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Why 1D CFTs?

1D CFTs have many interesting realizations, such as:
» conformal line defects in higher-dimensional CFTs
» lines of fixed points in SYK models
» boundary correlators of QFTs in AdS;



Why Unitarity?

» Unitarity often allows to compute amplitudes from their
discontinuity (e.g. optical theorem).

» In perturbation theory, the discontinuity at a given order is
often fixed in terms of lower order data.

» Unitarity methods have been crucial for an efficient evaluation
of scattering amplitudes in 4D QFTs.

» Unitarity has been successfully applied to higher-dimensional
CFTs in combination with crossing symmetry.
[Aharony, Alday, Bissi, Caron-Huot, Meltzer, Perlmutter,...]



Correlators in 1D CFT

» Two and three-point functions are fixed by conformal symmetry
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» The 4-point function depends on G(z) where z = 212X
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4-point functions

» Using the OPE

OAl X1 OA2 X2 ZfA1A2h Xh A Az(oh(X2)+CX12282Oh—|-...)

we find
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where Gj, = z"yFy(h, h,2h, z) is the conformal block and
an = |fannl®.



Crossing symmetry and Regge boundedness

» Expanding G(z) with the OPE in different channels

g(z) = mg(l —z)

» Unitarity and the OPE imply for z — oo (Regge limit)
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I, and the OPE data

» G(z) can also be expanded in a complete set as
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» [, encodes the OPE data of the 4-point function!
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The OPE inversion formula [Mazac '18]

For crossing symmetric and Regge-bounded G(z)
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> H2(z) is known explicitly for all integer A in the case of
bosons and for half-integer A for fermions.

» In the bosonic case one may need to regularize G(z) and add
two extra terms
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Cy are infinitesimal semicircular contours centered in z =1



The double discontinuity

The crucial ingredient of the formula is

G2+ 67
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where G°(z) and G(z) are the analytic continuations of G(z)
around z = 1, from above and below.

> It represents the thermal expectation value
< [0(x3); O(x)][0(x1); O(xa)] >

» G°(z) and G®(z) correspond to the out-of-time-order
contributions in the double commutator.



Why is this formula useful?

1
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» In perturbation theory dDisc(G(z)) can be computed at any
order from lower order data!

» We can use unitarity to find the OPE data of G(z) without
doing complicated diagrams

dDisc(G(z)) = Iy — (h, an) = G(2)



Perturbation theory

Start from Generalized Free Field (GFF)
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Perturbation theory

Now consider a perturbative expansion around GFF
G(2) = 6O(2) + W (2) + G)(2) +
where

h=2A+2n+ e’y(l) + 62’)/(2) + ..
ap = ag, ) + ea(l) +e€ 3(2)



dDisc in perturbation theory

The first few terms read
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At any order in perturbation theory it is fixed in term of lower order
datal!

dDisc(GM(z)) = 0
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Example: ®* in AdS,

Consider for example a theory of a scalar in AdS;
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» The boundary 4-point functions define a 1D CFT.

> We can check some results against explicit computations or
results from a functional approach.[Mazac,Paulos '18]



Tree level

For simplicity we set
A=1

At tree level the double discontinuity is zero, therefore
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One loop

At one loop the double discontinuity is given by
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One loop coefficient
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One loop 4-point function

» In this case the coefficient is very complicated and we cannot
resum the OPE expansion, we can only find the OPE data.

» We can find the 4-point function imposing an Ansatz using
functions up to trascendentality four. [Ferrero et al., '19]

» We can impose crossing,unitarity and fix the remaining
unknowns from OPE data extracted from IfsQ).
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Conclusions

» We have sketched how to compute correlators in 1D CFTs
using unitarity techniques.

» The OPE data is encoded in a coefficient /,, which can be
determined from the double discontinuity of the 4-point
function

dDisc(G(z)) — In — (h, an) — G(2)

» dDisc(G(z)) is fixed at any order in perturbation theory in

terms of lower order data.

» We have seen an explicit application in a perturbative
expansion of a scalar theory in AdS;.



Outlook

» We would like to find a dispersion formula to find G(z) directly
from the double discontinuity.

> |t would be interesting to extend this approach to the case of
non identical operators and in the presence of a global
symmetry.

» By doing that, one could apply this unitarity method to
interesting 1D CFTs such as line defects in higher dimensional
theories.



Thank you for your attention!
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