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Introduction

One of the most prominent energetic
events of the universe is manifested by the
core-collapse supernovae explosion of the
oglant stars having mass in the range ot § -
40 times of the mass of sun.

The energy emerged during this explosion
is carried ofl by the photons and the neu-
trinos, which are billion trillion trillion in
numbers and hauled the most of the en-
ergy released.

In this exploring era of every tiny and mas-
sive object through modern science, neu-
tron stars still hold the mystery in itselt
and are poorly known objects.

In the present work, we studied in detail
the effects of temperature on the proper-
ties (incompressibility, symmetry energy
etc.) of symmetric nuclear matter and the
correlations among them using the most

familiar NL3, IU-FSU and recently de-
veloped G3 parameter sets.

We also explore the dependence of cooling
mechanism of a hot dense matter through
direct URCA process on the EoS and the
variation in mass-radius profile ot a proto-
neutron star with temperature.

Conclusion

1.

We observed a decrement in the binding
energy and saturation density of the sym-
metric nuclear matter with temperature,
which indicates that the system becomes
more loosely bound at higher temperature.

. The adaptation of pressure with temper-

ature is utterly important in determining
the critical parameters of liquid-gas phase
transition, specially the critical tempera-
ture, 7. We found the value of T as

14.60, 15.37 and 14.50 MeV for NL3, G3
and IU-FSU parameters respectively.

. The magnitude of the neutrino emissivity

(@) is considerably affected by the nature
(stiff or soft) of the EoS. We also concluded
that direct URCA process is mainly re-
sponsible only for the initial cooling of the
newly born star.

. The mass and radius of the neutron star

goes on decreasing with decrease in tem-
perature. The NL3 parameter set predicts
higher mass and larger radius in compari-
son to G3 parameter set.
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Temperature Dependent RMF Model

e

I'he expression for the energy density of a warm nuclear system using relativistic mean-field formalism
can be naively derived as
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where fo(u*,T) and fo(u’,T) are the thermal distribution function of the nucleons and the anti-
nucleons; and p, is the effective chemical potential of the nucleons.
The formula for neutrino emissivity (()) through direct URCA process is given by
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Figure 1: Binding energy and pressure as a function of nucleon density for symmetric nuclear matter at
different temperatures (left); Neutrino emissivity at different temperatures as a function of nucleon density

for NL3 (solid line), G3 (dashed line) and IU-FSU (dotted line) parameter sets (right).
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Figure 2: Mass-Radius profile of a proto-neutron star at different temperatures for NL3 (left panel), G3
(middle panel) and ITU-FSU (right panel) parameter sets.



