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Plan of the lectures

 PART 1: QCD factorization and global PDF fitting 

• Lecture 1 – Hadrons, partons and Deep Inelastic Scattering

• Lecture 2 – Parton model

• Lecture 3 – The QCD factorization theorem

• Lecture 4 – Global PDF fits

 PART 2: Parton distributions from nucleons to nuclei

• Lecture 5 / 6

 PART 3: The next QCD frontier – The Electron-Ion collider 

• Lextures 7 / 8
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Lecture 2 – Parton Model

 Parton model

– Heuristic derivation

 

 DIS revisited

– More kinematics

– Collinear factorization, definition of PDF

– Parton model for DIS and its limitations
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Parton Model
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Parton model  (see [Feynman])

 We have evidence that a proton is a composite object made of spin ½ 
particles

 At high-energy, expect a “probe” to interact with these point-like objects

– In DIS , the photon wave-length in rest frame, neglecting masses:

– E.g., for x=0.1, Q 2 =4 GeV2  
(and putting back c and hbar), 

    l = 10-17 m = 10-2  fm 
to be compared with  

    R
p
 ≈ 1 fm
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Parton model  (see [Feynman])

 We have evidence that a proton is a composite object made 
of spin ½ particles (and should also expect some radiated gluons)

 At high-energy, expect a “probe” to interact with these point-like objects

 In DIS, the photon scatters on quasi-free quarks
 

– Empirical evidence: F
2
  = 2x

B
F

1
  

 Seen by a high-energy probe, 

    the nucleon seems a box of practically free 
    “partons” sharing the proton’s momentum 

p
k
'quark 

i 
p
proto
n

proto
n

k
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Parton model  (see [Feynman])

 So, the nucleon is a box of practically free “partons” sharing momentum

  How can we understand this (respecting relativity, quantum mech., 
unitarity, etc...) ?

– In field theory, proton wave function is specified by amplitude 
to find any number of partons moving with various momenta

– This picture is however frame dependent – needs a good choice:

• Rest frame: assume finite energy of interactions, i.e., finite 
interaction times

• Infinite momentum frame along z direction: times are dilated, 

interaction is slower and slower, until as p
z
 → ∞  they appear to 

not interact at all – this is the right frame for our intuitive picture
(and for precise realization in field theory)
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Parton model  (see [Feynman])

 What is a good variable to describe the partons? 

– A momentum fraction, say x = k
z
/p

z  
, is invariant under boost along z

(and phenomenologically successful in many processes) 

– Partons have “intrinsic” transverse momentum k
T

2 ≈ 0.4 GeV 2 

(small compared to Q 2, neglect in first instance)
 

 In field theory, amplitude for a state of energy E to be made of n particles of 
total energy E

n
=E

1
+E

2
+...+E

n
 is dominated in perturbation theory by

 

– Using                                                                                              

the amplitude for 2 partons is
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 Important consequences:

– The proton wave function depends on x
i
 , and k

T|i
 

(but transverse momenta are small compared to Q2 : 
they are negligible in first instance – but not uninteresting, ask Alexei)

– Partons cannot have negative x
i
   (unless this is very small, see Feynman)

• Imagine a 2 parton state, with x
1
 < 0, then the denominator

is much larger than for 2 positive x partons, for which E
2
≈ 0, and

• States with parton of negative fractional momentum are very much 
suppressed compared to all x

i
>0

Parton model  (see [Feynman])



GGI, Feb 2017  – Lecture 2accardi@jlab.org 10

 Define a parton distribution

 Hard processes (e.g. a DIS cross section) should be “factorized” 

Parton model  (see [Feynman])

Probability of finding a parton i with momentum 
Fraction between x and x+dx
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 What can we expect in general?
 

– There are gluons, expect also “sea” quark anti-quark pairs 
 

– Proton charge: +1, but u: +2/3, d: -1/3, s: -1/3, g: 0  

– Proton isospin: 1/2, but u: +1/2, d: -1/2, s: 0, g: 0  

 

– Proton strangeness: 0, but u: 0, d: 0, s: 1, g: 0   

Sum rules



GGI, Feb 2017  – Lecture 2accardi@jlab.org 12

 Parton sum rules (for the proton)
 

– Charge conservation

 

– Momentum conservation

Sum rules
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How to probe these “partons”?

 DIS ≈ photon-quark elastic scattering

 Interpretation of x
B

– Parton carries fraction x of proton's momentum: km = x pm

– 4-momentum conservation: k' = k+q

– Partons have zero mass: k 2  = k' 2 = 0

 The virtual photon probes quarks with x = x
B
 

p

k'

quark i p

protonproton

k

 electron

 electron
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How to probe these “partons”?

 Beware: There is an inconsistency in the derivation:

– From k = xp follows that quarks are massive, M
q
 = xM !!

 A heuristic way out is to work in the “infinite momentum frame”, where 
                     so that one can neglect the proton's mass:

– This frame is also important to better justify the parton model

– But quarks should be massless in any frame

• The problem lies in the definition of x

• We'll see a better solution in tomorrow's lecture  

– Similarly, the vector 3-momentum is not a Lorentz-invariant scale

• In fact, M can be neglected compared to Q , not       ,
as we shall see
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 Caveats:

– Tacit probabilistic assumption: we are multiplying probabilities 
rather than amplitudes

• justified by time dilation / smallness of photon wavelength arguments

• Can be broken by soft (long wavelength) initial state interactions

between the proton and quark lines

– Likewise, we are assuming the same parton distribution applies to other 
process: “universality”

– The non-trivial proof in QCD is called “QCD factorization theorem”

How to probe these “partons”?
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DIS revisited
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More kinematics

 Light-cone coordinates:
a natural coord. system for processes dominated by large momentum

Cartesian

light-cone

a

a +

a – 

3

0
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More kinematics

 Boosts of velocity b  in the 3-direction

– Boost-invariant quantities:

 Light-cone (Sudakov) vectors:

a
a +

a – 

3

0
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More kinematics

 Boosts of velocity b  in the 3-direction

– Boost-invariant quantities:

 Light-cone (Sudakov) vectors:

“fractional momenta”

a
a +

a – 

3

0
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More kinematics

 Collinear frames:

– a set of frames such that p, q lie in the (+,-) plane

with

• Parameter p + controls boost in 3-direction

• “massless limit”: as Q 2 → ∞,  x → x
B
 

• Bjorken x
B
 intepreted as fractional momentum of the photon

 

– Ex.1 (med): derive this imposing M 2=p2, Q 2=-q2, x
B
=Q2/(2p⋅ q);

      try first by setting M=0.

“Nachtmann 
variable”
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More kinematics

 Special cases:
 

– Proton rest frame:  

– Breit frame:  

 

this is an (important) example of an “infinite momentum frame”
 

– Ex.2 (easy): derive these formulae

p
q

p
q
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More kinematics

 Special cases:
 

– Proton rest frame:  

– Breit frame:  

 

this is an (important) example of an “infinite momentum frame”
 

– Ex.2 (easy): derive these formulae

p
q

p
q

negligible only 
if M 2  ≪ Q 2
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More kinematics

 Special cases:
 

– Proton rest frame:  

– Breit frame:  

 

this is an (important) example of an “infinite momentum frame”
 

– Ex.2 (easy): derive these formulae

p
q

p
q

p
q

p
“M=0”

p
q

q
“M=0”

negligible only 
if M 2  ≪ Q 2
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Collinear factorization
in DIS at LO
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Collinear factorization*

 Start from the handbag diagram

– Expand around on-shell (k2 = m
q

2 = 0) and collinear (k⟂=0) momentum

Parton fractional momentum:

Parton's Bjorken x:

*Note: will consider M2/Q2 ≪ 1 for simplicity (but check the exercises)

lead to O(L2/Q2)

correction in s
DIS

Call this 

see, Accardi, Qiu, JHEP 2008  (simple)
[Collins]  (full proof) 
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Collinear factorization*

 Consequences:

– Now,     and the quark is massless in any frame!
 

– Let's impose also that the final state quark                        is on shell:

in any collinear reference frame!
 

– Ex.3 (easy): show that in general,  x=x  

≈

*Note: will consider M2/Q2 ≪ 1 for simplicity (but check the exercises)
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Back to the Breit frame for a moment

 Ex.4 (easy): show that, in the Breit frame and for  M2/Q2 ≪ 1, 

DIS can be pictured as follows:

– The scattered parton is well separated from the proton's remnant;

– The separation in momentum increases with increasing Q2  

 and decreasing x.

– Hadrons are formed all along the intermediate momenta because 
of the color flux between scattered parton and remnant
 

 Ex.5 (med): prove in general that 
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Collinear factorization

 The diagram factorizes (need to decouple Dirac, color indexes; use “Fierz identities”):

 

 

 

so that: 
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Parton model result

 By explicit perturbative calculation (see Sterman “an intro to QFT”):

with 2 consequences:
 

– Callan-Gross relation

consequence of quark's spin ½  (e.g., for spin 0, F
1
=0)

 

– Bjorken scaling

the structure functions do not depend on Q2

 

 NOTE: we have worked at LO in a
s
 – expect violations at NLO
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Experimental data

Charged partons
have spn ½ (quarks!) log(Q2) scaling

violations
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The proton's momentum

 Partons distributions are interpreted as the probability distribution of 
finding a parton of momentum x inside the proton

– Expect momentum sum rule

 

 How to measure it 

– Proton is (u
V
 u

V
 d

V
)  – note the “Valence” subscript

 

– Neutron is (d
V
 d

V
 u

V
)

 

– Hence, expect (“Gottfried sum rule”)
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The proton's momentum

 But data don't bear this out:

 

– We are missing something!
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The proton's momentum

 But data don't bear this out:

 

– We are missing something!

 Attention! You should be jumping on your chair: there is no free neutron target! 
This data is from Deuterium targets, D=“p+n”, without any nuclear correction for 
binding, Fermi motion, … We will come back to this in Lecture 4 or 5.
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Lecture 2 - recap
 Seen by a high-energy probe, the proton is a bag of quasi-free partons

(quarks and gluons) sharing its momentum

 The simplest process probing these partons is Deep Inelastic Scattering:

– The virtual g interacts with partons of fractional momentum x = x
 B

 

 QCD factorization at Leading Order in a
s
 :

– This intuitive picture can be realized in QCD, at LO by expanding the 
parton’s momentum in the interaction part of a diagram, and 
retaining only it’s “collinear” components

– The parton’s transverse momentum appears in “higher-twist” terms, 
and restores gauge invariance in parton rescattering diagrams  

 

 Next lecture:

– Going NLO and the role of gluons; “improved” parton model

– Basics of global QCD fits of parton distributions
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