

Asymmetric Accidental Composite Dark Matter

based on 2104.14244

S.Bottaro, M.Costa, O.Popov

Outline

- 1) Review of Accidental Composite Dark Matter (ACDM) models
- 2) Asymmetrizing ACDM models
- 3) Benchmark model and implementation
- 4) Conclusion

Review of ACDM models

- New confining SU(N) dark color group.
- Elementary dofs: QCD-like fundamentals of DC, SM charged

- New confining SU(N) dark color group.
- Elementary dofs: QCD-like fundamentals of DC, SM charged
- DM as lightest stable bound state
- Abundance set by $m_{\rm DCb} \approx 100 {
 m ~TeV}$

Requests

- DCquarks SU(5) GUT fragments
- Neutral/Weakly interacting DM bound state
- Accidental Stability: U(1)

- New confining SU(N) dark color group.
- Elementary dofs: QCD-like fundamentals of DC, SM charged
- DM as lightest stable bound state
- Abundance set by $m_{\rm DCb} \approx 100 {
 m TeV}$

Requests

- DCquarks SU(5) GUT fragments
- Neutral/Weakly interacting DM bound state
- Accidental Stability: U(1)

SU(5)	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	charge	name
1	1	1	0	0	N
$\overline{5}$	3	1	1/3	1/3	D
	1	2	-1/2	0,1	L
10	3	1	-2/3	-2/3	U
	1	1	1	1	E
	3	2	1/6	2/3,-1/3	Q
15	3	2	1/6	2/3, -1/3	Q
	1	3	1	0,1,2	T
	6	1	-2/3	-2/3	S
24	1	3	0	-1,0,1	V
	8	1	0	0	G
	3	2	5/6	4/3, 1/3	X
	1	1	0	0	N

Antipin et al. 1503.08749

- New confining SU(N) dark color group.
- Elementary dofs: QCD-like fundamentals of DC, SM charged
- DM as lightest stable bound state
- Abundance set by $m_{\rm DCb} \approx 100 {
 m TeV}$

Requests

- DCquarks SU(5) GUT fragments
- Neutral/Weakly interacting DM bound state
- Accidental Stability: U(1)

DCq content	Allowed $N_{\rm DC}$	DM candidates
$N_{\rm DF}=3$		
$\Psi = V$	3	VVV =3
$\Psi=N\oplus L$	3,,14	$N^{N_{ m DC}*}$
$N_{\rm DF} = 4$		
$\Psi = V \oplus N$	3	VVV, VNN = 3, VVN = 1
$\Psi = N \oplus L \oplus \tilde{E}$	3,4,5	$N^{N_{\text{DC}}*}=1$
$N_{\rm DF} = 5$		
$\Psi = V \oplus L$	3	VVV =3
$\Psi = N \oplus L \oplus \tilde{L}$	3	$NL\tilde{L}=1$
=	4	NNLL, LLLL=1
$N_{\rm DF}=6$		
$\Psi = V \oplus L \oplus N$	3	<i>VVV, VNN</i> =3, <i>VVN</i> =1
$\Psi = V \oplus L \oplus \tilde{E}$	3	VVV = 3
$N\oplus L\oplus \tilde{L}\oplus \tilde{E}$	3	$NL\tilde{L}, \tilde{L}\tilde{L}\tilde{E}=1$
=	4	$NNL\tilde{L}, L\tilde{L}L\tilde{L}, N\tilde{E}\tilde{L}\tilde{L}=1$
$N_{\rm DF}=7$		•
$\Psi = L \oplus \tilde{L} \oplus E \oplus \tilde{E} \oplus N$	3	$LLE, \tilde{L}\tilde{L}\tilde{E}, L\tilde{L}N, E\tilde{E}N = 1$
$\Psi=N\oplus L\oplus \tilde{E}\oplus V$	3	VVV, VNN = 3, VVN = 1
$N_{\rm DF} = 9$		
$\Psi = Q \oplus ilde{D}$	3	$QQ\tilde{D} = 1$
$N_{\rm DF} = 12$		
$\Psi = Q \oplus \tilde{D} \oplus \tilde{U}$	3	$QQ\tilde{D}, \tilde{D}\tilde{D}\tilde{U} = 1$

Antipin et al. 1503.08749

Asymmetrizing ACDM models

Asymmetrizing ACDM: generating the asymmetry

Asymmetric DM

- more particles than antiparticles
- Different phenomenology (bound states, ID bounds,...)
- Different abundance/mass relation
- Possibly link to baryon asymmetry

(for future works...)

Asymmetrizing ACDM: generating the asymmetry

Asymmetric DM

- more particles than antiparticles
- Different phenomenology
 (bound states, ID bounds,...)
- Different abundance/mass relation
- Possibly link to baryon asymmetry

(for future works...)

Sakharov conditions

1) U(1) breaking

careful: stabilizing symmetry

2) CP violation

Needs physical phases

3) Out-of-equilibrium process

QCD-like theory NOT enough!

Asymmetrizing ACDM: annihilating the symmetric part

Asymmetrizing ACDM: annihilating the symmetric part

 $\Omega_{\rm DM} \propto m_{\rm DCb} \eta_{\rm DM}$

Asymmetrizing ACDM: annihilating the symmetric part

Field	$SU(3)_{DC}$	$(\mathrm{SU}(3)_c, \mathrm{SU}(2)_L)_Y$	$U(1)_{DB}(D)$
N	3	$(1,1)_0$	1
ϕ	$\bar{6} (sym)$	$(1, 1)_0$	-2

$$\mathcal{L} = \mathcal{L}_{\rm kin} + y\phi_{ij}N^iN^j + \lambda M_{\phi}\epsilon^{ijk}\epsilon^{i'j'k'}\phi_{ii'}\phi_{jj'}\phi_{kk'}$$

DCb: N^3 accidentally stable \mathbb{Z}_2

Field	$SU(3)_{DC}$	$(\mathrm{SU}(3)_c, \mathrm{SU}(2)_L)_Y$	$U(1)_{DB}(D)$
N	3	$(1,1)_0$	1
ϕ	$\bar{6} (sym)$	$(1,1)_0$	-2

$$\mathcal{L} = \mathcal{L}_{\rm kin} + y\phi_{ij}N^iN^j + \lambda M_{\phi}\epsilon^{ijk}\epsilon^{i'j'k'}\phi_{ii'}\phi_{jj'}\phi_{kk'}$$

DCb: N^3 accidentally stable \mathbb{Z}_2

OOE: decay of heavy scalar

Field	$SU(3)_{DC}$	$(\mathrm{SU}(3)_c, \mathrm{SU}(2)_L)_Y$	$U(1)_{DB}(D)$
N	3	$(1,1)_0$	1
ϕ	$\overline{6} (sym)$	$(1,1)_0$	-2

$$\mathcal{L} = \mathcal{L}_{\rm kin} + y\phi_{ij}N^iN^j + \lambda M_{\phi}\epsilon^{ijk}\epsilon^{i'j'k'}\phi_{ii'}\phi_{jj'}\phi_{kk'}$$

DCb: N^3 accidentally stable \mathbb{Z}_2

OOE: decay of heavy scalar

Weak-washout condition:

$$M_{\phi} \gtrsim 10^{15} \text{ GeV} \approx M_{\text{GUT}}$$

Field	$SU(3)_{DC}$	$(\mathrm{SU}(3)_c, \mathrm{SU}(2)_L)_Y$	$U(1)_{DB}(D)$
N	3	$(1,1)_0$	1
ϕ	$\overline{6} (sym)$	$(1,1)_0$	-2

$$\mathcal{L} = \mathcal{L}_{\rm kin} + y\phi_{ij}N^iN^j + \lambda M_{\phi}\epsilon^{ijk}\epsilon^{i'j'k'}\phi_{ii'}\phi_{jj'}\phi_{kk'}$$

DCb: N^3 accidentally stable \mathbb{Z}_2

OOE: decay of heavy scalar

Weak-washout condition:

$$M_{\phi} \gtrsim 10^{15} \text{ GeV} \approx M_{\text{GUT}}$$

Two flavors to get enough CPV: 3 phases

Results

 $lpha = M_H/M_L$ controls phase space

Results

 $lpha = M_H/M_L~~{
m controls}$ phase space

M.Costa, SNS and INFN Pisa

6

Implementing the benchmark

Uncolored models

Model	ϕ	Couplings
V		ϕVV
$N\oplus L$		ϕNN
$N\oplus L\oplus ilde E$		ϕNN
$V\oplus L$		ϕVV
$N\oplus L\oplus ilde{L}$		$\phi NN, \phi L ilde{L}$
$V\oplus L\oplus N$	$(\bar{6},1,1)_0$	$\phi VV, \phi NN$
$V\oplus L\oplus ilde E$		ϕVV
$N\oplus L\oplus \tilde{L}\oplus \tilde{E}$		$\phi NN, \phi L ilde{L}$
$L \oplus \tilde{L} \oplus E \oplus \tilde{E} \oplus N$		$\phi NN, \phi E \tilde{E}, \phi L \tilde{L}$
$N\oplus L\oplus \tilde{E}\oplus V$		$\phi NN, \phi VV$
$V\oplus N$	$(\bar{6},1,5)_0$	ϕVV

Implementing the benchmark

Uncolored models

Model	ϕ	Couplings
V		ϕVV
$N\oplus L$		ϕNN
$N\oplus L\oplus ilde E$		ϕNN
$V \oplus L$		ϕVV
$N\oplus L\oplus ilde{L}$		$\phi NN, \phi L \tilde{L}$
$V\oplus L\oplus N$	$(\bar{6},1,1)_0$	$\phi VV, \phi NN$
$V\oplus L\oplus \tilde{E}$	194 01. 114 80408	ϕVV
$N\oplus L\oplus \tilde{L}\oplus \tilde{E}$		$\phi NN, \phi L ilde{L}$
$L\oplus \tilde{L}\oplus E\oplus \tilde{E}\oplus N$		$\phi NN, \phi E \tilde{E}, \phi L \tilde{L}$
$N\oplus L\oplus \tilde{E}\oplus V$		$\phi NN, \phi VV$
$V\oplus N$	$(\bar{6}, 1, 5)_0$	ϕVV

Colored models

$$\phi_{ij,ab}Q^{ia}\tilde{D}^{jb} \qquad \phi \in (\bar{6},\bar{6},2)_{1/6}$$

$$\lambda \epsilon^{abc} \epsilon^{a'b'c'} \epsilon^{ijk} \epsilon^{i'j'k'} \phi_{ii'aa'} \phi_{jj'bb'} \phi_{kk'cc'} H^*$$

Conclusions

Conclusions & Outlook

- We have built **asymmetric** extension of Accidental Composite Dark Matter models.
- The symmetric component is annihilated by non-perturbative annihilations. No extra interactions needed!
- The asymmetry generation mechanism can produce the **correct asymmetry** without much tuning.
- Accidental stability of DM candidate is preserved even in presence of U(1) breaking interactions.
- Mechanism implemented in ALL original model, preserving possibility of SU(5) unifications.

Conclusions & Outlook

- We have built **asymmetric** extension of Accidental Composite Dark Matter models.
- The symmetric component is annihilated by non-perturbative annihilations. No extra interactions needed!
- The asymmetry generation mechanism can produce the **correct asymmetry** without much tuning.
- Accidental stability of DM candidate is preserved even in presence of U(1) breaking interactions.
- Mechanism implemented in ALL original model, preserving possibility of SU(5) unifications.
- **To do**: generate simultaneously **SM** and **DS** asymmetry.
- To do: other dynamics?

Thanks for the attention!