])

• Tensor→ 2 Pseudoscalars: allowed coupling Tr(Tµν{P, ∂µ∂νP})

Production of Zcs(3982). BES III observes the reaction: e+e− → K+ + Z−cs(3985). Consider the two cases:

1. Production from the virtual photon continuum

2. Production by a Y, JPC = 1−− resonance, assumed to have Isospin=0.

1. Production from continuum: photon→ K+ + Z−cs(3985):

• CZ = +1 : Hγ = iTr(Q[K,Zcs]) = i( 2
3 + 1

3 )(K+Z−cs − h.c.);
• CZ = −1 : Hγ = Tr(Q{K,Zcs}) = 1

3 (K+Z−cs + h.c.);

2. Production from a Y (csc̄s̄) resonance: photon→ Y → K+ + Z−cs(3985);

• CZ = ±1 : HY = Tr(Y [K,Zcs]∓) = K−Z+ ± h.c.

Measuring the energy dependence of the cross section, BES III can distinguish production from continuum (which
favours Solution 2) from resonant production (no preference).

Zcs(4003)→ ψK decay observed by LHCb. For the two possible assignments of Zcs(4003) and taking into
account that ψ has C = −1, we have

• Zcs, C = −1 : HI = λµ ψ (Tr{Z,K}) = λ µ [Z−cs (ψK+) + c.c.], ([µ] = mass);

• for the JPC = 1++ nonet, the decay may occur to first order in SU(3)f breaking. Denoting the symmetry quark
mass matrix by ε8 = Diag(mu, md, ms) , one finds

Zcs, C = +1 : HI = λ iψ Tr(ε8[Z,K]) ∼ λ (ms −mu) i[Z−cs (ψK+)− c.c.].

for µ = 0.1− 1 GeV there should be no much difference between the two cases and LHCb should be able to see also
Zcs(3982).

D. Di-J/ψ resonances: a game changer

Baryon-antibaryon molecules? Pion exchange can occur between a pair of Ξcc = [ccu] . However, the bound state
would be out of scale: 2MΞcc

∼ 7242 MeV. Meson-Meson molecule: option tried by some authors assuming SU(3)f
singlet exchange, the only possibility being J/ψ exchange. This leads, however to force range of fractions of fm, in
the full domain where color forces are supposed to dominate.

Tetraquark constituent picture of di-J/ψ resonances. Based on valence, four-charm tetraquarks, [cc][c̄c̄].
Fermi statistics with color antisymmetric pairs implies diquarks and antidiquarks in spin 1 state. S-wave states are
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• C = +1 states: JPC = 0++, 2++, decay in 2J/ψ, 2ηc (not the 2++), charmed quark pairs+hadrons

• C = −1 state: JPC = 1+−, decays in ηc + J/ψ and charmed quark pairs+hadrons.

Mass spectrum computed using QCD inspired potential (Coulomb+linear potential), gaussian wave functions in
the three Jacobi coordinates, ξ1, ξ2, ξ3 [36]. Parameters of the gaussians are determined by minimizing the energy.

Authors report the computation of the energy levels of radial and orbital excitations. The values of predicted mass
include an a priori unknown additive constant (necessary to fix the zero of the energy for confined states), which is
to be determined from one mass of the spectrum.

In the paper by Bedolla et al., the constant was taken (provisionally) from calculations of meson masses. What we
can do now is to readjust the additive constant using a known mass as input. Bedolla et al. then predict the mass
differences. For illustration, In Fig. 20, we show the predictions of few levels obtained from the original article with the
above procedure.We have defined the additive constant by identifying the 6900 MeV peak with the N = 1, L = 0, 2++

state, and shifted the other levels accordingly. The result is tantalizing.

FIG. 20.

E. Decays and branching fractions

Decays take place via cc̄ annihilation. The starting point is to bring cc̄ pairs together by a Fierz rearrangement,
including spin and colour6. One obtains

6 from here we follow [37].
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T (JPC = 0++) = |(cc)1
3̄(c̄c̄)1

3 >
0
1=

= −1

2

(√
1

3

∣∣∣(cc̄) 1
1 (cc̄)

1
1

〉 0

1
−
√

2

3

∣∣∣(cc̄) 1
8 (cc̄)

1
8

〉 0

1

)
+

+

√
3

2

(√
1

3

∣∣∣(cc̄) 0
1 (cc̄)

0
1

〉 0

1
−
√

2

3

∣∣∣(cc̄) 0
8 (cc̄)

0
8

〉 0

1

)
. (67)

Superscript indicate spin, subscripts the dimensionality of color representation.
there are four possible annihilations

1. First terms in the second and third lines of Eq. (67): a color singlet pair of spin 1 or 0 annihilates into a J/ψ
or ηc, the other pair rearranges into the available states (near threshold, J/ψ or ηc again);

2. Second term a color octet, spin 1 pair annihilates into a pair of light quark flavours, q=u,d,s and the latter
recombine with the spectator pair to produce a pair of lower-lying, open-charm mesons.

3. First term in the third line of Eq. (67): the similar process from color octet spin 0 pair is higher order in αs and
neglected.

Rates are computed with the formula (well known in atomic physics)

Γ = |ΨT (0)|2 · |v| · σ(cc̄→ f) (68)

Branching fractions are independent from |ΨT (0)|2. Total rates will be discussed later.
Results.
Branching fractions are summarised in Tabs. V.
Branching ratios in 4 muons are more favourable in 4 c than in 4 b tetraquarks, by a factor 4-10.

FIG. 21. Annihilation of color octet, spin 1 quark pairs.

Among 4c states, the ratio is more favourable for the 2++. In addition a spin 2 particle is produced in pp collision
with a statistical factor 2J + 1 = 5. In summary, the comparison of spin 0 and 2 is

[ccc̄c̄] ηc+ any DqD̄q (mq < mc) D∗q D̄
∗
q J/ψ+ any J/ψ + µ+µ− 4µ

JPC = 0++ 0.75 0.021 0.061 7.3 · 10−4 4.3 · 10−5 2.58 · 10−6

JPC = 2++ 0 0 0.247 29.1 · 10−4 17.4 · 10−5 10.3 · 10−6

TABLE V. Branching fractions of fully-charmed tetraquarks, assuming S-wave decay.

B4µ(2++) : B4µ(0++) ∼ 6 : 1; σ(2++) : σ(0++) = 5 : 1
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which gives a visibility ratio 30:1 in favour of 2++!!
The largest decay fraction is in charm-anticharm mesons, Fig. 21, perhaps accompanied by a tail of light mesons

from gluons irradiated in the decay process7. Weak decays of charm-anticharm mesons give rise to a characteristic
e− µ signal, a good signature for events containing the fully-charm tetraquark.

Widths. Total widths are proportional to the ratio: ξ = |ΨT (0)|2/|ΨJ/Ψ(0)|2. We determine ξ from models, and
use the spread of values as error estimate. We find ξ = 4.6± 1.4.

In conclusion... The existence of exotic SU(3)f multiplets with a characteristic scale of symmetry breaking is a
distinctive prediction of compact tetraquarks. The newly found strange exotics Zcs are close in mass, like X(3872)
and Zc(3900), and fit into their nonets: a clear score in favour. Much remains to be done, to produce more precise
data and to search for still missing particles, some with well predicted mass and decay modes. It is a tough order:
more luminosity, better energy definition, detectors with exceptional qualities... a lot of work...close exchange between
theory and experiment is needed.

7 we thank M. Mangano for interesting remarks.
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V. X(3872) AND ITS MISSING PARTNERS

We have stressed several times that the compact tetraquark model requires complete SU(3)f multiplets. Therefore,
if X(3872) is a combination of [cu][c̄ū] and [cd][c̄d̄], why don’t we see its neutral partner (the orthogonal combination),
or its charged partner X+ = [cu][c̄d̄] ?

We present in this Lecture arguments that indicate that the reasons may be: a) resolution: there may be two still
unresolved lines under the X(3872) lineshape, b) statistics: to see the X± we need to push further down the upper
limits of branching fractions.

A. Isospin breaking

The electromagnetic (e.m.) interaction violates Isospin symmetry, since proton and neutron or, equivalently, u and
d quarks, have different charges. A current-algebra calculation of the purely e.m. π+ − π0 mass difference [38] gives
indeed

mπ+ −mπ0 ' 5.0 MeV, (expt. 4.5936± 0.0005) (69)

This is not the whole story, however. Calculations of the purely e.m. neutron-proton mass difference gave system-
atically the wrong result: mp −mn > 0 (has had to be expected from a purely electrostatic origin). On top of the
e.m. corrections, S. Coleman and S. Glashow [39] made the hypothesis that there is a part of the strong-interaction
lagrangian (the tadpole) responsible for an additional violation of Isospin. For baryons, the tadpole dominates the
p-n mass difference, to give the observed negative value mp −mn ' −1.4 MeV, see e.g. [40].

In QCD, the tadpole hamiltonian of Coleman and Glashow is what we called L3 (Lect. 4)

L3 = m3(ūu− d̄d), m3 =
mu −md

2
; (∆I = 1) (70)

u, d and s current quark masses Current quark masses measure the degree of non-conservation of the Axial
currents, e.g. A1

µ(x), in terms of the Pseudoscalar current P 1(x)

A1
µ =

1

2

(
ūγµγ5d+ d̄γµγ5u

)
; P 1 = (ūγ5d+ d̄γ5u)

∂µA1
µ =

mu +md

2
P1

We introduce the full Scalar and Pseudoscalar octets:

Si = q̄λiq; Pi = iq̄λiγ5q (i, j = 0, 1, · · · , 8) (71)

with commutation relations:[
V i, Sj

]
= ifijk Sk;

[
V i, Pj

]
= ifijk Pk;

[
Ai, Sj

]
= idijk Pk;

[
Ai, Pj

]
= idijk Sk (72)

the fully antisymmetric coefficients fijk are the U(3)f structure functions; the fully symmetric coefficients dijk are
defined in terms of Gell-Mann’s matrices: Tr[λi{λj , λk}] = 2dijk.

The basic Ward identities are (Jµ = V µ, Aµ):

qµ

∫
d4x eiqx < 0|T [Jµ(x)Pi(0)] |0 >=

= i

∫
d4x eiqx < 0|T [∂µJ

µ(x)Pi(0)] |0 > +i

∫
d3x e−iqx < 0|

[
J0(x, 0), Pi(0)

]
|0 > (73)

In the limit of quark masses =0, Chiral symmetry SU(3) ⊗ SU(3) is exact. Long ago, G. Jona-Lasinio and
Y. Nambu [41, 42] proposed chiral symmetry to be spontaneously broken, with pions the massless Goldstone Bosons.
Quark mass would then give a non vanishing pion mass.

If spontaneous breaking respects (vector) flavour symmetry, SU(3)f , pion and kaons would be in an octet, splitted
by quark mass differences due to L8, which is what we see. This situation obtains if scalar densities take a vacuum-
expectation-value, with

< 0|S0|0 > 6= 0, < 0|S3,8|0 >= 0 (74)
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Relations between quark current masses and π, K masses has been worked out in 1968 by Gell-Mann, Oakes and
Renner [43] and by Glashow and Weinberg [44], using the basic Ward identities (73). For mq 6= 0 here are no massless
Goldstone bosons, the correlation functions have no pole for q → 0 and in this limit the first line tends to zero. We
find:

mu +md

2

∫
d4x eiqx < 0|T

(
P 1(x)P 1(0)

)
|0 >= −id110 < 0|S0|0 >= −iA

We approximate: ∫
d4x eiqx < 0|T

(
P 1(x)P 1(0)

)
|0 >= Z2

π

i

q2 −m2
π+

and find:

mu +md = Cm2
π+ (75)

with C a constant. Using the other currents, we find, similarly:

mu +md = Cm2
π+

mu +ms = Cm2
K+

md +ms = Cm2
K0

and

mu +md

ms + mu+md

2

=
m2
π+ +m2

π0

m2
K+ +m2

K0

= R ' 0.077 → mu +md

2
' 6 MeV, for ms = 150 MeV. (76)

R. Dashen [45] showed that the combination:

[m2
K+ −m2

K0 ]− [m2
π+ −m2

π0 ]

is not affected by e.m. corrections. Using the previous results, we find:

mu −md

ms + mu+md

2

= 2
[m2

K+ −m2
K0 ]− [m2

π+ −m2
π0 ]

m2
K+ +m2

K0

' −0.021

Finally

ms = 150 MeV : mu ' 4.3 MeV; md ' 7.6 MeV md −mu = 3.3 MeV (77)

ms = 180 MeV : mu ' 5.0 MeV; md ' 8.8 MeV , md −mu = 3.9 MeV (78)

The mass difference of up and down quarks is not small compared to their masses. The real world is close to isotopic
spin symmetry not because quark masses are very similar, like the masses of neutron and proton, but because both
are roughly equal to zero (this result was first reported in [46]).

Current vs Constituent quark masses. In Lect.2 we found much larger constituent quark masses then the
current masses just found. The difference is believed to be due to the mass associated to the QCD field that surrounds
quarks in the bound states. Indeed constituent quark masses from baryon and meson spectrum are different and we
may attribute the difference to the different QCD field configurations in mesons and baryons. However, as remarked
already in Lect. 2, the q − s mass difference, which is determined by the Ward identity valid to all orders in QCD,
turns out to be the same for baryon or meson constituent masses.

The value ms −mq = 150 MeV used in Eq.(77) is an estimate from the equal spacing rule of the baryon spin 3/2
resonances. In the value used in (78), the breaking due to spin-spin interaction has been removed, and it gives a
slightly larger value of Isospin breaking: md −mu = 4 MeV (we neglect the small difference and adopt (77) in the
following).

Isospin breaking and baryon masses. Isospin breaking effects have three components: the quark mass dif-
ference, the e.m. hyperfine interaction and the electrostatic repulsion between quarks. Karliner and Rosner [47] fit
isospin breaking differences in baryons to determine the relevant parameters, in particular the electrostatic corrections,
which scale with the radius of the diquark in the baryon:

a =
1

137
<

1

R
>Baryon
qq ∼ 2.83 MeV→ RB(qq′)3̄ ∼ 0.5 fm (79)
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B. Isospin breaking in tetraquarks

The attraction that produces the diquark implies that diquarks, or antidiquarks, are segregated in two different
potential wells, separated in space [48]. QCD confining forces prevail at large distances, where the diquarks see each
other as QCD point charges. At shorter distances the internal structure is felt and the competing interactions that
tend to dissociate the diquark, e.g. the attraction between quarks and antiquarks, produce repulsive forces between
diquark and antidiquark and a rise in the potential [49]. A phenomenological basis is provided by the mass ordering
in Z(3900) vs Z(4020):

• spin-spin interactions between light quark and antiquark located in different diquarks are definitely smaller than
one would guess from the same interactions within mesons;

• spin-spin interaction inside the diquark is about four times larger that the same interaction in the diquarks
inside charmed baryon states.

Separated diquark-antidiquark potential wells are illustrated in Fig. 22. This configuration could explain the more
important decay into open charm pairs compared to charmonium decays, due the difficulty of the heavy charm quark
to tunnel below the potential barrier (see Lect. 6).

FIG. 22.

If quark mass difference dominates: MXu −MXd
= 2(mu −md) ∼ −6 MeV = ∆m, but we do not see two distinct

lines around 3872 MeV. However, one must account (mainly) for electrostatic interactions inside diquarks and between
diquark and antidiquark.

Let us indicate with Rcq, and RX = λRcq the diquark radius and the X radius, respectively. From the parameter
determined by Karliner and Rosner, (79) and the ratio of hyperfine couplings, κcq in baryons and tetraquarks, we
determine Rcq as:

Rcq ∼ RB(cq′)3̄ (
κBcq
κXcq

)1/3 ∼ 0.3 fm

λ appears in the electrostatic interaction between quarks. Following K&R [47]8

M(Xu)−M(Xd) = ∆m+
4

3
a′ − 5

3

a′

λ
+ . . .

where a′ = a
RB

(cq)3̄

Rcq
is the parameter a in (79), rescaled with the diquark radius.

With respect to the naive estimate, the size of the mass difference is suppressed for λ > 1. Numerically: M(Xu)−
M(Xd) ∼ −1.2 MeV for λ = 3, i.e. RX ∼ 1 fm.
Xu and Xd may be degenerate within the X line, observed at present with resolution larger than 1 MeV. Is

experimental resolution the key to the puzzle ?

C. Searching for X+ = [uc][d̄c̄]

The charged X has been searched in B0 and B+ decays: B → KX+. Present experimental upper limits are
inconsistent wth the hypothesis that X(3872) has isospin= 1, which however is a very restrictive hypothesis To test

8 The role of the electrostatic corrections goes as follows: the second term in the r.h.s. is the effect of the electrostatic u− c repulsion vs
d− c attraction, which increases M(Xu) with respect to M(Xd), the third term is the effect of the [uc]− [ūc̄] vs. [dc]− [d̄c̄] electrostatic
attraction, which reduces M(Xu) w.r.t. M(Xd) and is suppressed for large λ.
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consistency of data with the tetraquark picture, we have analysed [50] the observed four ratios of decay rates

R(++) =
Γ(B+ → K+ +X(3872)→ K+ + 3π ψ)

Γ(B+ → K+ +X(3872)→ K+ + 2π ψ)
; (80)

R(00) =
Γ(B0 → K0 +X(3872)→ K+ + 3π ψ)

Γ(B0 → K0 +X(3872)→ K+ + 2π ψ)
; (81)

R
(++,00)
2π =

Γ(B+ → K+ +X(3872)→ K+ + 2π ψ)

Γ(B0 → K0 +X(3872)→ K+ + 2π ψ)
; (82)

R
(sφ,00)
2π =

Γ(Bs → φ+X(3872)→ φ+ 2π ψ)

Γ(B0 → K0X(3872)→ K+2π ψ)
. (83)

We have updated the analysis using the recent value [51]:

R(++) = 0.70± 0.4→ 2.0± 0.5 (84)

with the other values unchanged:

R(00) = 1.4± 0.6, R
(++,00)
2π = 2.0± 0.6, R(sφ,00) ∼ 1 (85)

Fig. 23 (left panel) shows the diagram for the decay: B+ → K++tetraquark. Restricting to non-strange tetraquarks
Xu and Xd, the K meson is formed by the s̄ from weak decay and: either the spectator quark (amplitude A1) or the
quark from the sea (A2). One has:

A(B+ → XdK
+) = A1, A(B+ → XuK

+) = A1 +A2; A(B+ → X+K0) = A2

A(B0 → XdK
0) = A1 +A2, A(B0 → XuK

0) = A1; A(B0 → X−K+) = A2

FIG. 23. Left: diagram forB-decay to a six-quark state. Right: contour plots of the ratios in (80)-(82).

Physical tetraquarks X1,2 are combinations of Xu,d with a mixing angle:

X1 = cosφ
Xu +Xd√

2
+ sinφ

Xu −Xd√
2

; X2 = − sinφ
Xu +Xd√

2
+ cosφ

Xu −Xd√
2

so that, e.g.

A(B+ → K+X1 → K+ρ0 + ψ) = A(B+ → K+X1) ·A(X1 → K+ρ0 + ψ) ∝

∝
[
(cosφ+ sinφ)(A1 +A2) + (cosφ− sinφ)A1

]
sinφ =

=
(

(2A1 +A2) cosφ+A2 sinφ
)

sinφ

the observed rates are obtained by summing incoherently the amplitudes squared of the two unresolved lines inside
X(3827), i.e. summing the rates into X1 and X2. Apart from phase space, ratios of rates are functions of φ and
z = A2/(2A1 +A2).



35

Results
The red cross in the figure on the right indicates a solution with errors estimated from the extension of the overlap:

φ = −140 ± 30; z = +0.06± 0.005 (86)

Parameters of this solution are rather similar to those given previously in [50].
Limits to X± production

PdG : R
(0+,00)
2π < 1 (87)

R
(0+,00)
2π < 0.57 (previous analysis) (88)

R
(0+,00)
2π < 0.26 (present analysis). (89)
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VI. TETRAQUARKS IN THE BORN-OPPENHEIMER APPROXIMATION

Doubly heavy hadrons, baryons or tetraquarks, are a relatively new sensation.
A doubly charmed baryon, Ξ+

cc = [ccd] has been first observed by LHCb in 2018 [52]. Doubly heavy tetraquarks, e.r.
[cc][q̄q̄′] have been proposed by Esposito et al in 2013 [53] and later considered as possibly weakly decaying hadrons
by Karliner and Rosner [54] and by Eichten and Quigg [55] in 2017.

As illustrated in Lect. 1, starting from a hadron containing one heavy antiquark, e.g. a qc̄ meson, one can generate
a QCD allowd configuration by replacing the anticharm with a [cc] pair in a color antisymmetric 3̄c configuration. In
the limit of infinite charm mass, the two charm quarks will be closer and closer and the spectator quark sees a QCD
field configuration identical to the field in the original meson. In this limit, one has a symmetry linking the QCD
field energies of double charm baryon and charmed meson. This is the content of the single heavy-doubly heavy quark
symmetry introduced by Savage and Wise and by Brambilla, Vairo and Rosch [56–58], which says that the masses of
the two particles are the same, except for a calculable difference due to the different constituent quark mass and the
hyperfine, spin-spin interaction. An example of this symmetry is the relation between hyperfine mass differences:

(Ξ∗cc − Ξcc) =
3

4
(D∗ −D)

Constituent quark masses cancel separately in the l.h.s and r.h.s.; the ratio 3/4 arises from explicit calculations of
hyperfine interactions (see Lect. 2)

(Ξ∗cc − Ξcc)

(D∗ −D)
=

3κ(cq)3̄

2κ(qc̄)1

after using the QCD relation κ(qc̄)1 = 2κ(cq)3̄ .

A. Born-Oppenheimer approximation in brief

Consider a system with two heavy and (say, two) light particles, with Hamiltonian [59]:

H = Hheavy +Hlight =
1

2M

∑
heavy

P 2
i + V (xA, xB) +

1

2m

∑
light

p2
i + Vl(xA, xB , x1, x2) (90)

First, consider the heavy particles as classical sources with fixed coordinates and quantum numbers, and find the
ground state of the light particles, solving the eigenvalue equation:

Hlight|f0 >= E|f0 >; f0 = f0(xA, xB , x1, x2), E = E(xA, xB) (91)

Then look for solutions of the complete Schrödinger equation for wave functions of the form:

Ψ = ψ(xA,xB) f0(xA, xB , x1, x2)

Applying H to Ψ one encounters terms of the kind:

− iPΨ =
∂

∂xA
Ψ =

∂ψ

∂xA
f0 + ψ

∂f0

∂xA
(92)

The Born-Oppenheimer approximation consists in neglecting systematically the second with respect to the first term.
The error vanishes for m/M → 0 (for Electrodynamics see Weinberg’s book, we shall consider later the error in QCD,
Sect. VI F).

The upshot is the Born-Oppenheimer (BO) equation:∑
heavy

P 2
i

2M
+ VBO(xA,xB)

ψ = Eψ

with the BO potential given by

VBO(xA,xB) = V (xA,xB) + E(xA,xB)
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Orbitals (borrowed from molecular physics).
We associate each light particle to one heavy particle with attractive mutual interaction, solving the corresponding

Schrödinger equation and neglecting the interactions with the other particles. The wave function thus obtained is an
orbital and we choose f0 as the product of all orbitals. If there are identical light particles, we have to symmetrise
(we consider here S-wave states, statistics will be taken care by symmetrising or anti-symmetrising in the internal
degrees of freedom). The interactions left-over from the orbitals, e.g. interactions between light particles, are taken
to first order in perturbation theory and

E =< f0|Hlight|f0 >

Warming-Up with the ion H+
2 (PPe−)

The light particle interaction potential is

VI = −α
(

1

|x− xA|
+

1

|x− xB |

)
(93)

It produces two orbitals: e−P (xA) and e−P (xB) with wave functions f(x−xA) and f(x−xB) (f =Hydrogen wave
function) and eigenvalue

E = −1

2
meα

2

We take (a standard reference on H, H2 and He molecules and ions is [60]):

f0 =
f(x− xA) + f(x− xB)√

2(1 + S)
; S =

∫
f∗(x− xA)f(x− xB)

and

VBO = +α
1

|xA − xB |
+ < f0|Hlight|f0 > (94)

B. Colour gymnastic: couplings . . . and strings

We start with the simplest case (explicit derivations are found in [61]).
Doubly charmed baryon: cc in 3̄. In a colour singlet baryon, all pairs are in colour 3̄, and the colour couplings

(see lect. 2) are distributed according to

λcc = λcq = −2/3 (95)

Hidden charm tetraquark. We take the charm pair in color octet, so that

T = Tetraquark = |(c̄c)8(q̄q′)8 >1 (96)

correspondingly, we compute the colour couplings as

λcc̄ = [
1

2
(C2(8)− 2C2(3))] = +

1

6
= λqq̄′ (repulsive) (97)

cc̄ repel each other as qq̄ do, like protons and electrons in H2 molecule. Using a Fierz rearrangement formula (see the
Appendix of [61]), we also obtain:

T = |(c̄c)8(q̄q′)8 >1=

√
2

3
|(Qq)3̄(Q̄q̄)3〉1 −

1√
3
|(Qq)6(Q̄q̄)6̄〉1

so that

λq̄c = λc̄q =
2

3
λ3 +

1

3
λ6 =

2

3
(−2

3
) +

1

3
(
1

3
) = −1

3
(attractive)

Similarly one finds

λcq = λc̄q̄ = −7

6
(attractive)
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Double charm tetraquark [cc]ūd̄]. We assume cc in 3̄. The lowest energy state corresponds to cc in spin one
and light antiquarks in spin and isospin zero. The tetraquark state is:

Tcc = |(cc)3̄, (ūd̄)3〉1

It can be Fierz transformed into

Tcc =

√
1

3
|(ūc)1, (d̄c)1〉1 −

√
2

3
|(ūc)8, (d̄c)8〉1

with all attractive couplings

λcc = λūd̄ = −2

3
; λcū = λcd̄ = −1

3

String tension. The full potential is obtained as a generalization of the Cornell potential, introduced in connection
with charmonium spectrum. For a heavy colour triplet pair, QQ̄, in an overall colour singlet state, the QCD potential
is taken as:

V (r) = −4

3

αS
r

+ kr + V0 = VC(r) + Vconf(r) + V0 (98)

• V0 is an unknown constant, to be determined from the mass spectrum, e.g. from the mass of the ground state;

• the first term corresponds to the one-gluon exchange approximation. It is generalised to any pair of coloured
particles in a colour representation R by the combination of the Casimir coefficients introduced in Lect.2

− 4/3→ λq1q2

• the second term arises from quark confinement and dominates at large separations; in the simplest picture,
it is due to the condensation of Coulomb lines of force into a string that joins quark to the antiquark; in this
picture, it is natural to assume that the string tension, k, scales with the coefficient of the Coulombic interaction:
kq1q2 ∝ |λq1q2 |.

• for colour charges combined in an overall colour singlet, the assumption leads to k ∝ |C2(q)| (called Casimir
scaling).

In conclusion, we take k from chamonium spectrum and:

V (r) = λq1q2
αS
r

+
3|λq1q2 |

4
kr + V0 = VC(r) + Vconf(r) + V0 (99)

Orbitals with non-vanishing triality are confined and we add to the BO potential the appropriate linearly rising
potential, Fig. 24(left).

Triality zero orbitals, e.g. (cq̄)8, are NOT confined because color can be neutralised by extra gluons, and the BO
potential vanishes for large separation of the heavy constituent [61, 62].

The Cornell potential contains the additive constant V0. In charmonium physics V0 is determined from one physical
mass of the spectrum, e.g. the ground state. In some cases, we are able to determine V0:

• for QQ̄qq̄, V0 is fixed by the ground state mass, which then cannot be predicted. The wave function gives
valuable information about the internal structure.

• for Double charm baryon: V0 is fixed by the boundary condition from heavy quark-heavy diquark symmetry;

• for QQq̄q̄′ tetraquarks: V0 is fixed by the condition that the potential gives rise to a two mesons state at infinite
separation.

C. The mass of the doubly charmed baryon.

We treat it like the H+
2 = (PPe−) ion.

Hlight =
p2

2m
+
[
− 2

3
αs

1

|x− xA|
+ Vconf (x− xA)

]
+
[
− 2

3
αs

1

|x− xB |
+ Vconf (x− xB)

]
(100)
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There are two orbitals, obtained by combining kinetic energy with either the first or the second term of the interaction:

orbital(A,B) = f(x− xA,B) = fA,B(x)

Ground state, Fig. 24(right):

f0 =
f(x− xA) + f(x− xB)√

2(1 + S)
; S =

∫
d3x fA(x)∗fB(x)

Energy of the orbital:

E0 = V0 + E0,orb + 2Mc +Mq (101)

FIG. 24. (left) Confined orbitals. (right) Ground state of the doubly charmed baryon.

Calling rAB = |xA − xB |, the first order energy is:

E(rAB) =< f0|Hlight|f0 >= E0 + ∆E(rAB) =

= E0 −
2αS

3

1

1 + S
[I1(rAB) + I2(rAB)]

I1,2 are functions of rAB defined in terms of the orbitals

I1(rAB) =

∫
d3x |fA(x)|2 1

|x− xB |

I2(rAB) =

∫
d3x fA(x)∗fB(x)

1

|x− xB |

E0 is the sum of constituent quark masses plus all additive constants, that is the energy of the orbitals and the
confinement constant V0, given in Eq. (101). When we let rAB → 0 and subtract one unit of Mc, the total energy
should tend to the mass of the cq̄ meson, which, in the constituent quark model equals Mc +Mq. In formulae:

E0 + ∆E(0)−Mc = Mc +Mq, that is

E0,orb + V0 = −∆E(0) (102)

this is the single heavy quark-double heavy quark symmetry. Adding the confinement potential, the full BO
potential is determined as

VBO(rAB) =

= 2Mc +Mq −
2

3
αS

1

rAB
+ [∆E(rAB)−∆E(0)] + k × (r −R0)× θ(r −R0)

= 2Mc +Mq −∆E(0) +
{
− 2

3
αS

1

rAB
+ ∆E(rAB) + k × (r −R0)× θ(r −R0)

}
(103)

We solve numerically the Schrödinger equation for heavy particles with the potential given be the expression in curly
brackets and denote by EBO the eigenvalue of the ground state. We find

EBO = −45+17
−7 MeV for R0 = 8± 2 GeV−1 (104)

Given the result



40

Terms Value (MeV) MPR Notes Terms Value (MeV) K&R Notes

2Mm
c +Mm

q 3642 from mesons 2Mb
c +Mb

q 3784 from baryons

−∆E(0) + EBO +25+17
−7 BO eq. and eigenv. cc binding −129 from J/ψ, ηc

partial sum 3667 – partial sum 3655 –

1/2κcc −14 from J/ψ, ηc 1/2κcc −14.2 from J/ψ, ηc

−2κqc −30 from Λc mass −2κqc −42.4 fit to charm. bar. masses

Total 3651 – Total 3627± 12 expt: 3621.2± 0.7

TABLE VI. BO calculation of the doubly-heavy baryon mass, first and second columns, compared to the quark model prediction, fourth
and fifth columns, and to the experimental value reported in the sixth column.

∆E(0) = −65 MeV

we find the value of the constant to add to the sum of the constituent masses in (103)

−∆E(0) + EBO = +25+17
−7 MeV

The result of our Born-Oppenheimer calculation are reported in Table. VI and compared to the quark model
prediction [21]. It is remarkable that the estimate of the baryon mass in the two methods, prior to the addition
of hyperfine corrections, differ by 12 MeV over corrections of the order of 100 MeV, a 10% accuracy! The further
difference between quark model and us depends on the way one estimates κqc and is in line with the constituent quark
model precision.

A recent lattice QCD calculation [63] gives

M(Ξcc)QCDLatt. = 3634± 20 MeV (105)

The experimental value by LHCb [52] is:

M(Ξcc)Expt = 3621.2± 0.7 MeV (106)

The consistency of results derived by alternative routes among themselves and with the experimental value is remerk-
able.

D. Hidden charm tetraquark.

We apply the Born-Oppenheimer approximation to the configuration: (cc̄)8 (qq̄′)8.
We report in Fig. 25 the BO potential (yellow line), radial wave function (blue) and Eigenvalue (green) for two

cases.

FIG. 25. .
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• Left panel: ∆V (qq̄′) from one-gluon exchange. Diquark and antidiquark orbitals overlap in a configuration
similar to the adjoint hadrocharmonium;

• Right panel: we let ∆V (qq̄′)→ 2 × one gluon exchange. Diquark and antidiquark are well separated (Lect. 5),
there is a large potential barrier to cc̄ annihilation

The internal configuration depends crucially upon qq̄ repulsion. For large repulsion, we reach configurations similar
to those envisaged in Lect. 5. The cq orbital is found to have a radius R ∼ (0.27 GeV)−1 = 0.74 fm.

E. Double charm or beauty tetraquark

We assume the composition [(QQ)3̄(ūd̄)3], Q = b, c. We fix the heavy quark coordinates in x1 and x2 and indicate
by ψq the orbital q̄Q(x1) and φq the orbital q̄Q(x2). There are two possibilities, namely ψuφd and ψdφu and the
unperturbed state is the superposition of two states with the roles of ū and d̄ interchanged

f0 =
ψuφd + ψdφu√

2(1 + S2)
(107)

with S the superposition integral encountered before, Sect. VI C.
Orbitals are superpositions of color octet and singlet and their color can be screened by gluons, there is no string

joining them and the BO potentail vanishes at infinity.

FIG. 26. .

We report in Fig. 26 the BO potential (yellow line), radial wave function (blue) and Eigenvalue (green) for Tbb (left)
and Tcc (right) tetraquarks. Indicating with EBO the eigenvalue of the BO Schrödinger equation and specializing to
the double charm case, the predictted Tcc mass is given by

M(Tbb) = 2(Mc +Mq) + EBO +
1

2
κcc −

3

2
κqq

MPS(cq̄) = Mc +Mq −
3

2
κbq̄

Correspondingly, the Q-value with respect to the threshold of two-pseudoscalar mesons is:

Qcc = M(Tcc)− 2MPS(cq̄) = EBO +
1

2
κcc −

3

2
κqq + 3 κcq̄ (108)

Since EBO < 0 and κQq, κQQ → 0 for MQ → ∞, Eq. 108 indicates that the Q-value may become negative,
for sufficiently large heavy flavour mass MQ, a possibility raised by Karliner and Rosner [54] and by Eichten and
Quigg [55] and Luo et al. [64]. Preliminary Lattice QCD calculations seem to support this possibility, within still
considerable errors [65–68].

The evaluation of (108) given in the MPR paper takes κQQ, κqq and κQq̄ from baryon and meson spectrum (see
Lect. 2) and gives (in MeV)

Qcc = +7(−10); Qbb = −138(−156) (109)



42

QQ′ūd̄ MPR K. and R. E. and Q. L. Lattice QCD

ccūd̄ +7(−10) +140 +102 +39 −23± 11 Junn. et al.

cbūd̄ −6(−74) ∼ 0 +83 −108 +8± 23 Francis et al.

bbūd̄ −138(−156) −170 −121 −75

−143± 34 Junn. et al.

−143(1)(3) Francis et al.

−82± 24± 10 Leskovec et al.

TABLE VII. Q values in MeV for decays T → PS meson + PS meson+γ obtained with string tension 1/4 k, see MPR and, in parentheses,
with string tension k. Models in Karliner and Rosner, Eichten and Quigg, Luo are different elaborations of the constituent quark model
we use throughout this paper, more details are found in the original references. In the last column the lattice QCD results

indicating a mass of Tcc close to the DD̄ threshold and Tbb well below the BB̄ threshold.
However, preparing these lectures, I realised that taking κqq and κQQ from baryon and Quarkonia masses, as done

to obtain the BO result in Tab VI, is not correct. As we have seen in Lects. 2 and 3, the hyperfine couplings depend
crucially from the overlap probability of the quark pair, |ψ(0)|2, which cannot be assumed to be equal, in tetraquarks,
to the overlap probability of the same pair in baryons.

In our Born-Oppenheimer scheme, however, we may estimate deviations from this hypothesis and obtain an im-
proved estimate of the Q-values.

Light antiquarks are each bound to a heavy quark in orbitals with wave functions ψ(ξ) and φ(η); ξ = xq1−xA, η =
xq2 − xB and the average distance of the light quarks is a function of the heavy quarks distance, rAB , given by:

D(rAB) =

∫
d3ξd3η

|ψ(ξ)|2 |φ(η)|2 + ψ(ξ)φ(ξ)ψ(η)φ(η)√
1 + S2(rAB)

|(ξ + xA)− (η + xB)| (110)

The average distance in the tetraquark is then:

D(QQ)
qq =

∫
drAB χ2(rAB)D(rAB)

denoting by κ
(QQ)
qq , the h.f. coupling of the light quarks qq in TQQ, we have

κ(QQ)
qq = κqq

( RBqq

D
(QQ)
qq

)3

which leads to:

κccqq = +2.1 (+4.7); κbbqq = +1.2 (+1.9)

Where the estimates refer to orbitals computed with the string tension scaled from charmonium string tension by the
ratio of the Casimir couplings, see Sect. VI B (in parenthesis evaluations with charmonium string tension).

We proceed analogously for the h.f. QQ coupling in the tetraquark, specialising to the charm case and defining

D(cc)
cc =

∫
drAB χ2(rAB) rAB (111)

We scale with the quarkonium average radius, Rcc̄, obtained from the wave function of the Cornell potential

VCornell = −4

3

αs
r

+ kr; (αs|Mc
= 0.3, k = 0.15 GeV2)

to obtain

κ(cc)
cc = κcc

( Rcc̄

D
(cc)
cc

)3

with κcc from Tab. IV.
Numerical results are summarised in Tab. VIII. The string tension is taken from (99) with |λqQ| = 1

3 (in parenthesis,
values with k = 1). Eigenvalues EBO are from the MPR paper and, following the notation of Tab. VII, the Q-value
is taken from the threshold of 2 -Pseudoscalar mesons: Q = MBO(QQq̄q̄)− 2MPS(Qq̄).

In conclusion, the new estimate of Tcc mass is close to the observed mass of the double charm meson

M(TBOcc ) = 3872(3854)↔ LHCb : T+
cc(3875) (112)

A stable Double Beauty tetraquark is still, but only marginally, possible.
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Heavy Quark κQQqq MeV κQQQQ MeV E(MeV) Q-value Mass BO Observed

cc +2.1 (+4.7) +1.2 (1.9) −70 (−85) +137 (+119) 3872 (3854) 3875

bb +2.4 (+7.7) +0.34 (+0.51) −67 (−85) −1.8 (−27.5) 10556(10531) ??

TABLE VIII.

F. About the error of BO approximation in QCD

When deriving the Born-Oppeheimer equation for the heavy particles, we considered Eq. (92)

iPΨ =
∂

∂xA
Ψ =

∂ψ

∂xA
f0 + ψ

∂f0

∂xA

and we choose to neglect the second term with respect to the first one.
The ratio of the second (neglected) to the first (retained) is given approximately by

Λ =
1/a

1/b

where a and b are the lengths over which f or ψ show an appreciable variation.
The length a is simply the radius of the orbitals, which we determine by minimizing the Schrödinger functional of

the light quark. We find typically 1/a = A ∼ 0.3 GeV, i.e. a ∼ 0.7 fm.
The length b has to be formed from the dimensional quantities from which the Born-Oppenheimer equation depends.

In the case of double heavy baryons and hidden heavy flavor tetraquarks, Sects. VI C and VI D, the BO equation
depends upon M , A and the string tension k, which has dimensions of GeV2. A quantity b with dimensions of length
can be formed as

b = (MkA)−1/4

Therefore

Λ = A3/4(kM)−1/4 (113)

which is 0.57 for charm and 0.43 for beauty, using k = 0.15 GeV2 and the constituent masses of charm and beauty
from Tab. III.

We note in Sect VI E that the Born-Oppenheimer potential for double heavy tetraquarks does not depend on the
string tension, which is screened by gluons for colour octet orbitals. In this case

b = (MA)
−1/2

and

Λ =

(
A

M

)1/2

(114)

giving 0.42 for charm and 0.24 for beauty. It is worth noticing that the error we are estimating is the error on binding
energies, which turn out to be around 100 MeV or smaller, in absolute value. So, the errors corresponding to (113)
and (114) may be in the order of 20− 50 MeV.
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VII. MULTIQUARK STATES IN N COLOURS, IN THE N →∞ LIMIT

There is no difficulty to write QCD in an arbitrary number, N , of colours. In the Seventies, ‘t-Hooft [69, 70]
investigated the limit N →∞ and found that, to leading order in N , correlation functions are dominated by the sum
of planar diagrams and that this limit allows to describe in very simple terms the properties of mesons, the qq̄ bound
states. The description of baryons in large N QCD requires a different approach, in that the three-quark description
of a baryon requires in an essential way that there are only three colors. The description of baryons for arbitrary
N has been proposed and investigated by Witten in an equally seminal paper [71]. In this lecture we describe two
alternative descriptions of muktiquark fields in the N →∞ limit.

A. QCD at large N in a nutshell

We start from the QCD coupling

LQCD = gQCD q̄
λa

2
Aaµγ

µq (115)

where q and A are quark and gluon fields in color SU(N).
Consider the gluon loop, Fig. 27 (left). The N dependence arises from the structure functions, which appear in the

three-gluon coupling, after we sum over color indices (cd) that run in the loop, and is made explicit by the formula

A ∝ g2
QCD Tr(T aT b) = g2

QCD 2Nδab; T cab = ifacb (116)

The amplitude remains finite when we send N →∞ with g2
QCD N = fixed = λ. λ is often indicated as the ’t-Hooft

FIG. 27. (left); (right) .

coupling.
Another way to get to the same result is to rewrite the gluon field in terms of the N×N matrices (Aµ)cd = (T a)cdA

a
µ.

In the large-N limit we may neglect the tracelessness condition that characterizes SU(N) matrices and treat all N2

components as independent. With this parametrization we replace the gluon line by two lines running in opposite
directions and carrying the two conjugate color indices, c and d. The loop in Fig. 27 (left) is then written as in Fig. 27
(right). The factor N in the amplitude is now made evident by the closed circle which is realised in N colors.

We shall be interested in correlation functions with a number of insertions of color singlet quark bilinears, corre-
sponding to external mesons or tetraquarks. If k is the exponent of the leading power of N , ’t-Hooft has shown the
general rule :

k = 2− L−H (117)

where L is the number of fermion loops and H the number of handles, i.e. gluon lines that topologically are not in
the same plane as the other lines, see Fig. 28 (b). For a check, consider the diagram in Fig. 29. Applying the gluon
line writing just introduced to the diagram on the left, we obtain the diagram on the right which has two color loops,
hence a factor N2. Multiplying by g2

QCD, we obtain:

A = N2g2
QCD = N2 λ

N
= λ N, i.e. k = 1 (118)

which agrees with ’t-Hooft rule (117) since the diagram in Fig. 29(left) has L = 1, H = 0.
(qq̄) mesons : interactions and scattering. External mesons are represented by the insertion color singlet (qq̄)

operators in one fermion loop. The meson propagator is represented in Fig. 30, to be understood as representing the
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FIG. 28. .

FIG. 29. .

FIG. 30. .

sum of all diagrams with one external fermion loop, dressed with lines of interacting gluons in a planar topology (as

illustrated in Fig. 28(a)). To normalize the amplitude, we introduce one factor 1/
√
N for each insertion, so as to give

a finite amplitude in the limit N →∞.
With the same convention, the meson-meson scattering amplitude, Fig. 31(left), is

A(M1 +M2 →M3 +M4) ∝ 1

N
(119)

Cuts in the s-channel or in the t-channel give poles corresponding to stable mesons. Since the amplitudes at q2 →∞

FIG. 31. (left); (right) .

increases logarithmically, there must be an infinite number of poles, corresponding to a tower of (qq̄) states with given
flavour.

It is important to note that in the leading 1/N expansion, there is only one diagram that represents at the same time
s− channel and t-channel poles. The equality in Fig. 31 (right) corresponds to the Dolen-Horn-Schmidt duality [72, 73]:
the sum of resonant amplitudes in s-channel reproduces the sum of the poles exchanged in the t-channel. The planar
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approximation gives indeed a picture close to the Veneziano amplitude [74] (an illuminating discussion of Dolen-Horn-
Schimdt duality, Veneziano model, dual and string models is found in [75]).

In a way, we can say that each s-channel pole, e.g. the ρmeson, is built by the forces represented by the exchange of t-
channel, color singlet, resonances. The old-time bootstrap idea of Chew and Frautschi: resonances = binding forces,
finds its realization in the leading order of the 1/N expansion.

Can we then say that the ρ meson is a π − π hadron molecule? Well, yes and no.
Yes, because the description of the ρ meson as due to color singlet binding forces is correct. No, because the ρ

appears only if we allow, in an essential way, an infinite number of exchanges. Fur sure, not when we limit the
exchange to the ρ meson itself and few others, lowest lying color singlet resonances, as was done in the old-time
bootstrap and as usually implied by the locution hadron molecule.

A pure dual model description of hadrons fails to account for deep inelastic processes, that reveal the point-like
nature of constituents. To describe mesons and baryons, quarks are definitely better.

B. Tetraquarks in the large N expansion

Respectability of tetraquarks was somehow tarnished by a theorem of S. Coleman [17]. The theorem is based on
the fact that, by Fierz rearrangements, tetraquark operators can be reduced to a sum of products of color singlet
bilinears. If so, the leading term in the 1/N expansion will be given by the disconnected diagrams of Fig. 32, of order
N2. In Coleman’s words: tetraquark operators, to leading order, create out of vacuum only pairs of mesons.

FIG. 32. .

The argument was reexamined by S. Weinberg [76] who argues that if the connected tetraquark correlator develops
a pole, it will be irrelevant that the residue of the pole is of order 1/N with respect to the disconnected part: at the
pole the connected part will dominate anyhow.

The real issue is the width of the tetraquark state: it may increase for large N, to the point of making the state
unobservable. Weinberg’s conclusions was that the decay rate goes like 1/N , making tetraquarks a respectable
possibility. Weinberg’s discussion has been enlarged by Knecht and Peris [77] and further considered by Cohen and
Lebed [78].

Weinberg’s result. Connected, one loop amplitudes with insertions of quark color singlet operators give a factor
N, Fig 33. Interpolating field operators have to be multiplied by powers of N, such as to make the connected two-point
correlators to be normalized to unity. Correspondingly, Weinberg finds decay amplitudes of order:

Aconn. ∝ N
1

N
√
N

=
1√
N

(120)

Rates do not diverge with N , tetraquarks are observable!
Beyond planar diagrams. Typical connected diagrams of order N show a 4 quarks cut. But [79, 80]: are these

free or interacting quarks? The same question arises if we fill the quark loop by a multigluon, planar diagram á la
’t-Hooft: do planar interactions resolve the problem?

Consider Fig. 34 (left). In a planar diagram all lines must be inside the quark loop. Then, to keep the result of
order N , it must be possible to bring the gluon inside the fermion loop as indicated by the equality in the Figure.
But then, the four-quark cut indicates that we are in presence of two non-interacting mesons. It is difficult to
imagine this kind of diagrams to be able to bind the mesons into a genuine tetraquark.

An internal gluon as on Fig. 34(right) would forbid moving the gluon inside the loop and it would leave us with
a genuine interaction of the two quark pairs identified by the cut. The gluon external to the loop in Fig. 34 (right),
generates a topological handle, as indicated by the fact that the diagram is of order N−1: L = 1, H = 1→ k = −1.

Tetraquark diagrams are next-to next-to leading
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FIG. 33. .

FIG. 34. (left); (right) .

Investigations by several groups have addressed the issue of the order in the 1/N expansion where bound tetraquark
poles may appear. The question is still open. I will summarise here the conclusions of our group [81] illustrated in
Fig. 35.

Only one diagram is relevant, with meson insertions distributed along the two fermion loops, Fig. 35.

FIG. 35. .

• for given flavours, color 3̄ tetraquarks suffice to obtain a consistent solution, in line with the fact that (qq)3̄ is
attractive and (qq)6 is repulsive;

• decay amplitudes are as follows:

A(T →M1 +M2) ∝ 1

N2

A(T ∗ → T +M) ∝ 1√
N

A(T ∗ → T + γ) ∝ N0;

(121)



48

• the decays: Y → Z + π and Y → X + γ are allowed transitions;

• neutral hidden-charm tetraquarks mix with charmonia to order: 1/(N
√
N);

• Y states may be produce by and annihilate into e+e− via mixing.

C. The alternative scheme, descending from Witten’s baryons

As we have just seen, tetraquarks of composition [qq′][q̄′′q̄′′′] can be generalized to N colours.
Pentaquarks, however, are related to baryons, which in QCD with general N require a completely different toolkit,

since the three quark configuration in the baryon generalizes to the fully antisymmetric combination:

B = q[1q2...qN ] (122)

first studied by Witten.
The baryonium scheme, a formulation á la Witten to generalize tetraquarks to any N, has been explored by Rossi

and Veneziano in 1977 and reconsidered in 2016 [82–84]. Tetraquarks are defined by generalising the antisymmetric
quark and antiquark combinations:

T = εaa1...aN−1
(qa1 . . . qaN−1) εab1...bN−1(q̄b1 . . . q̄bN−1

) (123)

the generalised diquark q[1q2...qN−1] transforms as an antiquark and can generalise the construction used in N = 3
for pentaquarks and dibaryons.

In a world of two colours, the new structures disappear: N = 2 QCD is made only of mesons, q̄q, ”baryons”, qq,
and molecules thereof. New spectroscopic series start to appear at N = 3, (our world!) and can be extended to N
colours [85], as shown in Fig. 36. The generic multiquark structure is characterized by an integer 0 ≤ p ≤ N and

FIG. 36. .

consists of

• N − p antiquarks, each in the representation N̄ of SU(N);

• p generalised diquarks, each in N̄ of SU(N)

• in all we have N fundamental representations of SU(N), which can be joined in a color singlet by the ε symbol
in N dimensions.

For N = 3: p = 0, antibaryon; p = 1, tetraquark; p = 2, pentaquark; p = 3, dibaryon.
By analogy, for generic N we adopt the terminology: p = 0, antibaryon; p=1, Rossi-Veneziano tetraquark; 2 ≤ p ≤

N − 1, generalised pentaquarks, p = N , generalised dibaryons.
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Baryon: structure and couplings to mesons. Witten assumes that each quark lives in Harthree-Fock wave-
functions φr(x), with r = 0, 1, ... ground and excited states. Given full color antisymmetry embodied in (122), the
space wave function of the baryon is the symmetric wave function of N bosons.

Ground state;

Ψ1 2 ...N
0 (x1, x2 . . . xN ) = ε1 2 ... Nφ0(x1)φ0(x2) . . . φ0(xN ) (124)

Excited state;

Ψ1 2 ...N
r (x1, x2 . . . xN ) = ε1 2 ... N × 1√

N
×

×[φr(x1)φ0(x2) . . . φ0(xN ) + φ0(x1)φr(x2) . . . φ0(xN ) + · · ·+ φ0(x1)φ0(x2) . . . φr(xN )]. (125)

We denote by nr the occupation number of φr(x). The energy of a generic baryon state is then

M = NMq +
∑
r

nrεr;
∑
r

nr = N

with Mq the quark mass and εr the energies of the excited states, both assumed to be independent from N . Meson
states are assumed to be normalised as

M =
1√
N

∑
`

q̄`q
` (126)

The meson-baryon trilinear coupling is represented in Fig. 37. The initial quark wave function is indicated by φin,

FIG. 37. .

the final quark is in the ground state φ0. With φin = φ0 or φr, we obtain the ground state meson-baryon coupling,
e.g. gNN̄π, or the transition amplitude of the excited state, e.g. A(∆→ Nπ).

The basic transition occurs via one gluon exchange:

qi(φin)→ qi(φ0) + q` + q̄` (` = 1 . . . N) (127)

Projecting over the colour singlet meson state one finds the effective operator for the baryon to baryon transition

O =
λ2

N

√
N q̄O(x)q.

In the above, the O(x) is a N -independent operator acting on the single quark wave functions φ(x) and connecting
φin to φ0.

The transition operator applied to (124) gives N equal terms and we obtain (see Witten 1979):

gBB̄M ∼
λ2

N

√
N N ∝

√
N. (128)

When applied to (125), the transition operator has to operate on φr only, to obtain a non-vanishing result when

the scalar product with (124) is taken. We obtain N equal factors, divided by the normalisation
√
N , so that

A(B∗ → B +M) ∼ λ2

N

√
N

N√
N
∝ N0. (129)
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As noted by Witten, the tree-level meson-baryon low energy scattering amplitude obtained from (128) is O(1) since
the baryon’s propagator brings in a factor N−1 due to the baryon’s mass.

Tetraquark decays: T → BB̄ and T ∗ → T +M .
We describe the tetraquark by the operator

T =
1√
N
BaB̄

a,

where Ba = ∂
∂qaB, is the operator B, (122), with qa suppressed, and similarly for B̄a. Sum over a = 1, · · ·N is

understood. Note the identity

FIG. 38. (left); (right) .

qaBa = qa
∂

∂qa
B = B, for any a

since qa∂/∂qa is a bosonic operator.
We report in Fig. 38 the diagrams for the tetraquark decay in a baryon pair (left panel) and for the decay of an

excited tetraquark state in the ground state plus a meson (right panel).
Amplitudes are obtained along similar lines to the baryon couplings. We refer to the original paper for details and

report the results of calculation

• For BB̄ decay:

A(T → B + B̄) =
1√
N

λ2

N
(N − 1) N ∝

√
N. (130)

For ground state tetraquark, the decay is unlikely to occur: the BB̄ state has one extra pair of constituent
quarks, compared to the initial state, and phase space is not enough . The decay in BB̄ will occur for an excited
(radial or orbital) state T ∗, where the excitation energy εr − ε0 can be used to create the quark pairl needed
to transform the tetraquark into BB̄. Only the excited quark emits the gluon in Fig. 38 (left) and we loose a
factor of

√
N − 1 to get:

A(T ∗ → B + B̄) ∝ N0. (131)

The analogy with Eqs. (129) and (128) is evident.

• Decay of an excited tetraquark to the ground state by emitting a meson, which is shown in Fig. 38(right). We
find

A(T ∗ → T +M) ∝ N0. (132)

not growing with N .

Pentaquark decays: P → T +B and P → 2B + B̄.
we define

Bab =
∂

∂qa
∂

∂qb
B = −Bba. (133)
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with Bab antisymmetric for any value of N , and describe the pentaquark by the formula:

P =
1√

N(N − 1)/2

∑
a<b

BaBb B̄
ab, a, b = 1 · · · , N. (134)

Decay into a baryon and a tetraquark goes through the process (127) where the gluon is radiated from either one
or the other initial diquark. The additional quark q` changes the diquark into a baryon. The antiquark is absorbed
by B̄ab which becomes a (generalised) antidiquark to make a tetraquark with the other, spectator, diquark.

The resulting amplitude is

A(P → B + T ) ∝
√
N. (135)

As before, decay from the ground state is forbidden by phase space. The decay amplitude from an excited pentaquark
is reduced by a factor

√
N − 1

A(P ∗ → B + T ) ∝ N0. (136)

For other decay modes, we obtain similarly:

A(P → B +B + B̄) = O(N), (137)

A(P ∗ → P +M) ∝ N0, (138)

(139)

FIG. 39. .

D. Summary of Witten’s multiquarks

1. Decay amplitudes from the ground states may diverge at large N. However such decays are generally
forbidden by phase space and the divergent amplitudes do not affect the observability for such particles. At
N =∞, bound states of multiquark hadrons are narrow or stable, particularly in the case of the dibaryon.

2. Decay amplitudes of excited states are summarised in the Table.

3. Excited tetraquarks:

• the amplitudes for the decay of the excited states vanish or remain constant for N → ∞: states are
observable in this limit;

• tetraquark de-excitation amplitudes are of the same order of BB̄ decay amplitudes;

• For N=3 and flavour composition [cu][c̄ū] the threshold for two-baryon decay is 2M(Λc) = 4570 MeV;
Cotugno et al [86] argued that X(4660) is a P-wave tetraquark decaying predominantly into ΛcΛ̄c in
addition to the mode into ψ(2S)ππ.
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T ∗ → BB̄ T+ Meson Mesons

A∗ ∝ N0 N0 < e−
N
2

P ∗ → B + T B +B + B̄ P+ Mesons B+ Mesons

A∗ ∝ N0 N1/2 N0 < e−
N
2

D∗ → NBB̄ D+ Meson (N − 1)B

A∗ → > e+ N
2 logN N0 > e+ N

2
logN

TABLE IX. Decay modes of excited Tetraquarks, Pentaquarks and Dibaryons and the corresponding amplitudes (denoted by A∗). Fourth
column: decay of an excited into the ground state by meson emission. Last column refers to decays obtained by reorganising the quark-
antiquark pairs of the initial state into a multi-meson state or redistribuiting the quarks of one diquark to the other diquarks, to form a
set of N-1 baryons.

• tetraquark-charmonium mixing is exponentially suppressed;

• The divergence at large N is not relevant for the width and the observability of the ground state, which is
below threshold for the decay,

• Tetraquark ground state is dominant as intermediate state in elastic BB̄ scattering. The 1/N behaviour
we find for the latter amplitude is in agreement with the result given by Rossi and Veneziano (2016).

4. Excited pentaquarks and dibaryons:

• de-excitation amplitudes into the ground state and a meson remain limited for large N;

• at N = ∞ there are modes which give divergent amplitudes, namely P ∗ → B + B + B̄ and D∗ →
NB + B̄ or (N − 1)B;

• literally, these results, imply sharp thresholds at 2B+ B̄ and (N −1)B respectively, below which we expect
observable pentaquarks and dibaryons, and above which we expect large, unobservable widths, a situation
similar to charmonia above and below the open charm-anticharm meson threshold.

• For N=3 and pentaquark with flavour composition: [cu][ud]c̄, corresponding to the states observed by
LHCb, the threshold for “non-observabilty” would be 2M(Λc) +M(P ) ∼ 5510 MeV;

• for a double charmed dibaryon with flavour [cu][cd][ud] the threshold would be at: 2M(Λc).

Finally, it is interesting to compare the results for tetraquarks with the analysis based on the large N generalisation
of tetraquarks following Weinberg. The results by the Roma group feature:

• a narrow ground state, with a suppressed decay amplitude into two mesons, of order N−2. For large N this is
larger that the exponentially suppressed amplitude in Table IX, but it takes N > 6 for the power suppression
to win over the exponential suppression;

• amplitude of orderN−1/2 for the de-excitation into the ground state by meson emission;

• tetraquark-charmonium mixing occurs to order N−3/2;

• the decay of an excited tetraquark into BB̄ cannot be computed..

The similarities of two very different multiquark generalisations are indeed very intriguing.
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VIII. WEINBERG’S CRITERION APPLIED TO X(3872) AND T+
cc(3875)

In Fig. 40 we recall a figure given in Lect. 5, with the diagram of B decaying into states with six quarks and focus
on the upper right corner. There are two ways in which the qq̄ pair may combine with the c̄c pair to form a color
singlet, physical intermediate state X, which eventually will decay in the observed final state f = D∗D̄ + D̄∗D:

1. molecule: X = [C̄q]1[Cq̄]1 → f

2. tetraquark: X = ([Cq]3̄ [C̄q̄]3)1 → f

FIG. 40. .

In a different context, Weinberg posed a similar question [87]. Assume you produce a state with baryon number
B = 2 that materialises in a proton-neutron pair, and call it ”deuteron”. Is it the ”deuteron” a proton-neutron bound
state or is it an elementary dibaryon?

A. The QCD framework

Let us rephrase Weinberg’s question in a QCD framework.
We know that QCD produces confined C = ±1 mesons, and confined C = 0 hidden charm hadrons: charmonia.

We would like to ascertain if QCD produces as well confined, hidden charm tetraquarks.
Consider the space of possible hidden charm states, C = 0, JPC = 1++. Neglecting all interaction among them,

e.g pion exchange, such a space is made by two components [88]

• discrete energy states: charmonia and possibly tetraquarks:

|C >< C|+ |T >< T | (140)

• a continuum of charmed meson pairs:

|D∗D̄(α) >< D∗D̄(α)| (141)

(we neglect spin, α is the relative, c.o.m. momentum)

• Let X denote the X(3872) resonance. The completeness relation in the Hilbert space of states reads

| < X|X > |2 = 1 = Z +

∫
dα | < X|D∗D̄(α) > |2; (142)

Z = | < X|C > |2 + | < X|T > |2

There are two regimes :

• Z = 0: corresponds to a pure molecular state: X results from D∗ − D̄ interactions only (like a bound n − p
state)

• Z 6= 0: some compact, discrete state must exist. Is it charmonium or tetraquark?
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The recent estimate of isospin violation in X(3872) decay was given by LHCb [51], with significantly better precision
than previous data:

gX(3872)→ρ0 ψ

gX(3872)→ω0 ψ
= 0.29± 0.04 (143)

The result indicates a considerable violation of Isospin symmetry, in particular compared to the analogous ratio, see
PdG [89]

gψ(2S)→π0 ψ

gψ(2S)→η ψ
= 0.045± 0.001 (144)

The LHCb results speaks against the association of X(3872) with the charmonium family 9 and it brings us to the
”exotic” alternatives: (i) a pure D∗0D̄0 +D0D̄(∗0) molecule, for Z = 0, or (ii) a compact tetraquark, for 0 < Z < 1.

Scattering amplitude. The key quantity is the D∗D̄ scattering amplitude,f , normalised so that its square gives
the differential cross section

|f |2 =
dσ

dΩ
(145)

Near threshold f is parametrised as

f−1 = k cot δ(k)− ik = −κ0 +
1

2
r0k

2 − ik (146)

where k ∼ 0 is the center of mass momentum and the real part of the denominator is the expansion of k cot δ(k), an
even function of k, to order k2.

If there is a shallow bound state or a resonance slightly below threshold, with mass:

M(X) = M(D∗) +M(D)−B, (B = binding energy) (147)

the scattering amplitude, f , has a pole at imaginary momentum: −ik = κ with

κ =
√

2µB, (µ = reduced mass) (148)

The condition for the pole reads

κ0 +
1

2
r0κ

2 − κ = 0 (149)

Given κ0 and r0, κ is the root of the second degree equation (149), which tends to κ0 for r0 → 0, that is:

κ =
1−
√

1− 2κ0r0

r0

a relation we shall use later in the form:

1− κr0 =
√

1− 2κ0r0 (150)

It is convenient to introduce a representation of the scattering amplitude, which coincides with (146) at the pole.
We write

f = −
−κ0 + 1

2r0k
2 + ik

(κ0 − 1
2r0k2)2 + k2

=
Num

Den
(151)

At the pole −ik = κ

(Num)pole = −2κ (152)

9 In this respect, the recent re-classification by PdG of X(3872) as χc1(3872) seems particularly unappropriate.
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while, using (149)

(Den)pole = [κ− 1

2
r0(κ2 + k2)]2 + k2 ∼ κ2 − r0κ(κ2 + k2) + k2 =

= (κ2 + k2)(1− r0κ) = 2µ(1− r0κ) (B + T ) (153)

T is the kinetic energy in the center of mass T = k2/2µ, µ the reduced mass and we obtain

f =
κ

µ(1− r0κ)

1

B + T
. (154)

Relation to the Feynman amplitude. A more familiar representation of the scattering amplitude is given by
the Feynman amplitude Mfi, described by the diagram in Fig. 41. Define

S = 1− i(2π)4δ(4)(p′a + p′b − pa − pb) T

T =
√
N ′aN

′
bNaNb Mfi (155)

where, for bosonic states,

N =
1

2E
(156)

In the c.o.m., pa = −pb = k and va,b = pa,b/Ea,b. The relative velocity is

FIG. 41. .

v = |va − vb| = k(
1

Ea
+

1

Eb
) = k

Ea + Eb
EaEb

(157)

and the cross-section is

dσ =
1

v
(2π)4δ(4)(p′a + p′b − pa − pb)

d3p′a
(2π)3

d3p′b
(2π)3

N ′aN
′
bNaNb |Mfi|2 =

=
1

(2π)2

EaEb
k(Ea + Eb)

(NaNb)
2 dΩ

∫
δ(E′a + E′b − Ea − Eb) k2dk |Mfi|2 (158)

so that

dσ

dΩ
=

1

(2π)2
(EaEbNaNb)

2 1

(Ea + Eb)2
|Mfi|2 =

=
[ EaNaEbNb
2π(Ea + Eb)

Mfi

]2
(159)

In conclusion, up to an unessential phase [90]:

f =
EaNaEbNb

2π(Ea + Eb)
Mfi =

µ

2π

1

4MaMb
Mfi =

µ

2π
T (160)

(non relativistic approximation).
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B. Weinberg’s criteria for X(3872)

We call H0 the Hamiltonian responsible for the formation of charmonia and, eventually, of tetraquarks and V the
additional interactions, including the color singlet exchange forces that may eventually lead to hadronic molecules.
The total Hamiltonian is H0 + V . Computing enegies from the D∗D̄ threshold, we have

(H0 + V )|X >= −B|X >, < D∗D̄|H0 =< D∗D̄(k)|T (k) (161)

so that

< D∗D̄|(H0 + V )|X >= T < D∗D̄|X > + < D∗D̄|V |X >= −B < D∗D̄|X > (162)

that is

| < D∗D̄|X > |2 =
| < D∗D̄|V |X > |2

(T +B)2
=

g2

(T +B)2
(163)

where, following Weinberg, we have defined

g =< D∗D̄|V |X > (164)

We can insert this result in the completeness relation (142) to find∫ ∞
0

d3k

(2π)3

g2

(B + k2

2µ )2
= 1− Z (165)

Assuming g to be essentially constant in the (very restricted) range of integration, ve obtain g2 after an elementary
integration10:

g2 =
2π

µ2
κ(1− Z) (166)

On the other hand, starting from (164) we obtain

T =
g2

B + T
(167)

and the scattering amplitude

f =
µ

2π

g2

B + T
= (1− Z)

κ

µ(B + T )
=

κ

µ(1− r0κ)

1

B + T
(168)

Comparing the last two terms we find

1− Z =
1

1− κr0
(169)

This equation gives r0 as function Z. We can obtain the other parameter of the scattering amplitude, κ0 by plugging
the r0 thus obtained into the pole equation (149). In conclusion, we find the results stated by Weinberg for the
scattering parameters as function of Z and of the scale parameter κ:

κ−1
0 = 2

1− Z
2− Z

κ−1 +O(m−1
π );

r0 = − Z

1− Z
κ−1 +O(m−1

π ) (170)

Z dependent terms in Eqs.(170) provide the leading contributions of order κ−1, which, for a shallow state, is much
larger than the typical range of hadronic forces. The latter, non-leading, contributions are indicated in (170) as
unspecified O(m−1

π ) terms.

10 Use the formula
∫∞
0 dx

√
x/(1 + x)2 = π

2
.



57

In the molecular case (Z=0) one has r0 = O(1/mπ). A theorem due to Landau and Smorodinsky characterizes
further the radius of an hadronic molecule by showing that a D∗0D̄0 state bound by a fully attractive potential has
necessarily r0 > 0 [91–93].

The Landau - Smorodinsky theorem. Consider the Schrödinger’s equation for the radial wave function of the
molecular constituents

u′′k(r) +
[
k2 − U(r)

]
uk(r) = 0

U(r) = 2µV (r), V (r) < 0 is the potential, assumed to be of finite range, a0 (' 1/mπ), and attractive everywhere.
We consider the wave function for two values of the momentum: uk1,2 ≡ u1,2. With simple manipulations we find the
identity

u2u
′
1 − u′2u1

∣∣∣R
0

= (k2
2 − k2

1)

∫ R

0

dr u2u1 (171)

R >> a0.
Consider now the free equation: ψ′′k (r) + k2ψk(r) = 0, from which we also obtain

ψ2ψ
′
1 − ψ′2ψ1

∣∣∣R
0

= (k2
2 − k2

1)

∫ R

0

dr ψ2ψ1 (172)

Normalizing to unity at r=0, the general expression for ψk is

ψk(r) =
sin(kr + δ(k))

sin δ(k)
, ψ′k(0) = k cot δ(k)

The radial wave function uk vanishes at r=0, and we normalize so that it tends exactly to the corresponding ψk for
large enough radii. Now, subtract (171) from (172) and let R→∞ (now the integral is convergent) to find

k2 cot δ(k2)− k1 cot δ(k1) = (k2
2 − k2

1)

∫ ∞
0

dr (ψ2ψ1 − u2u1) (173)

We compare (173) with the parameters of the scattering amplitude. First we set k1 = 0. Since limk1→0 k1 cot δ(k1) =
−κ0

k2 cot δ(k2) = −κ0 + k2
2

∫ ∞
0

dr (ψ2ψ0 − u2u0)

For small momenta: k2 cot δ(k2) = −κ0 + 1
2r0k

2
2, so that:

r0 = 2

∫ ∞
0

dr (ψ2
0 − u2

0)

We know that u0(0) = 0, ψ0(0) = 1. Defining ∆(r) = ψ0(r)− u0(r) we have:

∆(0) = +1, ∆(∞) = 0

The equations of motion imply ∆′′(r) = −U(r)u0(r). In presence of a single bound state, where u(r) has no nodes,
we get

∆′′(r) > 0 (174)

∆ goes from 1 to 0 monothonically, that is ψ0(r) > u0(r) and r0 > 0. Conversely, see (170), a negative value r0 < 0
implies Z > 0, from (170).

Reassuringly: r0(deuteron) = +1.75 fm.
The value of Z. From Eq. (169), we derive

Z =
−κr0

1− κr0
(175)

Z is sometime identified with the admixture of the exotic hadron X with the compact (tetraquark) state and it is
often stated that for small Z, X would be essentially a molecule.

The interpretation of Z as mixing coefficient, however, holds only in the free theory. With interaction, the compact
state vector may be renormalized and the strength of Z loses its meaning. A non-vanishing Z, indicates that there
are, in the Hilbert space, states that cannot be made from the D D* continuum. Quoting Weinberg:
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• the true token that the deuteron is composite is an effective range r0 small and positive rather than large and
negative.

• an elementary deuteron would have 0 < Z < 1.

Compositeness indicator X. The compositeness indicator X is sometime introduced, defined as:

X =
1√

1− 2κ0r0
(176)

Note that X is a function of the inverse scattering lenght, κ0, while Z depends upon the position of the pole, κ. The
relation between X and Z is obtained from Eqs. (150) and (175)

1− Z =
1

1− κr0
=

1√
1− 2κ0r0

= X. (177)

Thus, X = 1 corresponds to the molecule while 0 < X < 1 corresponds to 0 < Z < 1, i.e. to Weinbeg’s criterion for
elementary X.

C. X lineshape: from Breit-Wigner to scattering lengths

Consider D∗0D̄0 scattering above threshold. If there is a resonance slight below, the amplitude takes the Breit-
Wigner form

fBW = −
1
2g

2
BW

E −mBW + i
2g

2
BWk

(178)

for E = k2

2µ , (178) has the same form of the scattering amplitude (146). Thus, from the parameters of the line-shape

we can determine the scattering parameters.
The line shape reported by LHCb [94] is given in Fig. 42 as function of the c.o.m energy, W, equal to the invariant

mass of the observed final state J/Ψπ+π−. D∗0D̄0 and D∗+D− thresholds are indicated.
From LHCb data, neglecting the experimental errors on the best fit parameters, we find [88]

X(3872) : κ0 ' 6.92 MeV; r0 = −5.3 fm

We find r0 well into the compact tetraquark region. Using the recent error analysis [95] we find the effective radius
in the range;

−1.6 fm > r0 > −5.3 fm;

0.14 > Z > 0.052 > 0 (179)

Details. The Flattté function to fit the lineshape parameters is

f
(
X → J/ψπ+π−

)
= − N

E −m0
X + i

2gLHCb

(√
2µE +

√
2µ+(E − δ)

)
+ i

2

(
Γ0
ρ(E) + Γ0

ω(E) + Γ0
0

)
where (particle symbols indicate the mass in MeV) and

E = W − (D∗0 + D̄0) = T =
k2

2µ
,

µ =
D∗0D̄0

D∗0 + D̄0
= 967 MeV, µ+ =

D∗+D−

D∗+ +D−
= 969 MeV

δ = D∗+ +D− −D∗0 − D̄0 = 8.3 MeV >> E

Details of fit and parameters are as follows.

• Γ0
ρ(E) + Γ0

ω(E) + Γ0
0 are fitted and subtracted from the denominator;
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FIG. 42. The X(3972) lineshape. Vertical lines mark the D∗0D̄0 and D∗+D− thresholds.

• since E = T < δ we write

i

2
gLHCb

√
2µ+(T − δ) =

gLHCb
2

(
−
√

2µ+δ + T

√
µ+

2δ

)
(180)

• Parametrization of the resulting denominator of f :

Den =
gLHCb

2
· D̄,

D̄ =
2

gLHCb
(T −m0

X)−
√

2µ+δ + T

√
µ+

2δ
+ ik

• Best fit: gLHCb = 0.108, m0
X = −7.18 MeV

• Formulae for inverse scattering length and radius:

κ0 = − 2m0
X

gLHCb
−
√

2µ+δ ' 6.92 MeV; r0 = − 2

µgLHCb
−
√

µ+

2µ2δ
' −5.34 fm

• The Log Likelihood is very insensitive to the value of gLHCb, leading to error estimate: 10 > gLHCb > 0.108; in
correspondence, one obtains the range for r0 and Z reported in Eq. (179).

D. The doubly charmed Tetraquark, T+
cc(3875)

The existence of doubly charmed tetraquarks, was considered in 2013 by Esposito et al. [53].
Starting from the mass of the doubly charmed baryon, Karliner and Rosner [54] estimated of the mass of the lowest

lying, I=0 state at M(T+
cc) = 3882 ± 12 MeV, 7 MeV above the D0D∗+ threshold. A similar value was obtained by

Eichten and Quigg [55].
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A value close to the D0D+ threshold was obtained in the Born-Oppenheimer approximation [61]. The update
considered in Lect. 6, brings the mass closer to the D0D∗+ threshold. Finally, the value M(T+

cc) −M(D0D+) =
−23 ± 11 MeV is obtained in lattice QCD calculation by P. Junnarkar et al. [65–68]. The closeness to the D0D∗+

threshold has nonetheless invited speculations about a molecular nature of T+
cc .

The line shape ot T+
cc , in correspondence to the observed D0D0π+ decay [94] is reported in Fig. 43. The thresholds

of the possible two-body decays: D0D∗+ at 3875.1 MeV and D∗0D+ at 3876.5 MeV are indicated.

FIG. 43. The lineshape for the decay T → D0D0π+. Vertical lines mark the D∗0D̄0 and D∗+D− thresholds.

We may simply extend the analysis done for X(3872) to estimate the effective radius of T (3875) .
Details. We use the Flatté formula

f(T → D0D0π+) = − N

E −m0
T + i

2gLHCb

(√
2µE +

√
2µ+(E − δ)

)
with

E = W − (D∗0 +D+) = T =
k2

2µ
,

µ =
D∗+D0

D∗+ + D̄0
= 967.5 MeV; µ+ =

D∗0D+

D∗0 +D+
= 968.0 MeV (181)

δ = D∗0 +D+ −D∗+ − D̄0 = 1.7 MeV (182)

Details of fit and parameters are as follows.

• Parametrization of the denominator of f :

Den =
gLHCb

2
· D̄,

D̄ =
2

gLHCb
(T −m0

T )−
√

2m+δ + T

√
m+

2δ
+ ik

• the effective radius is given by the same formula used for X(3872), with the values of the parameters indicated
in (181) and (182):

r0 = − 2

µgLHCb
−
√

µ+

2µ2δ
(183)
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FIG. 44. T (3875): intervals for the compositeness parameter X of at 90(95) % confidence level. M. Mikhasenko, ArXiv:2203.04622.

• the constant gLHCb of the T lineshape is allowed by the fit to take large values, which may push the first term
in (183) to negligible values.

With this simplifyed analysis, we may obtain the upper bound

r0 < −
√

µ+

2µ2δ
' −3.4 fm (184)

that can be combined with the lower bound r0 > −11.9 fm given by LHCb to obtain

T (3875) : − 3.4 > r0 > −11.9 fm (185)

A complete analysis of the scattering parameters of T has been done by Mikhasenko [96] leading to

− 4.3 < r0 < −16.2 (186)

In Fig. 44 we report Mikhasenko’s results for the intervals of the compositeness parameter X, Eq. (176), Using the
relation: X = 1− Z, Eq. (177), we derive the corresponding limitation for Z:

0.65 > Z > 0.36 (brown range)

0.62 > Z > 0.09 (blue range) (187)

Our summary about r0.
Focusing on the determination of r0 seems to lead to a convergent indication for a negative value, for both X(3872)

and T +
cc (3875). The present situation about r0 is reported in Fig. 45. No consensus yet, but it seems that we are on

a promising road. Stay tuned!

FIG. 45. Compilation of recent reterminations of the effective radius, r0, compared to the effective radius of the Deuteron.
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