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Prelude

In this video-poster we will first discuss how to compute the Super-Conformal
Index (SCI) I of a class of d = 4, N = 1 holographic quiver theories at large N
using a Bethe Ansätz (BA) approach

Secondly, we will extract predictions for the entropy of still unknown AdS5 Black
Holes (BH) and compare them with a near-horizon Supergravity computation

It is based on the following joint work

[1] F. Benini, E. Colombo, S. Soltani, A. Zaffaroni and Z. Zhang, “Super-
conformal indices at large N and the entropy of AdS5× SE5 black holes”,
arXiv:2005.12308 [hep-th]
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Introduction

Black Holes: a Quantum Gravity Laboratory

Quantum Gravity (QG) is one of the biggest challenges we have nowadays in
theoretical physics

Weakness of gravity makes experimental QG tests very difficult =⇒ The search
for a QG theory is often guided by theoretical constraints and self-consistency

A QG theory has to
reproduce the Bekenstein-
Hawking BH entropy from a
microscopical viewpoint

SBH =
ABH
4GN

= logNmicro

Our aim is to understand how the AdS/CFT correspondence (non-perturbative
definition of QG on AdS space) accounts for the BH microstates
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Holographic Principle

Gravity on asymptotically AdS5 space ⇐⇒ CFT on the boundary ∂AdS5
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Introduction

Why Superconformal Indices?

SUSY indices play an important role in studying non-perturbative aspects of
QFTs. They are generalizations of the standard Witten index TrH(−1)F

Many interesting features, among which

they count with a sign ground states of SUSY theories =⇒ very robust

they can be computed exactly via localization techniques

Superconformal Index in d = 4

I = Tr

[
(−1)F e−β{Q,Q

†}pJ1+
r
2 qJ2+

r
2

GF∏
i=1

vQi

i

]

Counts with a sign 1/16-BPS states on S1 × S3 of a superconformal theory
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Introduction

AdS/CFT and Black Hole Entropy

AdS5 BPS BHs preserve same number of supercharges [Gutowski et al. (2004)]

Natural question: can one microscopically explain BHs macroscopic en-
tropy using SCI via the AdS/CFT correspondence?

Non-trivial question! BH entropy counts BPS states without signs, can be
captured only if boson-fermion cancellations are obstructed

Decisive idea from AdS4 [Benini et al. (2016)] =⇒ complex chemical potentials.
Later clarified in AdS5 context by SUGRA analysis [Cabo-Bizet et al. (2018)].
This allowed people to compute AdS5 BHs entropy via SCI in various limits

Cardy-like limit (small chemical potentials) + Saddle point method [Choi
et al. (2018), Kim et al., Cabo-Bizet et al. (2019)]

Bethe Ansätz + Large N , J1 = J2 [Benini and Milan (2018)]
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AdS/CFT and Black Hole Entropy

AdS5 BPS BHs preserve same number of supercharges [Gutowski et al. (2004)]

Natural question: can one microscopically explain BHs macroscopic en-
tropy using SCI via the AdS/CFT correspondence?

Non-trivial question! BH entropy counts BPS states without signs, can be
captured only if boson-fermion cancellations are obstructed

Our Results using the Bethe Ansätz Approach

Evaluation of SCI at large N for generic angular momenta

Extension from N = 4 SYM to a broad class of N = 1 holographic quivers,
including toric ones

Non trivial checks via SUGRA computations
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SCI of N=4 SYM

Superconformal Index Definition

I = Tr

[
(−1)F e−β{Q,Q

†}pJ1+
r
2 qJ2+

r
2

GF∏
a=1

vQa
a

]

(p, q, va) = exp

[
2πi

(
τ, σ,∆a − ra

τ + σ

2

)]

Only 1/16-BPS ground states of H on S1 × S3 contribute to I

I does not depend on β

Mild boson-fermion cancellations =⇒ micro-canonical BH entropy is na-
turally captured by Legendre transform of log I: I-extremization

Why these cancellations do not take place was proven in the AdS4 case in
[Benini et al. (2016)]
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SCI of N=4 SYM

Bethe Ansätz Approach

SCI has an exact integral representation using localization. Via residue theorem
it becomes a sum over Bethe vacua [Benini et al. (2018)]

Bethe Ansätz Formulation

I = κ
∑

ûi∈MBAEs

ab∑
{mi}=1

Z(ûi −miω; ∆, τ = aω, σ = bω)H−1(ûi; ∆, ω)

MBAEs =
{
û ∈ T2

ω | Q(û; ∆, ω) = 1
}

We will focus on contribution from “basic solution” [Hong et al. (2018)] for a
specific mi
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SCI of N=4 SYM

N = 4 Super-Yang-Mills: Results

SCI of SU(N) N = 4 SYM

log I ' −iπN2 ∆1 ∆2 ∆3

τ σ

∆1 + ∆2 + ∆3 − τ − σ = −1

The (constrained) Legendre transform of log I is

S(QI , J1, J2) = 2π

√∑
I<J

QIQJ −
N2

2
(J1 + J2) =

A

4GN
≡ SBH(QI , J1, J2)

that is exactly the Bekenstein-Hawking entropy of the BHs!

The constraint precisely matches the BPS condition of Euclidean BH solu-
tions [Cabo-Bizet et al. (2018)]
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SCI of Holographic Quivers

Holographic Quivers: Results

The result is more complicated than N = 4 SYM, but it simplifies in particular
domains of chemical potentials

SCI of SU(N) Holographic Quivers

log I ' −4πi

27

(τ + σ − 1)3

τσ
a(∆̂)

a(∆̂) =
9

32
TrR(∆̂)3 ∆̂ =

∆

τ + σ − 1

Notice: I-extremization ∼ a-maximization [Intriligator and Wecht (2003)]!
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SCI of Holographic Quivers

Toric Quivers: Results

The result is more complicated than N = 4 SYM, but it simplifies in particular
domains of chemical potentials

SCI of SU(N) Toric Quivers

log I ' −πiN2
D∑

a,b,c=1

Cabc
6

∆a∆b∆c

τσ

a(∆̂) =
9

32
TrR3(∆̂) =

9N2

64
Cabc∆̂a∆̂b∆̂c

Notice: I-extremization ∼ a-maximization [Intriligator and Wecht (2003)]!
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Toric Quivers: Results

The result is more complicated than N = 4 SYM, but it simplifies in particular
domains of chemical potentials

SCI of SU(N) Toric Quivers

log I ' −πiN2
D∑

a,b,c=1

Cabc
6

∆a∆b∆c

τσ

a(∆̂) =
9

32
TrR3(∆̂) =

9N2

64
Cabc∆̂a∆̂b∆̂c

Notice: Cabc are ’t Hooft anomaly coefficients!
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SUGRA Explorations

A Supergravity Check

Toric quivers are dual to gravity on AdS5×SE5 for which BH solutions are not
known yet: how do we compare our QFT predictions? Near-horizon analysis

Let’s take the conifold dual (i.e. gravity on AdS5×T1,1) and focus on consistent
truncation on AdS5 called “second model” in [Cassani et al. (2011)]

Following [Hosseini at al. (2017)] we will search for BHs with J1 = J2 and
horizon with AdS2 × S3 topology

Reducing now the theory down to 4d along Hopf fiber we can try and solve BPS
equations near the horizon for static BHs (since J1 = J2)
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Let’s take the conifold dual (i.e. gravity on AdS5×T1,1) and focus on consistent
truncation on AdS5 called “second model” in [Cassani et al. (2011)]

Near-horizon 4d BPS equations

fix hypers scalars

fix massive vectors scalars

extremization principle for massless vectors scalars: attractor mechanism

function to be extremized is the horizon area, i.e. BH entropy!

Using AdS/CFT dictionary to match charges on the two sides, the extremization
in gravity and CFT exactly match: attractor mechanism = I-extremization

Saman Soltani (SISSA) SCI and BH Entropy 9 / 10



SUGRA Explorations

A Supergravity Check

Toric quivers are dual to gravity on AdS5×SE5 for which BH solutions are not
known yet: how do we compare our QFT predictions? Near-horizon analysis

Let’s take the conifold dual (i.e. gravity on AdS5×T1,1) and focus on consistent
truncation on AdS5 called “second model” in [Cassani et al. (2011)]

Near-horizon 4d BPS equations

fix hypers scalars

fix massive vectors scalars

extremization principle for massless vectors scalars: attractor mechanism

function to be extremized is the horizon area, i.e. BH entropy!

Using AdS/CFT dictionary to match charges on the two sides, the extremization
in gravity and CFT exactly match: attractor mechanism = I-extremization

Saman Soltani (SISSA) SCI and BH Entropy 9 / 10



Outlook

Memorandum

Our Results using the Bethe Ansätz Approach

Evaluation of SCI at large N for generic angular momenta

Extension to a broad class of N = 1 holographic quivers

Non trivial checks via SUGRA computations.
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