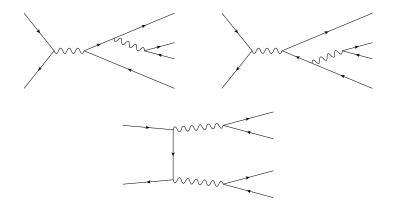
NNLO QCD event generation for ZZ production matched to parton shower

Alessandro Gavardi

Università degli Studi di Milano-Bicocca

Cortona Young 2021 — June $9^{\rm th}\text{-}11^{\rm th},$ 2021

based on arXiv:2103.01214 [hep-ph] (S. Alioli, A. Broggio, AG, S. Kallweit, M. A. Lim, R. Nagar, D. Napoletano)


Why studying diboson production at NNLO?

- The production of on-shell and off-shell vector boson pairs at high-energy hadron colliders are very relevant processes in phenomenology since they allow precision studies of the electroweak interactions, with the aim of looking for new physics.
- NLO theoretical predictions for diboson production have been available for a long time. However, in order to match the experimental precision that will be reached at the LHC in the next years, we need event generators that are NNLO accurate.

Diboson production

We study proton-proton scattering processes with four final-state leptons

$$p \, p o \ell_1 \, \overline{\ell}_2 \, \ell_3 \, \overline{\ell}_4 + X$$

Alessandro Gavardi

Università degli Studi di Milano-Bicocca

Diboson production

In particular we focus on

$$p\,p \rightarrow e^+\,e^-\,\mu^+\,\mu^- + X$$

where the exchanged bosons can be either **Z** bosons or off-shell photons γ^* , and we apply the following cuts

$$m_{
m V}^{
m min} < m_{e^+e^-}, m_{\mu^+\mu^-} < m_{
m V}^{
m max}$$

The entire calculation has been implemented within the GENEVA framework in order to obtain

- Fully differential results up to NNLO
- **NNLL' resummation** of the zero-jettiness (beam thrust) *T*₀ spectrum
- Matching to a parton shower

When generating events the phase space is sliced into regions with 0, 1 and 2 resolved partons in the final state, using **0**- and **1**-jettiness as resolution parameters

- **2-parton events** with $\mathcal{T}_1 > \mathcal{T}_1^{\text{cut}}$ are generated according to $\frac{d\sigma_2}{d\Phi_2}$
- 1-parton events with $\mathcal{T}_0 > \mathcal{T}_0^{\text{cut}}$ are generated according to $\frac{d\sigma_1}{d\Phi_1}(\mathcal{T}_1^{\text{cut}})$, which takes contributions from 1-parton phase-space points and 2-parton phase-space points with $\mathcal{T}_1 < \mathcal{T}_1^{\text{cut}}$
- **0-parton events** are generated according to $\frac{d\sigma_0}{d\Phi_0}(\mathcal{T}_0^{\text{cut}})$, which takes contributions from 0-parton phase-space points and 1- or 2-parton phase-space points with $\mathcal{T}_0 < \mathcal{T}_0^{\text{cut}}$

Zero-jettiness

The resolution parameter used to distinguish between 0- and 1-parton phase-space points is the **zero-jettiness** (or beam thrust) T_0 . Given a process with two incoming partons of momenta

$$oldsymbol{p}_{\pm}=rac{\sqrt{s}}{2}\,e^{\pm y}\left(1,0,0,\pm 1
ight)$$

and n outgoing partons, the zero-jettiness is defined as

$$\mathcal{T}_0 = \sum_{i=1}^n \min_{j=\pm} \left(\frac{2p_i \cdot p_j}{\sqrt{s}} \right) = \sum_{i=1}^n \min\left(p_i^+ e^y, p_i^- e^{-y}\right)$$

with

$$p_i^{\pm} = p_i^0 \mp p_i^3$$

The GENEVA 0-jet exclusive differential cross section at NNLO accuracy and resummed up to NNLL' precision in T_0 is

$$\frac{d\sigma_0}{d\Phi_0}(\mathcal{T}_0^{\text{\tiny cut}}) = \left. \frac{d\sigma^{\text{\tiny NNLL'}}}{d\Phi_0}(\mathcal{T}_0^{\text{\tiny cut}}) + \left. \frac{d\sigma^{\text{\tiny NNLO}}_0}{d\Phi_0}(\mathcal{T}_0^{\text{\tiny cut}}) - \left. \frac{d\sigma^{\text{\tiny NNLL'}}}{d\Phi_0}(\mathcal{T}_0^{\text{\tiny cut}}) \right|_{\text{\tiny NNLO}} \right|_{\text{\tiny NNLO}}$$

We define

$$\frac{d\sigma_0^{\text{nonsing}}}{d\Phi_0}(\mathcal{T}_0^{\text{cut}}) = \left. \frac{d\sigma_0^{\text{NNLO}}}{d\Phi_0}(\mathcal{T}_0^{\text{cut}}) - \left. \frac{d\sigma^{\text{NNLL'}}}{d\Phi_0}(\mathcal{T}_0^{\text{cut}}) \right|_{\text{NNLO}}$$

Alessandro Gavardi

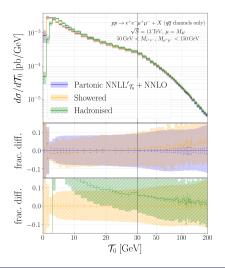
Università degli Studi di Milano-Bicocca

The GENEVA 1-jet inclusive differential cross section at NLO accuracy is

$$rac{d\sigma_{\geq 1}}{d\Phi_1} = rac{d\sigma_{\geq 1}^{\mathrm{NNLL'}}}{d\Phi_1} + rac{d\sigma_{\geq 1}^{\mathrm{nonsing}}}{d\Phi_1}$$

The resummed spectrum $d\sigma^{\text{NNLL}'}/d\Phi_0 d\mathcal{T}_0$ is spreaded over the Φ_1 phase space through a normalized splitting probability P

$$\frac{d\sigma_{\geq 1}^{\mathrm{NNLL'}}}{d\Phi_1} = \frac{d\sigma^{\mathrm{NNLL'}}}{d\Phi_0 d\mathcal{T}_0} P(z,\phi)$$

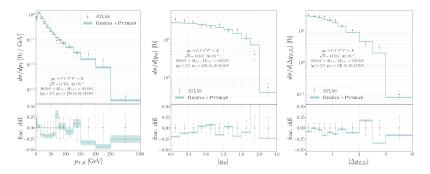

so that

$$\int dz\,d\phi\,\mathsf{P}(z,\phi)=1$$

Alessandro Gavardi

Università degli Studi di Milano-Bicocca

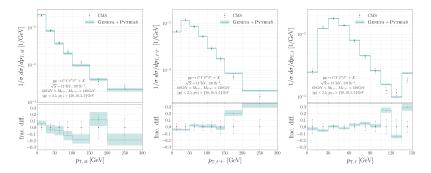
Parton shower and hadronization



Effects of the $\mathrm{PyTHIA8}$ parton shower and hadronization on the \mathcal{T}_0 distribution

- The parton shower effects are *O*(2%) on most of the *T*₀ range
- The hadronization effect is large for small values of T₀

Alessandro Gavardi


Phenomenological results (ATLAS)

ATLAS measurements at 13 TeV from arXiv:1709.07703 [hep-ex]

Università degli Studi di Milano-Bicocca

Phenomenological results (CMS)

CMS measurements at 13 TeV from arXiv:2009.01186 [hep-ex]

Università degli Studi di Milano-Bicocca

Some information

- The 0- and 1-loop matrix elements have been taken from OPENLOOPS (ppvv and ppvvj)
- The two-loop virtual has been implemented starting from the public code qqvvamp (Gehrmann, von Manteuffel, Tancredi JHEP09(2015)128)
- The paper has been accepted for publication in Physics Letters B (preprint arXiv:2103.01214 [hep-ph])
- The code is available upon request to the authors and will be made public in a future release of GENEVA

Some information

- The 0- and 1-loop matrix elements have been taken from OPENLOOPS (ppvv and ppvvj)
- The two-loop virtual has been implemented starting from the public code qqvvamp (Gehrmann, von Manteuffel, Tancredi JHEP09(2015)128)
- The paper has been accepted for publication in Physics Letters B (preprint arXiv:2103.01214 [hep-ph])
- The code is available upon request to the authors and will be made public in a future release of GENEVA

Thanks for your attention!