Stochastic sampling effects and heterogeneities in control of epidemic processes

DI PARMA

Marco Mancastroppa University of Parma & INFN Parma

Cortona Young 2021 June 09, 2021 - June 11, 2021

Istituto Nazionale di Fisica Nucleare

Joint work with

Alessandro Vezzani IMEM-CNR & University of Parma

Raffaella Burioni University of Parma & INFN

Claudio Castellano Istituto dei Sistemi Complessi, Roma

Temporal Networks

Static Network

Temporal Network

Phase transition on networks

SIS model

Static networks

Topology affects epidemic spreading and threshold

Temporal networks

M =

Perra et al., Sci. Rep. (2012)

Adjacency matrix evolves in time

$\rho(M^{\dagger}) = 1$

Infection propagator approach

Valdano E. et al., PRX (2015)

Network evolution and structure affect epidemic spreading and threshold

Adaptive temporal networks

Network dynamics affects dynamical processes

 Coupled dynamics
 ↓

 Dynamical processes can affect network evolution

Response to epidemics and control measures change the network

THE WALL STREET JOURNAL. WORLD | EUROPE As Virus Spreads, Italy Locks Down Country

CDC, Alissa Eckert, Dan Higgins Symptoms of the disease Risk perception and awareness Containment and control measures

> Adaptive behaviors Impact on network dynamics Adaptive Temporal Networks

COVID-19 Pandemic

Lockdowns and restrictions to mobility
 Stop network evolution and link formation

Contact Tracing dynamics Dan Higgins
Break chains of infection without stopping network evolution

→ Manual and Digital CT

Contacts exploration over interaction dynamics Isolation of infected contacts affects epidemic spreading

Effective control measures increase the threshold

Contact tracing protocols

Manual contact tracing

- Delays in tracing and isolation
- Individual memory arepsilon

Intrinsic difference in contacts sampling

Digital contact tracing

What Apple and Google have proposed

Source: Apple/Google

- Small delays
- Adoption level $\,f\,$

BBC

CORONA WARN-APP

Effects of stochasticity

Activity-Driven Network

Perra et al., Sci. Rep. (2012)

Activity-Driven with attractiveness a - activity of node \rightarrow Poissonian dynamics b - attractiveness of a node $\rho(a, b)$ joint distribution

(A) (A)(A

a,b

• Probability to contact a node \propto b

"Heavy tails", heterogeneities, activity and attractiveness correlations $\longrightarrow \rho(a,b) \sim a^{-(\nu+1)}\delta(b-ca)$ $\nu \in [0.5, 1.5]$ Hubs and superspreaders

Adaptive behavior with a change in activity and attractiveness

Epidemic model for COVID-19

Covid-19 parameters

 $\tau = 1/\mu = 14 \, days$ $(1 - \delta) = 43\%$ World Health $\tau_P = 1/\gamma_P = 1.5 \, days$ $\mu_I = \gamma_P \mu/(\gamma_P - \mu)$

Susceptible

Infected Asymptomatic

 $(a_S, b_S) = (a_P, b_P) = (a_A, b_A) = (a_R, b_R)$ \downarrow Asymptomatic/Presymptomatic transmissions

 $(a_I, b_I) = (0, 0)$

Immediately isolated

→ Index case

Contact tracing Isolation of asymptomatic contacts

Contact tracing

Contact Tracing (CT)

Mean-field equations – Manual CT

Activity-attractiveness based mean-field approach

 $\partial_t P_{a_S, b_S}(t) = -\gamma_P P_{a_S, b_S}(t) + \lambda a_S (1 - I_{a_S, b_S}(t) - P_{a_S, b_S}(t)) \frac{\delta \overline{b_S P}(t) + (1 - \delta) [\overline{b_S T}(t) + \overline{b_S A}(t)]}{\overline{b_S} - (1 - \delta) \overline{b_S Q}(t) - \delta \overline{b_S I}(t)}$ $+\lambda b_{S}(1-I_{a_{S},b_{S}}(t)-P_{a_{S},b_{S}}(t))\frac{\delta\overline{a_{S}P}(t)+(1-\delta)[\overline{a_{S}T}(t)+\overline{a_{S}A}(t)]}{\overline{b_{S}}-(1-\delta)\overline{b_{S}Q}(t)-\delta\overline{b_{S}I}(t)}$

 $(t) = -\mu_T I$, $(t) + \alpha_T P$, $(t) = \partial_t O$, $(t) = -\mu_O$, $(t) + \alpha_T T$, (t)AT

$$\begin{aligned} \partial_{t} a_{s,bs}(t) &= -\mu \Pi_{a_{s},bs}(t) + \gamma P T_{a_{s},bs}(t) &= -\mu \mathcal{Q}_{a_{s},bs}(t) + \gamma A T_{a_{s},bs}(t) \\ \partial_{t} A_{a_{s},bs}(t) &= -\mu A_{a_{s},bs}(t) + \lambda a_{s}(1 - A_{a_{s},bs}(t) - T_{a_{s},bs}(t) - Q_{a_{s},bs}(t)) \frac{\delta[\overline{bsP}(t) - \overline{\varepsilon bsP}(t)] + (1 - \delta)[\overline{bsT}(t) + \overline{bsA}(t)]}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &+ \lambda b_{s}(1 - A_{a_{s},bs}(t) - T_{a_{s},bs}(t) - Q_{a_{s},bs}(t)) \frac{\delta[\overline{asP}(t) - \overline{\varepsilon asP}(t)] + (1 - \delta)[\overline{asT}(t) + \overline{asA}(t)]}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &- \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} - \overline{\varepsilon bsI}(t) - \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} - \lambda b_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon as} - \overline{\varepsilon asP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &- \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} - \overline{\varepsilon bsI}(t) - \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} - \lambda b_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon as} - \overline{\varepsilon asP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &- \lambda a_{s} \delta A_{a_{s},bs}(t) + \lambda b_{s}(1 - A_{a_{s},bs}(t) - T_{a_{s},bs}(t) - Q_{a_{s},bs}(t)) \frac{\delta \overline{\varepsilon asP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &- \lambda a_{s} \delta A_{a_{s},bs}(t) + \lambda b_{s}(1 - A_{a_{s},bs}(t) - T_{a_{s},bs}(t) - Q_{a_{s},bs}(t)) \frac{\delta \overline{\varepsilon asP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &+ \lambda a_{s}(1 - A_{a_{s},bs}(t) - T_{a_{s},bs}(t) - Q_{a_{s},bs}(t)) \frac{\delta \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &+ \lambda b_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon as} - \overline{\varepsilon asP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsI}(t)} \\ &+ \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon as} - \overline{\varepsilon asP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsP}(t)} \\ &+ \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} - \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsP}(t)} \\ &+ \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} - \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsP}(t)} \\ &+ \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} - \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsP}(t)} \\ &+ \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} - \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsQ}(t) - \overline{\delta bsP}(t)} \\ &+ \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} - \overline{\varepsilon bsP}(t)}{\overline{bs} - (1 - \delta)\overline{bsP}(t)} \\ &+ \lambda a_{s} \delta A_{a_{s},bs}(t) \frac{\overline{\varepsilon bs} -$$

Mean-field equations – Manual CT

$$\begin{split} \partial_t \overline{I}(t) &= -\mu_I \overline{I}(t) + \gamma_P \overline{P}(t) \\ \partial_t \overline{P}(t) &= -\gamma_P \overline{P}(t) + 2\lambda [\overline{\delta a_S P}(t) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] \\ \partial_t \overline{Q}(t) &= -\mu \overline{Q}(t) + \gamma_A \overline{T}(t) \\ \partial_t \overline{T}(t) &= -(\mu + \gamma_A) \overline{T}(t) + 2\lambda \overline{\delta \varepsilon a_S P}(t) + 2\lambda \overline{\delta a_S A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{A}(t) &= -\mu \overline{A}(t) + 2\lambda [\delta(\overline{a_S P}(t) - \overline{\varepsilon a_S P}(t)) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] - 2\lambda \overline{\delta a_S A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S P}(t) &= -\gamma_P \overline{a_S P}(t) + 2\lambda \frac{\overline{a_S}}{\overline{a_S}} [\delta \overline{a_S P}(t) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] \\ \partial_t \overline{\varepsilon a_S P}(t) &= -\gamma_P \overline{\varepsilon a_S P}(t) + 2\lambda \frac{\overline{\varepsilon a_S}}{\overline{a_S}} [\delta \overline{a_S P}(t) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] \\ \partial_t \overline{a_S T}(t) &= -(\mu + \gamma_A) \overline{a_S T}(t) + 2\lambda \delta \frac{\overline{a_S}}{\overline{a_S}} \overline{\varepsilon a_S P}(t) + 2\lambda \delta \overline{a_S^2 A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \frac{\overline{a_S}}{\overline{a_S}} [\delta(\overline{a_S P}(t) - \overline{\varepsilon a_S P}(t)) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] - 2\lambda \delta \overline{a_S^2 A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \frac{\overline{a_S}}{\overline{a_S}} [\delta(\overline{a_S P}(t) - \overline{\varepsilon a_S P}(t)) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] - 2\lambda \delta \overline{a_S^2 A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \frac{\overline{a_S}}{\overline{a_S}} [\delta(\overline{a_S P}(t) - \overline{\varepsilon a_S P}(t)) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] - 2\lambda \delta \overline{a_S^2 A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \overline{a_S} \frac{\overline{a_S}}{\overline{a_S}} [\delta(\overline{a_S P}(t) - \overline{\varepsilon a_S P}(t)) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] - 2\lambda \delta \overline{a_S^2 A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \overline{a_S} \frac{\overline{a_S}}{\overline{a_S}} [\delta(\overline{a_S P}(t) - \overline{\varepsilon a_S P}(t)) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] - 2\lambda \delta \overline{a_S^2 A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \overline{a_S} \frac{\overline{a_S}}{\overline{a_S}} [\delta(\overline{a_S P}(t) - \overline{\varepsilon a_S P}(t)) + (1 - \delta)(\overline{a_S T}(t) + \overline{a_S A}(t))] - 2\lambda \delta \overline{a_S^2 A}(t) \frac{\overline{\varepsilon a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \overline{a_S} \frac{\overline{a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \overline{a_S} \frac{\overline{a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S A}(t) &= -\mu \overline{a_S A}(t) + 2\lambda \overline{a_S} \frac{\overline{a_S}}{\overline{a_S}} \\ \partial_t \overline{a_S} \frac{\overline{a_S A}(t)}{\overline{a_S A$$

$$\rho(a_S, b_S) = \rho_S(a_S)\delta(b_S - a_S)$$

Realistic activity/attractiveness positive correlation

Epidemic threshold

- Set of linearized equations around the absorbing state
- Linear stability analysis of absorbing state
- Analogous for Digital CT with additional compartments

Epidemic thresholds

Manual CT

$$\begin{split} 8r^{3}\delta^{2}(1-\delta)\frac{\overline{\varepsilon a_{S}^{2}}\overline{\varepsilon a_{S}}}{\overline{a_{S}}}\frac{\overline{a_{S}^{3}}}{1+2r\delta a_{S}\frac{\overline{\varepsilon a_{S}}}{\overline{a_{S}}}}\frac{\gamma_{A}}{\mu}-4r^{2}\delta(1-\delta)\left[\overline{\varepsilon a_{S}^{2}}\overline{a_{S}^{2}}+\frac{\gamma_{P}}{\mu}\overline{\varepsilon a_{S}}\frac{\overline{a_{S}^{3}}}{1+2r\delta a_{S}\frac{\overline{\varepsilon a_{S}}}{\overline{a_{S}}}}\right]\frac{\gamma_{A}}{\mu}\\ +2r\overline{a_{S}^{2}}\overline{a_{S}}\left(\frac{\gamma_{A}}{\mu}+1\right)\left(\delta+\frac{\gamma_{P}}{\mu}(1-\delta)\right)-\overline{a_{S}}^{2}\frac{\gamma_{P}}{\mu}\left(\frac{\gamma_{A}}{\mu}+1\right)=0 \end{split}$$
Digital CT

$$8r^{3}\delta^{2}(1-\delta)\frac{\overline{fa_{S}^{2}}\overline{fa_{S}}}{\overline{a_{S}}}\frac{\overline{fa_{S}^{3}}}{1+2r\delta a_{S}\frac{\overline{fa_{S}}}{\overline{a_{S}}}}\frac{\gamma_{P}}{\mu} - 4r^{2}\delta(1-\delta)\left[\overline{fa_{S}^{2}}^{2} + \frac{\gamma_{P}}{\mu}\overline{fa_{S}}\frac{\overline{fa_{S}^{3}}}{1+2r\delta a_{S}\frac{\overline{fa_{S}}}{\overline{a_{S}}}}\right]\frac{\gamma_{P}}{\mu} + 2r\overline{a_{S}^{2}}\overline{a_{S}}\left(\frac{\gamma_{P}}{\mu} + 1\right)\left(\delta + \frac{\gamma_{P}}{\mu}(1-\delta)\right) - \overline{a_{S}}^{2}\frac{\gamma_{P}}{\mu}\left(\frac{\gamma_{P}}{\mu} + 1\right) = 0$$

Exact analytical closed relations \longrightarrow Hold for arbitrary ρ_S , $\varepsilon(a_S)$, $f(a_S)$ \longrightarrow Solvable numerically \longrightarrow Epidemic threshold

Effects of stochasticity

 $\rho(a_S, b_S) = \delta(a_S - a)\delta(b_S - b)$ Homogeneous population $r_C^{APP} = r_C^{NA} \frac{2\frac{\gamma_P}{\mu}}{\delta + (1 - \delta - f\delta)\frac{\gamma_P}{\mu} + \sqrt{(\delta + (1 - \delta - f\delta)\frac{\gamma_P}{\mu})^2 + 4\delta f\frac{\gamma_P}{\mu}(\delta + \frac{\gamma_P}{\mu}(1 - f)(1 - \delta))}}$ $r_C^{MANUAL} = r_C^{NA} \frac{2\frac{T}{\mu}}{\delta + (1 - \delta - \varepsilon\delta)\frac{\gamma_P}{\mu} + \sqrt{(\delta + (1 - \delta - \varepsilon\delta)\frac{\gamma_P}{\mu})^2 + 4\delta^2\varepsilon\frac{\gamma_P}{\mu}}}$

Increase in the epidemic threshold ----- CT effectiveness $arepsilon = f^2 \longrightarrow$ Same probability to trace a contact

Manual CT is more effective in increasing the epidemic threshold ---- Intrinsic difference in contact exploration

Effects of heterogeneity

 $\rho_S(a_S, b_S) \sim a_S^{-(\nu+1)} \delta(b_S - a_S)$

• Manual CT much more effective in heterogeneous population

Heterogeneities amplify the intrinsic difference

- Tracing of super-spreaders (hubs)
- → Hubs without app are not traced in digital CT
 - → Hubs easily traced in manual CT

Effects of delays and limited scalability

The intrinsic advantage of manual CT, amplified by heterogeneities, holds also in the presence of limited scalability and delays

Hybrid CT

Hybrid CT protocols

- ---- Nodes traced both digitally or manually
 - Role of Manual and Digital CT in realistic hybrid protocols
 - Additional compartments and analogous (but more complex) mean-field equations

Hybrid CT

 $\rho_S(a_S, b_S) \sim a_S^{-(\nu+1)} \delta(b_S - a_S)$

Effects of Digital CT

Effects of Manual CT

---- Manual CT strongly increases the threshold for realistic app adoption levels

- Digital CT increases more slowly with adoption rate for realistic Manual CT implementation
- → Manual CT must play a prominent role in any CT strategy

Conclusions

• We model epidemic spreading on adaptive temporal networks with contact tracing (CT)

----- Coupled dynamics

----- Dynamical phase transition on temporal networks

• Manual CT is more effective than digital CT in increasing the epidemic threshold

-----> Intrinsic difference due to contacts sampling (annealed vs. quenched)

....

----- Heterogeneities amplify differences

- Manual CT must play a prominent role in any hybrid CT strategy to mitigate epidemic spreading
- Future perspective: optimize integration of protocols (policy for resources allocation), multiple steps CT

M. Mancastroppa, C. Castellano, A. Vezzani, R. Burioni, *"Stochastic sampling effects favor manual over digital contact tracing"*, *Nature Communications* 12, 1919 (2021)
M. Mancastroppa, R. Burioni, V. Colizza, A. Vezzani, *"Active and inactive quarantine in epidemic spreading on adaptive activity-driven networks"*, *Physical Review E* 102, 020301(R) (2020)