Phases of five-dimensional supersymmetric gauge theories

Based on [arXiv:2103.14049]

Leonardo Santilli

Cortona Young 2021 at GGI $_{(via\ Zoom)}$ 9-11/06/2021 Video-poster

Grupo de Física Matemática & Departamento de Matemática Faculdade de Ciências, Universidade de Lisboa

Leonardo Santilli (U. Lisboa)

Phases of 5d susy gauge theories

Today's focus: 5d $\mathcal{N} = 1$ gauge theories.

They admit UV completion in a superconformal field theory (SCFT) [Seiberg, Intriligator-Morrison-Seiberg, many others], which is

- isolated (\Rightarrow no conformal m.fold)
- strongly coupled (\Rightarrow no Lagrangian).

Today's focus: 5d $\mathcal{N} = 1$ gauge theories.

They admit UV completion in a superconformal field theory (SCFT) [Seiberg, Intriligator-Morrison-Seiberg, many others], which is

- isolated (⇒ no conformal m.fold)
- strongly coupled (\Rightarrow no Lagrangian).

The gauge theories are realised via mass deformation of these SCFTs.

$$V = SCFT$$
Yang-Mills
$$IR = Free$$

Observation: 5d gauge theories have a Lagrangian description.

Observation: 5d gauge theories have a Lagrangian description.

Observation: 5d gauge theories have a Lagrangian description.

Compute supersymmetry-protected quantities, e.g. sphere partition function $\mathcal{Z}_{\mathbb{S}^5}$ or Wilson loop vev $\langle W \rangle$, in *weakly coupled* gauge theory, extract info about *strongly coupled* UV SCFT.

Main tool: supersymmetric localization \implies reduce path integral to ordinary matrix integral.

Main tool: supersymmetric localization \implies reduce path integral to ordinary matrix integral.

 $\mathsf{Matrix} \ \mathsf{model} \ \leftrightarrow \ \mathsf{Statistical} \ \mathsf{ensemble}$

Starting from localization on \mathbb{S}^5 , we ask new questions about the theory (or old questions from new angles), such as phase diagram and universality.

Task: to analyse the phase diagram of the theories. **Fruitful approach** in 3d and 4d: combine large *N* with small curvature. **Task:** to analyse the phase diagram of the theories. **Fruitful approach** in 3d and 4d: combine large *N* with small curvature. Not explored in 5d. **Task:** to analyse the phase diagram of the theories. **Fruitful approach** in 3d and 4d: combine large *N* with small curvature. Not explored in 5d.

• We present a systematic study for theories with simple gauge group.

Task: to analyse the phase diagram of the theories. **Fruitful approach** in 3d and 4d: combine large *N* with small curvature. Not explored in 5d.

- We present a systematic study for theories with simple gauge group.
- A U(N) motivation: $\mathcal{N} = 1$ theories with unitary gauge group [Collinucci-Valandro]. As a preliminary step to understand their UV behaviour, we compare their phase diagram with the one of theories with known UV SCFT.

Geometric construction via M-theory compactifications

 $\begin{array}{rcl} \mathsf{SCFT} &\longleftrightarrow & \mathsf{singular} \ \mathsf{CY} \ \mathsf{threefold} \ X \\ & \mathsf{gauge} \ \mathsf{theory} \ \longleftrightarrow & \mathsf{resolution} \ \widetilde{X} \to X \ \mathsf{of} \ \mathsf{CY} \ \mathsf{threefold} \\ & \mathsf{Extended} \ \mathsf{CB} \ \mathsf{moduli} \ \longleftrightarrow & \mathsf{curves} \ \mathsf{in} \ \widetilde{X} \\ & \mathsf{operations} \ \mathsf{on} \ \mathsf{gauge} \ \mathsf{theory} \ \longleftrightarrow & \mathsf{operations} \ \mathsf{on} \ \mathsf{geometry} \ \widetilde{X} \end{array}$

Geometric construction via M-theory compactifications

 $\begin{array}{rcl} \mathsf{SCFT} &\longleftrightarrow & \mathsf{singular} \ \mathsf{CY} \ \mathsf{threefold} \ X \\ & \mathsf{gauge} \ \mathsf{theory} \ \longleftrightarrow & \mathsf{resolution} \ \widetilde{X} \to X \ \mathsf{of} \ \mathsf{CY} \ \mathsf{threefold} \\ & \mathsf{Extended} \ \mathsf{CB} \ \mathsf{moduli} \ \longleftrightarrow & \mathsf{curves} \ \mathsf{in} \ \widetilde{X} \\ & \mathsf{operations} \ \mathsf{on} \ \mathsf{gauge} \ \mathsf{theory} \ \longleftrightarrow & \mathsf{operations} \ \mathsf{on} \ \mathsf{geometry} \ \widetilde{X} \end{array}$

- SCFT limit: volume of all curves \rightarrow 0.
- 't Hooft limit: # of compact divisors $\rightarrow \infty$.
- Veneziano limit: # of non-compact divisors → ∞ linearly with # of compact divisors.

Leonardo Santilli (U. Lisboa)

We consider a 5d theory with gauge group U(N) or SU(N) and hypers in the fundamental rep. We assign masses m_{α} to n_{α} of them. The \mathbb{S}^5 partition function is [Källén-Qiu-Zabzine]

$$\mathcal{Z}_{\mathbb{S}^{5}} = \frac{1}{N!} \int_{\mathbb{R}^{N}} \mathrm{d}\phi \; e^{-\sum_{a=1}^{N} V(\phi_{a})} Z_{1-\mathrm{loop}}^{\mathrm{vec}}(\phi) \prod_{\alpha} \left[Z_{1-\mathrm{loop}}^{\mathrm{hyp}}(\phi, m_{\alpha}) \right]^{n_{\alpha}} (1 + \mathrm{non-pert.})$$

with classical piece from BPS configuration

$$\frac{1}{\pi r^3} V(\phi) = \underbrace{h\phi^2}_{\text{YM}} + \underbrace{\frac{k}{3}\phi^3}_{\text{CS}} + \underbrace{\xi\phi}_{\text{FI}}.$$

Wick-rotated FI term serves as a Lagrange multiplier: set to 0 for U(N) or use to enforce traceless condition on SU(N).

Leonardo Santilli (U. Lisboa)

We take the large N 't Hooft and Veneziano limit, $N \rightarrow \infty$ with

$$rac{N}{h} = \lambda$$
 fixed, $rac{N}{k} = t$ fixed, $rac{n_{lpha}}{N} = \zeta_{lpha}$ fixed.

Steepest descent method: The integral $\mathcal{Z}_{\mathbb{S}^5}$ localises onto saddle points of the *effective* action \implies study saddle point equations (SPEs).

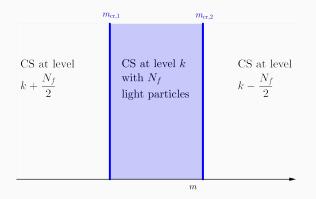
We take the large N 't Hooft and Veneziano limit, $N \rightarrow \infty$ with

$$rac{N}{h} = \lambda$$
 fixed, $rac{N}{k} = t$ fixed, $rac{n_{lpha}}{N} = \zeta_{lpha}$ fixed.

Steepest descent method: The integral $\mathcal{Z}_{\mathbb{S}^5}$ localises onto saddle points of the *effective* action \implies study saddle point equations (SPEs).

Instead of facing directly the SPE, we take a further simplification: small curvature limit $\frac{1}{r} \rightarrow 0$ [Russo-Zarembo].

 N_f hypers, all of equal mass m.



Phase transitions are second order if U(N), third order if SU(N).

Leonardo Santilli (U. Lisboa)

Phases of 5d susy gauge theories

 n_1 hypers of mass m_1 and n_2 hypers of mass m_2 .

CS at level $k - \frac{n_2}{2} + \frac{n_1}{2}$	m_2 CS at level with n_1 light of mass m_1	$k - \frac{n_2}{2}$ particles	CS at level $k - \frac{n_2}{2} - \frac{n_1}{2}$
CS at level $k + \frac{n_1}{2}$ with n_2 light particles of mass m_2	CS at level k with n_1 light of mass m_1 and n_2 light of mass m_2	particles	CS at level $k - \frac{n_1}{2}$ with n_2 light particles of mass m_2

Phase transitions are second order if U(N), third order if SU(N).

Leonardo Santilli (U. Lisboa)

Wilson loops are order operators in Yang–Mills theories \Rightarrow their vev $\langle W \rangle$ are order parameters of the theories $\Rightarrow \langle W \rangle$ control the phase diagram.

Wilson loops are order operators in Yang–Mills theories \Rightarrow their vev $\langle \mathcal{W} \rangle$ are order parameters of the theories $\Rightarrow \langle \mathcal{W} \rangle$ control the phase diagram.

Evaluate Wilson loops in the fundamental rep. \Rightarrow prove that $\langle \mathcal{W}_F \rangle$ is always continuous \Rightarrow transitions are always at least second order.

Wilson loops are order operators in Yang–Mills theories \Rightarrow their vev $\langle W \rangle$ are order parameters of the theories $\Rightarrow \langle W \rangle$ control the phase diagram.

Evaluate Wilson loops in the fundamental rep. \Rightarrow prove that $\langle W_F \rangle$ is always continuous \Rightarrow transitions are always at least second order. Studying $\partial_{m_{\alpha}} \langle W_F \rangle$, the traceless condition is used to guarantee that the derivative is continuous \Rightarrow transitions are always third order for SU(N).

 U(N) or SU(N) with adjoint, rank-2 antisym or sym: second order phase transitions.

U(N) or SU(N) with adjoint, rank-2 antisym or sym: second order phase transitions.
 Study Wilson loops → confirm spontaneous one-form symmetry breaking.

- U(N) or SU(N) with adjoint, rank-2 antisym or sym: second order phase transitions.
 Study Wilson loops → confirm spontaneous one-form symmetry breaking.
- SO(2N + 1), SO(2N), USp(2N): analogous to SU(N)_{k=0}.

For classical gauge group we obtained:

- For theories with fundamental hypers, there are third order phase transitions each time a mass parameters crosses a critical hypersurface (function of 't Hooft parameters).
- The F-theorem is always satisfied.

For classical gauge group we obtained:

- For theories with fundamental hypers, there are third order phase transitions each time a mass parameters crosses a critical hypersurface (function of 't Hooft parameters).
- The F-theorem is always satisfied.
- For theories with adjoint or anti-symmetric hypers the phase transitions are second order.

For unitary gauge group we found that

- For theories with fundamental hypers there are phase transitions that can be both second or third order, depending on the assignment of masses.
- For balanced theories our method does not distinguish between U(N) or SU(N).

For unitary gauge group we found that

- For theories with fundamental hypers there are phase transitions that can be both second or third order, depending on the assignment of masses.
- For balanced theories our method does not distinguish between U(N) or SU(N).

For both U(N) and SU(N) and $\lambda = \infty$, the transitions are third order at zero mass, matching the flop transition in the CY.

5d SCFT and large N: A visual summary

Leonardo Santilli (U. Lisboa)