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Introduction to deformed Seiberg-Witten theory

The partition function for 4D N = 2 SYM theories has been obtained through equivariant
localisation techniques, deforming spacetime through two super-gravity parameters, ε1

and ε2 (the Omega background, needed for computing instanton contributions).
[Nekrasov:2004, Nekrasov-Okounkov:2006, Nekrasov:2009]
When both ε1 , ε2 → 0, the logarithm of the partition function reproduces the
Seiberg-Witten prepotential FSW. [Seiberg-Witten:1994]
An intermediate limit which we will study is the Nekrasov-Shatashvili (NS): ε1 = },
ε2 → 0 [Nekrasov-Shatashvili:2009]. More specifically, having in mind the AGT
corresponding Liouville field theory (and precisely its level 2 degenerate field equation), we
may think of it as a quantisation/deformation of the quadratic SW differential for pure
(Nf = 0) SU(2) SYM which takes up the form of the Mathieu equation

−}2

2

d2

dz2
ψ(z) + [Λ2 cos z − u]ψ(z) = 0 . (1)

where u parametrizes the moduli space of vacua and Λ is a scaling parameter.
[Alday-Gaiotto-Tachikawa:2010; Gaiotto:2013; Awata-Yamada:2010]
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The deformed prepotential FNS (logarithm of the partition function) may be derived by
eliminating u between the two deformed cycles (periods)

a(}, u,Λ) =
1

2π

∫ π

−π
P(z ; }, u,Λ) dz , aD(}, u,Λ) =

1

2π

∫ arccos (u/Λ2)−i0

− arccos (u/Λ2)−i0
P(z ; }, u,Λ) dz

(2)

of the quantum SW differential P(z) = −i d
dz lnψ(z). (In gauge theory also a = 2〈Φ̃〉,

where Φ̃ is the scalar field).
In particular, we may expand asymptotically, around } = 0, P(z)

.
=
∑∞

n=−1 }nPn(z), and
then the NS-deformed periods (modes) are [Mironov-Morozov:2010]

a(n)(u,Λ) =
1

2π

∫ π

−π
P2n−1(z ; u,Λ) dz , a

(n)
D (u,Λ) =

1

2π

∫ arccos (u/Λ2)−i0

− arccos (u/Λ2)−i0
P2n−1(z ; u,Λ) dz .

(3)

Alternatively, we can use Matone’s formula connecting FNS, a, and u (still valid upon
deformation). [Matone:1995; Flume-Fucito-Morales-Poghossian:2004]
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Introduction to ODE/IM with 2 irregular singularities

Since early ’80s , 2D Liouville field theory has been recognised as the effective theory of
2D quantum gravity. [Polyakov:1981] It is also an integrable model.

In the approach of ODE/IM correspondence [Dorey-Tateo:1999;
Lukyanov-Bazhanov-Zamolodchikov:1999; Gaiotto-Moore-Neitzke:2010], it was discovered
by Alexei Zamolodchikov [Zamolodchikov:2012] that the solution ψ(y) of the following
ODE (Generalized Mathieu Equation){

− d2

dy2
+ e2θ(ey/b + e−yb) + P2

}
ψ(y) = 0 , (4)

can be used to construct Q, Y , and T functions and functional relations of the Lioville
integrable model at L. coupling b and L. momentum P [Zamolodchikov:2006].

w.r.t. ”usual” ODE/IM, with polynomial potential, this equation has 2 irregular
singularities (y → ±∞). Thus its study is interesting also for ODE/IM itself.
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Liouville ODE/IM details

In ODE/IM, one defines the Q function

Q(θ,P2) = W [U0,V0] = −i lim
y→+∞

V0(y ; θ)

U1(y ; θ)
. (5)

where U0 and V0 are the solution of the GME (4) with b.c.

U0(y) ' 1√
2

exp
{
−θ/2− y/4b

}
exp

{
−2beθ+y/2b

}
Re y → +∞ ; (6)

V0(y) ' 1√
2

exp
{
−θ/2 + yb/4

}
exp

{
−2

b
eθ−yb/2

}
Re y → −∞ . (7)

All Baxter’s functions and functional relations of ODE/IM can be derived by
considerations on linear relations among the solutions generated by the following discrete
symmetries of the GME (4) (where q = b + 1/b)

Λb : θ → θ + iπb/q y → y + 2πi/q , Ωb : θ → θ + iπ/(bq) y → y − 2πi/q , (8)

as Uk = Λk
bU0 and Vk = Ωk

bV0, with Uk invariant under Ωb and Vk under Λb.
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Def. Y (θ) = Q(θ + iπa/2)Q(θ − iπa/2), (a = 1− 2b
q ), Y -system

Y (θ + iπ/2)Y (θ − iπ/2) =
(

1 + Y (θ + iaπ/2)
)(

1 + Y (θ − iaπ/2)
)
. (9)

This functional equation can be inverted into the TBA for ε(θ) = − lnY (θ)

ε(θ) =
8
√
π3 q

Γ( b
2q )Γ( 1

2bq )
eθ− (10)

−
∫ ∞
−∞

[
1

cosh(θ − θ′ + iaπ/2)
+

1

cosh(θ − θ′ − iaπ/2)

]
ln
[
1 + exp{−ε(θ′)}

] dθ′
2π

, (11)

with boundary condition ε(θ,P2) ' +4qPθ, P > 0, at θ → −∞.

Def. two (dual under b → 1/b) T functions through TQ-relations (p = b
q )

T (θ)Q(θ) = Q(θ+iπp)+Q(θ−iπp) T̃ (θ)Q(θ) = Q(θ+iπ(1−p))+Q(θ−iπ(1−p)) ,
(12)

It can be derived in ODE/IM also the periodicity of T

T (θ + iπ(1− p)) = T (θ) T̃ (θ + iπp) = T̃ (θ) . (13)
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Integrability-Gauge fundamental correspondence

The self-dual (b = 1) GME is known in literature as modified Mathieu equation:{
− d2

dy2
+ 2e2θ cosh y + P2

}
ψ(y) = 0 , (14)

This equation can be related to the Mathieu equation which quantises the SW differential
in the NS limit (1) by the independent variable change z = −iy − π and the parameters
correspondence

}
Λ

=
ε1

Λ
= e−θ

u

Λ2
=

1

2

P2

e2θ
. (15)

We (D. Fioravanti and D. Gregori - arXiv:1908.08030) have found that the two deformed
Seiberg-Witten cycle periods for pure (Nf = 0) SU(2) N = 2 supersymmetric gauge
theory are connected to the Baxter’s Q and T functions of the Liouville integrable model
at the self dual point by the very simple relations:

Q(θ,P2) = exp 2πiaD(}, u) , (16)

T (θ,P2) = 2 cos 2πa(}, u) . (17)
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Proof of the fundamental identification Q = exp 2πiaD

We have proven relation (16) analytically by studying the properties of the solution
P(y) = −i d

dy lnψ(y) of the Riccati equation

P2(y , }, u)− i
dP(y , }, u)

dy
= −(

2u

}2
+

2Λ2

}2
cosh y), (18)

with boundary condition given by the (double) limit y → +∞ of the Seiberg-Witten leading

}→ 0 order: P−1(y) = −i
√

2u
}2 + 2Λ2

}2 cosh y ∼ −i Λ
} e

y , as y → +∞.

2Pi I-I ArcCos[u/Λ^2]

I ArcCos[u/Λ^2]
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Figure: Integration contour in the y complex plane
for the proof of relation (16).

∫ + arccos(u/Λ2)−i0

− arccos(u/Λ2)−i0
P(z) dz︸ ︷︷ ︸

2πiaD(},u)

=

∫ +∞

−∞
Preg (y) dy ,︸ ︷︷ ︸

lnQ(θ,P2)

(19)

Preg (y) = P(y)+2ieθ cosh
y

2
− i

4
tanh y . (20)
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Proof of the fundamental identification T = 2 cos 2πa

Alexei Zamolodchikov proved a relation between the b = 1 T and the Floquet index ν of
the Mathieu equation, such that ψ(z + 2π) = e2πνψ(z). [Zamolodchikov:2012]

T (θ,P2) = 2 cosh 2πν = 2
[
1− 2∆(0) sin2 πP

]
. (21)

ν was computed from the Hill determinant ∆(0) and T was computed through the
analytic continuation of the TBA (11) for lnQ = −1

2ε, by the TQ relation (12).

∆(0) = lim
n→∞

detAn(0)

ξn =
e2θ

P2 − n2

An(ν) =



1 ξ−n 0
ξ−n+1 1 ξ−n+1

.

.

. · · ·

0 ξ0 1 ξ0

· · ·
.
.
.

ξn 1

 .

(22)

He did not recognise that ν = ia (NS limit of N = 2 SYM not yet existing), but we did
it, thus establishing another connection to gauge theory.
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Gauge TBA

The self-dual Liouville QQ relation for Q(}, u) ≡ Q(θ, u) ≡ Q(θ,P2) translates in the
gauge variables as

1 + Q2(θ, u) = Q(θ − iπ/2,−u)Q(θ + iπ/2,−u) (23)

and can be inverted to obtain a TBA for the dual period (e−ε(θ,u) = Q2(θ, u))

ε(θ, u) = −4πia
(0)
D (u)

eθ

Λ
− 2

∫ ∞
−∞

ln [1 + exp{−ε(θ′,−u)}]
cosh (θ − θ′)

dθ′

2π
(24)

The TBA enjoys the Z2 R-symmetry of the moduli space u ↔ −u, which is nothing but
the discrete symmetry Λ1 or Ω1 used for the ODE/IM construction.

The solution ε(θ, u) of the gauge TBA (24) and
that ε(θ,P2) of the integrability TBA (11) match

ε(θ0, u) = ε(θ0,P
2) when P2 = 2ue2θ0/Λ2 , (25)

that is, we verified numerically the relation (16).

Gauge

Integrability
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Non perturbative Z2 symmetry relations

The self-dual Liouville TQ relation and T periodicity relation read in gauge variables

T (θ, u) =
Q(θ − iπ/2,−u) + Q(θ + iπ/2,−u)

Q(θ, u)
, (26)

T (θ, u) = T (θ − iπ/2,−u) . (27)

These relations appear to be a non-perturbative exact generalizations of the perturbative
Z2 R-symmetry relations for the periods [Bilal-Ferrari:1996, Basar-Dunne:2015]

a
(n)
D (−u) = i(−1)n

[
−sgn (Im u) a

(n)
D (u) + a(n)(u)

]
, (28)

a(n)(u) = sgn (Im u) a
(n)
D (u)− i(−1)na

(n)
D (−u) . (29)
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Perturbative periods and local integrals of motion

The θ → +∞ asymptotic expansions of Q in finite gauge u and integrability P variables
are

Q(θ, u)
.

= exp

{
2πi

∞∑
n=0

eθ(1−2n)Λ2n−1a
(n)
D (u,Λ)

}
, (30)

Q(θ,P2)
.

= exp

{
−eθ 8

√
π3

Γ2( 1
4 )
−
∞∑
n=1

eθ(1−2n)CnI2n−1(P2)

}
. (31)

where I2n−1(b = 1,P2) =
∑n

k=0 Υn,kP
2k

Since in Seiberg Witten theory u is finite as θ → +∞, it is necessary that also
P2(θ) = 2 u

Λ2 e
2θ → +∞. In this double limit, the LIMs resum to the perturbative periods.

2πia
(n)
D (u,Λ) = −Λ1−2n

∞∑
k=0

2kCn+kΥn+k,k

( u

Λ2

)k
. (32)
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Quantum Picard-Fuchs equations

We have derived from the series (32) the quantum Picard-Fuchs equations at all

perturbative orders (through an algorithm) for a(n) and a
(n)
D . For instance{

(u2 − Λ4)
∂2

∂u2
+ 4u

∂

∂u
+

5

4

}
a

(1)
D (u,Λ) = 0 , (33){

(u2 − Λ4)
∂2

∂u2
+ 6u

u2

Λ4 + 111
8

u2

Λ4 + 325
32

∂

∂u
+

21

4

u2

Λ4 + 689
32

u2

Λ4 + 325
32

}
a

(2)
D (u,Λ) = 0 , (34)

· · · (35)

(the same equation holding for a(n)).

Since the analytic series (32) are essentially the P2 coefficients of the LIMs, we can
interpret in integrability the quantum Picard-Fuchs equations as fixing the LIMs for b = 1.
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Generalisations

We have described our gauge-integrability correspondence just for the simplest SU(2)
with Nf = 0 case, but we have evidence that it is of much more general validity.

For the case of SU(3) with Nf = 0, D.Fioravanti, R.Poghossian and H.Poghosyan have found
a relation between the 3 periods and the T function of the A2 Toda Integrable model, which
is a generalisation of (17). [Fioravanti-Poghossian-Poghosyan:2020]
For the case of SU(2) with Nf = 1, D. Fioravanti, D.Gregori and H. Shu have found a
relation between the 2 periods and the Y of the Integrable Perturbed Hairpin model.
[Fioravanti-Gregori-Shu:to appear]

A different kind of connection between Q and Y functions and gauge periods has been
found in [Grassi-Gu-Marino:2020, Grassi-Hao-Neitzke:2021]. However, it turns out that
they are different, since they involve different periods, generated by the instanton
prepotential rather than by the cycle integrals.
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Conclusions and perspectives

In conclusion, the powerful ODE/IM correspondence has been revealing a very suggestive
connexion between the quantum integrable models and ε1-deformed Seiberg-Witten
N = 2 supersymmetric gauge theories.

The ODE/IM correspondence yields a natural quantisation scheme for general SW theory:
(the suitable power of) the SW differential becomes quantised as differential operator or
oper whose cycles (periods) or monodromies are encoded into the connexion coefficients
(for instance, of the ODE/IM).

It would be also interesting to explore:

the implications for the cycles and periods as described in [Bourgine-Fioravanti:2018A,B];
the correspondence with higher SU(2) flavours Nf = 2, 3, 4, which is related also to the
computation of quasi-normal-modes frequencies of black holes merging.
[Aminov-Grassi-Hatsuda:2020, Bianchi-Consoli-Grillo-Morales:2021]
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THANK YOU!
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