

Heavy signatures at the LHC: NLO corrections to off-shell ttW production

Giovanni Pelliccioli

Universität Würzburg, Institut für Theoretische Physik und Astrophysik

In collaboration with Ansgar Denner.

Based on JHEP 11 (2020) 069 [2007.12089] and EPJC 81 (2021) 4, 354 [2102.03246].

Hard scattering: on-shell, leading-order (LO) in perturbation theory. Fully automated in Monte Carlo codes. But tops and W's are unstable ...

Hard scattering: off-shell, leading-order (LO) in perturbation theory. Automated in Monte Carlo codes, but LO is not accurate enough ...

Hard scattering: radiative corrections, $(next)^k$ -to-leading order (N^kLO, perturbative) NLO automated (challenges in numerical integration), but not what is measured ...

Parton shower: approximated resummation of higher orders Automated, much closer to what is measured ...

Hadronization & multi-parton scattering (non-perturbative) Automated, this is what experimentalists measure.

What we do?

Hard scattering, radiative corrections to the off-shell process (NLO EW + QCD). Hard numerical integration, a lot of contributions, but interesting phenomenology!

Why ttW?

 $t\bar{t}W^{\pm}$ at the LHC, one of the heaviest signatures, an optimal process for studying

- $t\bar{t}V$ coupling in or beyond the SM, new-physics effects (EFT, SUSY, ...)
- charge asymmetries [Maltoni et al. 1406.3262, Bevilacqua et al. 2012.01363]
- important background to tt H [Maltoni et al. 1507.05640]

Measured with Run-2 dataset [ATLAS 1609.01599 & 1901.03584, CMS 1711.02547].

Tension between data and SM predictions, both direct and $t\bar{t}$ H measurements (excess of $t\bar{t}$ W events over SM)

 \rightarrow improved theory modeling required

Perturbative orders

Leading order (LO): many contributions, but feasible. Included all off-shell effects (no production \times decay approx.).

Next-to-leading order is more involved: we computed NLO₁, NLO₂ and NLO₃.

Next-to-leading order

Only the sum of real and virtual corrections is free of infrared singularities.

Virtual corrections (NLO₂):

Difficult loop-integral to be reduced and evaluated numerically.

Real corrections (NLO₂):

High-multiplicity final state, to be integrated with multi-channel Monte Carlo.

	$\mu_0 = H_T/3$	
order	σ (fb)	ratio (/LO _{QCD})
$LO_{QCD} (\alpha_s^2 \alpha^6)$	$0.2218(1)^{+25.3\%}_{-18.8\%}$	1
LO_{EW} (α^8)	$0.002164(1)^{+3.7\%}_{-3.6\%}$	0.010
NLO ₁ $(\alpha_s^3 \alpha^6)$	0.0147(6)	0.066
$NLO_2 (\alpha_s^2 \alpha^7)$	-0.0122(3)	-0.055
NLO ₃ ($\alpha_{s}\alpha^{8}$)	0.0293(1)	0.131
LO _{QCD} +NLO ₁	$0.2365(6)^{+2.9\%}_{-6.0\%}$	1.066
$LO_{QCD} + NLO_2$	$0.2094(3)^{+25.0\%}_{-18.7\%}$	0.945
$LO_{EW} + NLO_3$	$0.03142(4)^{+22.2\%}_{-16.8\%}$	0.141
LO+NLO	$0.2554(7)^{+4.0\%}_{-6.5\%}$	1.151

- NLO₁ corrections amount at 7%, but strongly depend on choice of renormalization (and factorization) scale
- ▶ NLO₂ corrections are negative (-6%, as usual for NLO EW) and scale-indep.
- NLO₃ corrections are 10 times larger than its LO (13% of LO_{QCD}) and larger than NLO₂: power counting of perturbative couplings can be misleading!
- theory-uncertainties (scale) dominated by NLO1: from 25% (LO) to 5% (NLO)

	$\mu_0 = H_T/3$	
order	σ (fb)	ratio (/LO _{QCD})
$LO_{QCD} (\alpha_s^2 \alpha^6)$	$0.2218(1)^{+25.3\%}_{-18.8\%}$	1
LO_{EW} (α^8)	$0.002164(1)^{+3.7\%}_{-3.6\%}$	0.010
NLO ₁ $(\alpha_s^3 \alpha^6)$	0.0147(6)	0.066
NLO ₂ $(\alpha_s^2 \alpha^7)$	-0.0122(3)	-0.055
NLO ₃ ($\alpha_{s}\alpha^{8}$)	0.0293(1)	0.131
$LO_{QCD} + NLO_1$	$0.2365(6)^{+2.9\%}_{-6.0\%}$	1.066
$LO_{QCD} + NLO_2$	$0.2094(3)^{+25.0\%}_{-18.7\%}$	0.945
$LO_{EW} + NLO_3$	$0.03142(4)^{+22.2\%}_{-16.8\%}$	0.141
LO+NLO	$0.2554(7)^{+4.0\%}_{-6.5\%}$	1.151

- NLO₁ corrections amount at 7%, but strongly depend on choice of renormalization (and factorization) scale
- ▶ NLO₂ corrections are negative (−6%, as usual for NLO EW) and scale-indep.
- NLO₃ corrections are 10 times larger than its LO (13% of LO_{QCD}) and larger than NLO₂: power counting of perturbative couplings can be misleading!
- theory-uncertainties (scale) dominated by NLO1: from 25% (LO) to 5% (NLO)

	$\mu_0 = H_T/3$	
order	σ (fb)	ratio (/LO _{QCD})
$LO_{QCD} (\alpha_s^2 \alpha^6)$	$0.2218(1)^{+25.3\%}_{-18.8\%}$	1
LO_{EW} (α^8)	$0.002164(1)^{+3.7\%}_{-3.6\%}$	0.010
NLO ₁ $(\alpha_s^3 \alpha^6)$	0.0147(6)	0.066
$NLO_2 (\alpha_s^2 \alpha^7)$	-0.0122(3)	-0.055
NLO ₃ ($\alpha_{s}\alpha^{8}$)	0.0293(1)	0.131
$LO_{QCD} + NLO_1$	$0.2365(6)^{+2.9\%}_{-6.0\%}$	1.066
$LO_{QCD} + NLO_2$	$0.2094(3)^{+25.0\%}_{-18.7\%}$	0.945
$LO_{EW} + NLO_3$	$0.03142(4)^{+22.2\%}_{-16.8\%}$	0.141
LO+NLO	$0.2554(7)^{+4.0\%}_{-6.5\%}$	1.151

- NLO1 corrections amount at 7%, but strongly depend on choice of renormalization (and factorization) scale
- ▶ NLO₂ corrections are negative (-6%, as usual for NLO EW) and scale-indep.
- NLO₃ corrections are 10 times larger than its LO (13% of LO_{QCD}) and larger than NLO₂: power counting of perturbative couplings can be misleading!
- theory-uncertainties (scale) dominated by NLO₁: from 25% (LO) to 5% (NLO)

	$\mu_0 = H_T/3$	
order	σ (fb)	ratio (/LO _{QCD})
$LO_{QCD} (\alpha_s^2 \alpha^6)$	$0.2218(1)^{+25.3\%}_{-18.8\%}$	1
LO_{EW} (α^8)	$0.002164(1)^{+3.7\%}_{-3.6\%}$	0.010
NLO ₁ $(\alpha_s^3 \alpha^6)$	0.0147(6)	0.066
$NLO_2 (\alpha_s^2 \alpha^7)$	-0.0122(3)	-0.055
NLO ₃ ($\alpha_{s}\alpha^{8}$)	0.0293(1)	0.131
$LO_{QCD} + NLO_1$	$0.2365(6)^{+2.9\%}_{-6.0\%}$	1.066
$LO_{QCD} + NLO_2$	$0.2094(3)^{+25.0\%}_{-18.7\%}$	0.945
$LO_{EW} + NLO_3$	$0.03142(4)^{+22.2\%}_{-16.8\%}$	0.141
LO+NLO	$0.2554(7)^{+4.0\%}_{-6.5\%}$	1.151

- NLO1 corrections amount at 7%, but strongly depend on choice of renormalization (and factorization) scale
- ▶ NLO₂ corrections are negative (-6%, as usual for NLO EW) and scale-indep.
- NLO₃ corrections are 10 times larger than its LO (13% of LO_{QCD}) and larger than NLO₂: power counting of perturbative couplings can be misleading!
- theory-uncertainties (scale) dominated by NLO1: from 25% (LO) to 5% (NLO)

	$\mu_0 = H_T/3$	
order	σ (fb)	ratio (/LO _{QCD})
$LO_{QCD} (\alpha_s^2 \alpha^6)$	$0.2218(1)^{+25.3\%}_{-18.8\%}$	1
LO_{EW} (α^8)	$0.002164(1)^{+3.7\%}_{-3.6\%}$	0.010
NLO ₁ $(\alpha_s^3 \alpha^6)$	0.0147(6)	0.066
$NLO_2 (\alpha_s^2 \alpha^7)$	-0.0122(3)	-0.055
NLO ₃ ($\alpha_{s}\alpha^{8}$)	0.0293(1)	0.131
$LO_{QCD} + NLO_1$	$0.2365(6)^{+2.9\%}_{-6.0\%}$	1.066
$LO_{QCD} + NLO_2$	$0.2094(3)^{+25.0\%}_{-18.7\%}$	0.945
$LO_{EW} + NLO_3$	$0.03142(4)^{+22.2\%}_{-16.8\%}$	0.141
LO+NLO	$0.2554(7)^{+4.0\%}_{-6.5\%}$	1.151

- NLO1 corrections amount at 7%, but strongly depend on choice of renormalization (and factorization) scale
- ▶ NLO₂ corrections are negative (-6%, as usual for NLO EW) and scale-indep.
- NLO₃ corrections are 10 times larger than its LO (13% of LO_{QCD}) and larger than NLO₂: power counting of perturbative couplings can be misleading!
- ▶ theory-uncertainties (scale) dominated by NLO₁: from 25% (LO) to 5% (NLO)

Combining NLO EW and QCD: distributions

Total cross-sections are not the end of the story: NLO corrections distort the shape of differential cross-sections. Flgure: invariant mass of the three-charged-lepton system.

Perturbative description of LHC processes is only the first step towards realistic theory predictions.

NLO QCD and EW corrections feature several challenges when dealing with

- 1. high-multiplicity final states,
- 2. complicated resonant structures,
- 3. off-shell effects (non-resonant contributions, spin-correlations).

 $t\bar{t}W^\pm$ is a heavy and rare signature that is interesting both to probe the Standard Model and to search for new-physics.

We have computed the NLO QCD and EW corrections in the fully-leptonic decay channel, including all off-shell effects both at LO and at NLO.

NLO QCD is not enough: essential to provide use NLO predictions for $t\bar{t}W^{\pm}$.

Perturbative description of LHC processes is only the first step towards realistic theory predictions.

NLO QCD and EW corrections feature several challenges when dealing with

- 1. high-multiplicity final states,
- 2. complicated resonant structures,
- 3. off-shell effects (non-resonant contributions, spin-correlations).

 $t\bar{t}W^\pm$ is a heavy and rare signature that is interesting both to probe the Standard Model and to search for new-physics.

We have computed the NLO QCD and EW corrections in the fully-leptonic decay channel, including all off-shell effects both at LO and at NLO.

NLO QCD is not enough: essential to provide use NLO predictions for $t\bar{t}W^{\pm}$.

Perturbative description of LHC processes is only the first step towards realistic theory predictions.

NLO QCD and EW corrections feature several challenges when dealing with

- 1. high-multiplicity final states,
- 2. complicated resonant structures,
- 3. off-shell effects (non-resonant contributions, spin-correlations).

 $t\bar{t}W^\pm$ is a heavy and rare signature that is interesting both to probe the Standard Model and to search for new-physics.

We have computed the NLO QCD and EW corrections in the fully-leptonic decay channel, including all off-shell effects both at LO and at NLO.

NLO QCD is not enough: essential to provide use NLO predictions for $t\bar{t}W^{\pm}$.

Perturbative description of LHC processes is only the first step towards realistic theory predictions.

NLO QCD and EW corrections feature several challenges when dealing with

- 1. high-multiplicity final states,
- 2. complicated resonant structures,
- 3. off-shell effects (non-resonant contributions, spin-correlations).

 $t\bar{t}W^\pm$ is a heavy and rare signature that is interesting both to probe the Standard Model and to search for new-physics.

We have computed the NLO QCD and EW corrections in the fully-leptonic decay channel, including all off-shell effects both at LO and at NLO.

NLO QCD is not enough: essential to provide use NLO predictions for $t\bar{t}W^{\pm}$.

Perturbative description of LHC processes is only the first step towards realistic theory predictions.

NLO QCD and EW corrections feature several challenges when dealing with

- 1. high-multiplicity final states,
- 2. complicated resonant structures,
- 3. off-shell effects (non-resonant contributions, spin-correlations).

 $t\bar{t}W^\pm$ is a heavy and rare signature that is interesting both to probe the Standard Model and to search for new-physics.

We have computed the NLO QCD and EW corrections in the fully-leptonic decay channel, including all off-shell effects both at LO and at NLO.

NLO QCD is not enough: essential to provide use NLO predictions for $t\bar{t}W^{\pm}$.

Perturbative description of LHC processes is only the first step towards realistic theory predictions.

NLO QCD and EW corrections feature several challenges when dealing with

- 1. high-multiplicity final states,
- 2. complicated resonant structures,
- 3. off-shell effects (non-resonant contributions, spin-correlations).

 $t\bar{t}W^\pm$ is a heavy and rare signature that is interesting both to probe the Standard Model and to search for new-physics.

We have computed the NLO QCD and EW corrections in the fully-leptonic decay channel, including all off-shell effects both at LO and at NLO.

NLO QCD is not enough: essential to provide use NLO predictions for $t\bar{t}W^{\pm}$.