Complexity of mixed Gaussian states from Fisher information geometry

Giuseppe Di Giulio (SISSA, Trieste)

G.D.G, E.Tonni, JHEP **2020**,101 (2020) G.D.G, E.Tonni, JHEP **2021**,22 (2021)

Cortona Young 2021

9 June 2021

Circuit Complexity

Reference state $\ket{\psi_{\mathrm{R}}}$

Target state $|\psi_{\mathrm{T}}
angle$

Quantum circuit:

$$|\psi_{\mathrm{T}}\rangle = U |\psi_{\mathrm{R}}\rangle = Q_{i_{D}} \dots Q_{i_{2}} Q_{i_{1}} |\psi_{\mathrm{R}}\rangle$$

Set of elementary (unitary) gates: $\{Q_i\}_{i=1,...}$

Circuit Complexity

Reference state $\ket{\psi_{\mathrm{R}}}$

Target state $|\psi_{
m T}
angle$

Quantum circuit:

$$|\psi_{\mathrm{T}}\rangle = U |\psi_{\mathrm{R}}\rangle = Q_{i_{D}} \dots Q_{i_{2}} Q_{i_{1}} |\psi_{\mathrm{R}}\rangle$$

Set of elementary (unitary) gates: $\{Q_i\}_{i=1,...}$

Complexity: minimum number of allowed gates that is needed to construct the target state starting from the assigned reference state

Holographic Complexity

Holographic entanglement entropy is not able to capture the late-time dynamics behind the horizon of a black hole

Complexity in quantum field theories still to be understood

Gaussian states in harmonic lattices

We compute the complexity for lattice models with a known continuum limit

$$\widehat{H} = \sum_{i=1}^{N} \left(\frac{1}{2m} \hat{p}_i^2 + \frac{m\omega^2}{2} \hat{q}_i^2 \right) + \sum_{\langle i,j \rangle} \frac{\kappa}{2} (\hat{q}_i - \hat{q}_j)^2 \qquad [\hat{q}_i, \hat{p}_j] = \mathrm{i}\delta_{ij}$$

- The continuum limit is a Klein-Gordon field theory
- In the continuum, when $\omega \rightarrow 0$, we have a conformal field theory

Gaussian states in harmonic lattices

We compute the complexity for lattice models with a known continuum limit

$$\hat{H} = \sum_{i=1}^{N} \left[\frac{1}{2m} \, \hat{p}_i^2 + \frac{m\omega^2}{2} \, \hat{q}_i^2 + \frac{\kappa}{2} (\hat{q}_i - \hat{q}_{i-1})^2 \right] \qquad \qquad [\hat{q}_i, \hat{p}_j] = \mathrm{i}\delta_{ij}$$

- The continuum limit is a (1+1)-dimensional Klein-Gordon field theory
- In the continuum, when $\omega \rightarrow 0$, we have a c = 1 conformal field theory

Gaussian states in harmonic lattices

We compute the complexity for lattice models with a known continuum limit

$$\hat{H} = \sum_{i=1}^{N} \left[\frac{1}{2m} \, \hat{p}_i^2 + \frac{m\omega^2}{2} \, \hat{q}_i^2 + \frac{\kappa}{2} (\hat{q}_i - \hat{q}_{i-1})^2 \right] \qquad \qquad [\hat{q}_i, \hat{p}_j] = \mathrm{i}\delta_{ij}$$

- The continuum limit is a (1 + 1)-dimensional Klein-Gordon field theory
- In the continuum, when $\omega \rightarrow 0$, we have a c = 1 conformal field theory

We restrict our attention to the Gaussian states (with vanishing first moments)

$$\hat{\rho} \longrightarrow \gamma$$
 γ is the covariance matrix

The entries of γ are given by $\langle \{\hat{q}_i, \hat{q}_j\} \rangle$, $\langle \{\hat{p}_i, \hat{p}_j\} \rangle$ and $\langle \{\hat{q}_i, \hat{p}_j\} \rangle$ and it satisfies the uncertainty principle

$$\gamma + i \frac{J}{2} \ge 0$$

Complexity as geodesic distance [Nielsen, '06]

The **quantum circuit** connecting two **mixed** states $\hat{\rho}_{\rm R}$ and $\hat{\rho}_{\rm T}$ can be seen as a **curve** connecting two points in a manifold of quantum mixed states

 $\hat{
ho}_{
m R}$

Optimal circuit (circuit with the minimum number of gates) \longrightarrow Geodesics Complexity \longrightarrow Length of the geodesics

Complexity as geodesic distance [Nielsen, '06]

The **quantum circuit** connecting two **mixed** states $\hat{\rho}_{\rm R}$ and $\hat{\rho}_{\rm T}$ can be seen as a **curve** connecting two points in a manifold of quantum mixed states

 $\hat{
ho}_{
m R}$

Optimal circuit (circuit with the minimum number of gates) \longrightarrow Geodesics Complexity \longrightarrow Length of the geodesics

Compute the complexity becomes a geometric problem with ambiguities due the choice of the **cost function**

Complexity of pure states: [Jefferson, Myers, '17; Hackl, Myers, '18;

Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers, '19]

Complexity from Fisher-Rao distance

Assumption: we restrict the space of all the states we can reach through a quantum circuit to the set of bosonic Gaussian **mixed** state

Reference state $\gamma_{
m R}$

Target state γ_{T}

Complexity from Fisher-Rao distance

Assumption: we restrict the space of all the states we can reach through a quantum circuit to the set of bosonic Gaussian **mixed** state

Reference state $\gamma_{\rm R}$ Target state $\gamma_{\rm T}$

Complexity from Fisher-Rao distance

Assumption: we restrict the space of all the states we can reach through a quantum circuit to the set of bosonic Gaussian **mixed** state

Reference state $\gamma_{\rm R}$ Target state $\gamma_{\rm T}$

The complexity is given by the Fisher-Rao distance [Rao, '45; GDG, Tonni, '20]:

$$d(\gamma_{\mathrm{R}},\gamma_{\mathrm{T}}) \equiv \sqrt{\mathrm{Tr}\{[\log(\gamma_{\mathrm{T}}\gamma_{\mathrm{R}}^{-1})]^2\}} \qquad \mathcal{C} = rac{1}{2\sqrt{2}} d(\gamma_{\mathrm{R}},\gamma_{\mathrm{T}})$$

Explicit expressions for spectrum and basis complexity in [GDG, Tonni, '20]

Giuseppe Di Giulio (SISSA)

Subsystem complexity at equilibrium [GDG, Tonni, '20]

$$|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \ \Rightarrow \ \hat{\rho} = |\psi\rangle \langle \psi| \ \Rightarrow \ \hat{\rho}_A = \mathrm{Tr}_B \hat{\rho} \ \rightarrow \ \gamma_A$$

$$\mathcal{C}_{\mathcal{A}} = \frac{1}{2\sqrt{2}} \sqrt{\mathrm{Tr}\left\{[\log(\gamma_{\mathcal{A},\mathrm{T}} \gamma_{\mathcal{A},\mathrm{R}}^{-1})]^2\right\}}$$

Subsystem complexity in harmonic lattices [GDG, Tonni, '20] Subsystem complexity at equilibrium [GDG, Tonni, '20]

$$|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \implies \hat{\rho} = |\psi\rangle\langle\psi| \implies \hat{\rho}_A = \mathrm{Tr}_B \hat{\rho} \longrightarrow \gamma_A$$

$$\mathcal{C}_{\mathcal{A}} = \frac{1}{2\sqrt{2}} \sqrt{\mathrm{Tr}\left\{[\log(\gamma_{\mathcal{A},\mathrm{T}}\gamma_{\mathcal{A},\mathrm{R}}^{-1})]^2\right\}}$$

Subsystem complexity in harmonic lattices [GDG, Tonni, '20]

A is an interval in infinite line

Global quantum quench

$$\hat{H} = \sum_{i=1}^{N} \left(\frac{1}{2m} \, \hat{p}_i^2 + \frac{m\omega^2}{2} \, \hat{q}_i^2 + \frac{\kappa}{2} (\hat{q}_i - \hat{q}_{i-1})^2 \right) = \hat{H}(\omega, \kappa, m)$$

Global quench protocol [Calabrese, Cardy,'05]

t = 0

$$|\Psi_0
angle$$
 ground state of $\widehat{H}(\omega_0,\kappa,m)$

$$[\hat{H}(\omega_0,\kappa,m),\hat{H}(\omega,\kappa,m)] \neq 0 \implies$$

$$|\Psi(t)
angle = e^{-i \hat{H}(\omega,\kappa,m)t} |\Psi_0
angle$$

t > 0

non-trivial time evolution (preserving Gaussianity of $|\Psi_0\rangle)$

Global quantum quench

$$\hat{H} = \sum_{i=1}^{N} \left(\frac{1}{2m} \, \hat{p}_i^2 + \frac{m\omega^2}{2} \, \hat{q}_i^2 + \frac{\kappa}{2} (\hat{q}_i - \hat{q}_{i-1})^2 \right) = \hat{H}(\omega, \kappa, m)$$

Global quench protocol [Calabrese, Cardy,'05]

t = 0 t > 0

$$|\Psi_0
angle$$
 ground state of $\widehat{H}(\omega_0,\kappa,m)$ $|\Psi(t)
angle=e^{-i\widehat{H}(\omega,\kappa,m)t}$ $|\Psi_0|$

$$[\widehat{H}(\omega_0,\kappa,m),\widehat{H}(\omega,\kappa,m)]\neq 0 \implies$$

non-trivial time evolution (preserving Gaussianity of $|\Psi_0\rangle$)

• When $\omega = 0 \longrightarrow CFT$ description in the continuum [Calabrese, Cardy, '05]

 Vaidya spacetimes are employed as the gravitational duals of global quantum quenches in the CFT on their boundary

Temporal evolution of the subsystem complexity [GDG, Tonni, '21]

$$\gamma_{A,R} \rightarrow$$
 initial state $(t = 0)$

 $\gamma_{A,\mathrm{T}} \rightarrow \text{state at time } t \text{ after}$ the quench

$$\Delta S_A = S_A(t) - S_A(0)$$

Temporal evolution of the subsystem complexity [GDG, Tonni, '21]

3.0

$$\gamma_{A,\mathrm{R}} \rightarrow \text{initial state } (t=0)$$

 $\gamma_{A,\mathrm{T}} \rightarrow \text{state at time } t \text{ after}$ the quench

$$\Delta S_A = S_A(t) - S_A(0)$$

- Different initial growth
- Saturation when t > L + d: relaxation to the generalised Gibbs ensamble

Qualitative comparison with holographic results

[GDG, Tonni, '21]

Holographic subsystem complexity: CV proposal

10 / 11

Qualitative comparison with holographic results

[GDG-Tonni,'21]

Holographic subsystem complexity: CV proposal

- Similar qualitative behaviours when 0 < t < L/2: initial linear growth and local maximum
- Different behaviours when t > L/2

Conclusions

- Complexity for circuits made by mixed states exploiting Fisher-Rao distance
- Temporal evolution of subsystem complexity and entanglement entropy after a **global quench**
- Qualitative agreement with holographic subsystem volume complexity at early times

Conclusions

- Complexity for circuits made by mixed states exploiting Fisher-Rao distance
- Temporal evolution of subsystem complexity and entanglement entropy after a **global quench**
- Qualitative agreement with holographic subsystem volume complexity at early times

Future perspectives

- Local quench
- Non-Gaussian states
- Complexity of fermionic mixed states

Conclusions

- Complexity for circuits made by mixed states exploiting Fisher-Rao distance
- Temporal evolution of subsystem complexity and entanglement entropy after a **global quench**
- Qualitative agreement with holographic subsystem volume complexity at early times

Future perspectives

- Local quench
- Non-Gaussian states
- Complexity of fermionic mixed states