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Problem

LL NLL

Spoil the convergence of the 
perturbative series

Theoretical prediction are no 
longer reliable 

Solution? Find out the all-order structure of these logarithmic 
contributions by writing them as a series and summing it 

Resummation

O(n) ∼ αn
s [lnn(x) + lnn−1(x) + …]



How much small-x resummation improves 
theoretical predictions?

Ball, R. D., Bertone, V., Bonvini, M., Marzani, S., Rojo, J., & Rottoli, L. (2018). 
Parton distributions with small-x resummation: evidence for BFKL dynamics in 

HERA data. The European Physical Journal C, 78(4), 1-52.
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- Resummation Factorization
We need some factorisation properties

- Mellin Transform 

g(N, Q2) = ∫
1

0
dx xN g (x, Q2) lnk(x) →

1
Nk+1
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Ci (N, αs(Q2)) fi (N, Q2)
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Our goal: resum NLL logarithms in 
the coefficient function
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Bonvini M., Marzani S., and Peraro T. (2016). Small-x resummation from 
HELL. The European Physical Journal C, 76(11), 1-28.
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Higgs DIS 

We want to resum NLL terms in the coefficient function  

We have to compute the one-loop off-shell coefficient function

Cg(N, αs) = ∫
∞

0
dk2
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⊥, Q2, αs) 𝒰 (N, k2
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Thank you!


