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Why 1D CFTs?

1D CFTs have many interesting realizations, such as:
I conformal line defects in higher-dimensional CFTs
I lines of fixed points in SYK models
I boundary correlators of QFTs in AdS2



Why Unitarity?

I Unitarity often allows to compute amplitudes from their
discontinuity (e.g. optical theorem).

I In perturbation theory, the discontinuity at a given order is
often fixed in terms of lower order data.

I Unitarity methods have been crucial for an efficient evaluation
of scattering amplitudes in 4D QFTs.

I Unitarity has been successfully applied to higher-dimensional
CFTs in combination with crossing symmetry.
[Aharony, Alday, Bissi, Caron-Huot, Meltzer, Perlmutter,...]



Correlators in 1D CFT

I Two and three-point functions are fixed by conformal symmetry
.
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I The 4-point function depends on G(z) where z = x12x34
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4-point functions

I Using the OPE

O∆1(x1)O∆2(x2) =
∑
h

f∆1∆2h x
h−∆1−∆2
12 (Oh(x2)+cx2

12∂
2Oh+...)

we find
G(z) =

∑
h

ahGh(z)

where Gh = zh2F1(h, h, 2h, z) is the conformal block and
ah = |f∆∆h|2.



Crossing symmetry and Regge boundedness

I Expanding G(z) with the OPE in different channels

G(z) =
z2∆

(1− z)2∆
G(1− z)

I Unitarity and the OPE imply for z →∞ (Regge limit)

|z−2∆G(z)| <∞



Ih and the OPE data

I G(z) can also be expanded in a complete set as
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∑
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I Ih encodes the OPE data of the 4-point function!

Ih → (h, ah)→ G(z)



The OPE inversion formula [Mazac ’18]

For crossing symmetric and Regge-bounded G(z)

Ih = 2
∫ 1

0
dzH∆

h (z)dDisc(G(z))

I H∆
h (z) is known explicitly for all integer ∆ in the case of

bosons and for half-integer ∆ for fermions.
I In the bosonic case one may need to regularize G(z) and add

two extra terms∫
C−

dzH∆
h (z)G(z) +

∫
C+

dzH∆
h (z)G(z)

C± are infinitesimal semicircular contours centered in z = 1



The double discontinuity

The crucial ingredient of the formula is

dDisc(G(z)) = G(z)− G
	(z) + G�(z)

2

where G	(z) and G�(z) are the analytic continuations of G(z)
around z = 1, from above and below.
I It represents the thermal expectation value
< [O(x3);O(x2)][O(x1);O(x4)] >

I G	(z) and G�(z) correspond to the out-of-time-order
contributions in the double commutator.



Why is this formula useful?

Ih = 2
∫ 1

0
dzz−2H∆

h (z)dDisc(G(z))

I In perturbation theory dDisc(G(z)) can be computed at any
order from lower order data!

I We can use unitarity to find the OPE data of G(z) without
doing complicated diagrams

dDisc(G(z))→ Ih → (h, ah)→ G(z)



Perturbation theory

Start from Generalized Free Field (GFF)

G(0)(z) = 1 + z2∆ +
z2∆

(1− z)2∆

Its OPE data are

h(0) = 2∆ + 2n

a
(0)
h =

2Γ2(2∆ + 2n)Γ(4∆ + 2n − 1)

Γ2(2∆)Γ(4∆ + 4n − 1)Γ(2n + 1)



Perturbation theory

Now consider a perturbative expansion around GFF

G(z) = G(0)(z) + εG(1)(z) + ε2G(2)(z) + ...

where

h = 2∆ + 2n + εγ(1) + ε2γ(2) + ...

ah = a
(0)
n + εa

(1)
n + ε2a

(2)
n + ...



dDisc in perturbation theory
The first few terms read

G(1)(z) =
∑
n
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n )2∂2G2∆+2n(z)

At any order in perturbation theory it is fixed in term of lower order
data!

dDisc(G(1)(z)) = 0

dDisc(G(2)(z)) = ε2π2
∑
n

a
(0)
n (γ

(1)
n )2 z2∆φ

(1− z)2∆φ
G2∆φ+2n(1− z)



Example: Φ4 in AdS2

Consider for example a theory of a scalar in AdS2

S =

∫
dx2 1

2
∂µφ(x)∂µφ(x) + ∆(∆− 1)φ2(x) +

g

4!
φ4(x)

I The boundary 4-point functions define a 1D CFT.
I We can check some results against explicit computations or

results from a functional approach.[Mazac,Paulos ’18]



Tree level

For simplicity we set
∆ = 1

At tree level the double discontinuity is zero, therefore

I
(1)
h =

∫
C−

dzHh(z)G(1)(z) +

∫
C+

dzHh(z)G(1)(z)

=
8π3

sin(πh)

And the 4-point function is

G(1)(z) = 2z2
(
log(1− z)

z
+

log(z)

1− z

)



One loop

At one loop the double discontinuity is given by

dDisc(G(2)(z)) = π2 z2

(1− z)2 log2 z

and the contour integrals are given by∫
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One loop coefficient

I
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One loop 4-point function

I In this case the coefficient is very complicated and we cannot
resum the OPE expansion, we can only find the OPE data.

I We can find the 4-point function imposing an Ansatz using
functions up to trascendentality four. [Ferrero et al., ’19]

I We can impose crossing,unitarity and fix the remaining
unknowns from OPE data extracted from I

(2)
h .
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Conclusions

I We have sketched how to compute correlators in 1D CFTs
using unitarity techniques.

I The OPE data is encoded in a coefficient Ih, which can be
determined from the double discontinuity of the 4-point
function

dDisc(G(z))→ Ih → (h, ah)→ G(z)

I dDisc(G(z)) is fixed at any order in perturbation theory in
terms of lower order data.

I We have seen an explicit application in a perturbative
expansion of a scalar theory in AdS2.



Outlook

I We would like to find a dispersion formula to find G(z) directly
from the double discontinuity.

I It would be interesting to extend this approach to the case of
non identical operators and in the presence of a global
symmetry.

I By doing that, one could apply this unitarity method to
interesting 1D CFTs such as line defects in higher dimensional
theories.



Thank you for your attention!


	Introduction

