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Final-state observables
We consider a generic final-state observable, a function                               
of all possible final-state momenta  

Examples: leading jet transverse momentum in Higgs production or thrust in              
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The narrow-jet limit
Selecting events close to the Born limit, i.e.           , produces large logarithms 
of the resolution variable    due to incomplete real-virtual cancellations  

large logs

breakdown of  perturbation theory!
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All-order resummation
All-order resummation of large logarithms      reorganisation of the PT series 
in the region               , with  
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NLL resummation
At the end of the ‘90s, NLL resummations existed for a number of 
observables (extensive literature ~1 observable per article) 

Two main approaches  

Branching algorithm  

Collins-Soper-Sterman factorisation theorems
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[Bassetto Ciafaloni Marchesini ’83, Catani Marchesini Webber et al.]

[Collins Soper Sterman Kidonakis Laenen Magnea et al.]

Resummation achieved by exploiting factorisation properties of QCD to 
derive evolution equations that can be solved analytically



Coherent branching
Coherence properties of QCD emissions lead to the formulation a number 
of evolution equations
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Numerical iterative solution       coherent branching algorithm for parton-
showe event generators, especially HERWIG 

Approximate analytical solution      NLL resummation of final-state 
observables (e.g. event shapes) 

[Bassetto Ciafaloni Marchesini ’83, Catani Marchesini Webber ‘90]

[Marchesini Webber ‘84]
)

)
[Catani Trentadue Turnock Webber ’91]

[Catani Turnock Webber ’92]



Issues of evolution equations
Evolutions equations for thrust and broadenings need to be carefully 
simplified to achieve NLL accuracy 

Example: NLL treatment of recoil in jet-broadenings require a two-
dimensional integral transform, overlooked in previous works
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Figure 2: (a) The effect of going from the λ = 2 approximation for the quark recoil, to the full treatment
of quark recoil, both in the case without any matching and in the case of log-R matching; (b) The effect
of different matching procedures and a comparison with the case without any matching, but with the
inclusion of the G21 term; for all curves,

√
s = 91.2 GeV and αs(MZ) = 0.118.

We have verified that the evolution equation for the B-distribution derived by CTW embod-

ies all the necessary ingredients to provide the resummed perturbative prediction with single-

logarithmic accuracy. The improvement we made concerns the solution of this equation. We

suggested two forms of the final result, (4.25) and (4.26). The former is the CTW-spectrum eval-

uated at a rescaled value of B → 2B/λ, with λ a single-logarithmic function, λ = λ(αs ln 1/B)

which decreases with B from 2 to 1. The latter form is the CTW-answer supplied with the

single-logarithmic factor which does the same job of shifting the distribution to smaller B val-

ues. This tendency is opposite to that expected from the 1/Q power correction effect in the

B-spectrum [3].

We were able to show the absence of the non-logarithmic contribution proportional to the

coupling at the reduced momentum scale, αs(BQ), which, if present, could damage the pertur-

bative prediction at small values of B.

It should be noticed, however, that beyond the first order in αs(BQ), given the present state

of the art, such damage looks unavoidable. Indeed, consider the most interesting feature of the

B-distribution which is its characteristic maximum at B = Bmax ≪ 1. A maximum emerges as

a result of an interplay between the first-order peaked cross section, ∝ (αs ln 1/B)/B, and the

all-order Sudakov suppression exponent, exp(−R(λ/2B)) ∼ exp(−αs ln2 1/B). The latter factor

takes over, clearly, when R′(1/B) ∼ αs(BQ) ln 1/B approaches unity. With B decreasing ln 1/B

increases and so does the running coupling αs(BQ). Formally speaking, in perturbation theory,

that is for Q → ∞, the expansion parameter αs(BQ) stays small in the region of the maximum.

However, in reality (and for any foreseeable energies) αs(BmaxQ) becomes numerically large.

This undermines the reliability of the perturbative prediction for B < Bmax since the neglected

subleading corrections of the order α2
s ln 1/B, and among those, αs(BQ)R′ ∼ αs(BQ) are no

longer numerically negligible. Corrections of this sort arise, in particular, from the hard-emission
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[Catani Trentadue Turnock Webber ’91]
[Catani Turnock Webber ’92]

[Dokshitzer Marchesini Lucenti Salam ’98]

[Dokshitzer Marchesini Lucenti Salam]
[Catani Turnock Webber]



Independent emission
The relevant emissions to achieve NLL accuracy were soft and collinear 
gluons widely separated in angle      independent emission picture
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[Dokshitzer Marchesini Lucenti Salam ’98]

Structure of resummation at NLL accuracy 

X
X

X

X X X XX

=

Sudakov form factor, 
a.k.a. “radiator”

multiple emissions

⌃(v) = e�RNLL(v)FNLL(v)

)

[Bassetto Ciafaloni Marchesini ’83]
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Fig. 3.5. Angular regions for (a) single emission and (b) multiple emission factorization. The angles defined are discussed in section 5.1,

and the emission probability is

do~= -~- a~T~5d(p . g~)d(fi . gt) du~’-D. (3.34’)
IT p~q1 pqt

The jet charge T~etcan be replaced by the Casimir operators occurring in dw”~(eq. (3.27)) if all soft
gluons come from a single parton (backward or forward) so that the jet is in the same representation as
the parent parton.
(b) Multiple emission factorization. “Let the soft gluons qi,. .. ,q. (IqiI ~ . ~ q~j)be emitted at

large angles with respect to the ones in the (hard) jets (fig. 3.5b) and let moreover the angular factors

= q1 ~piet/lqjIPJetI

be strongly ordered. Then the emission probability factorizes in the form

n
..1 I 51—1a5u~,ij1 ,.i •J1r2 \n\IT 2y ~U

0Jet\1,1 Jet)!,
i=1

where ~ = dz~d~,the expectation value is taken over jet production amplitudes, and Tjet is the total
colour charge (3.33’) of the forward (or backward) hard jet”.
The factorization (3.35) holds irrespective of the relative ordering of angles and momenta, i.e., for

any of the n! strong orderings of ~. The proof is trivial if ~ ‘~ ~ ~, i.e., when angles and
momenta are in the same order. In fact one can reduce q

1 by yielding the colour operator T~as in
(3.34’), then q2 by yielding T~T~T~= (T~)

2,and so on. For different orderings, the proof requires
some colour algebra (ref. [20]).



Near-to-planar three-jet events
Deviations from the Born limit (a planar        system) are probed by event 
shapes like the D-parameter or the thrust-minor, sensitive in different ways 
to the radiation out of the event plane 
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Introduction
Three-jet event shapes

Why event-shape variables?
Power corrections and Feynman tube model

Event-shape variables

Event-shape variables V (p1, . . . , pn) are continuous measures of
the geometrical properties of hadron energy-momentum flow.
Thrust: longitudinal particle alignment

T ≡
1

Q
max
n⃗T

∑

i

|p⃗i · n⃗T | t ≡ 1 − T

Pencil-like event: t >∼ 0 Planar event: t ≃ 1/3

Andrea Banfi Multi-jet

event plane

qq̄g

kout =  sin�

[Banfi Dokshitzer Marchesini Zanderighi ‘01]

Due to subtle kinematical effects, analytical treatment of multiple emissions 
is technically involved, requiring for the thrust-minor a five-dimensional 
integral transform 



Semi-numerical resummation
For all observables for which independent emission gives correct NLL 
resummation, multiple-emission effects depend only on kinematics 

A computer is better than humans at kinematics     simulate multiple soft-
collienear emissions with a Monte-Carlo procedure
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)

“simple” observable, having the same 
radiator as “true” observable

probability that the true observable has 
a value   , given a value      of the 
simple observable

v vs

[Banfi Salam Zanderighi ‘01]

For each final-state observable                              , 
we chose as simple observable                        

...
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Semi-numerical resummations
The results of the Monte-Carlo procedure have the same quality as 
analytical predictions
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First NLL resummation for thrust-major distribution and two-jet rate in 
Durham algorithm, which do not admit analytical representation 

The Monte Carlo we used back then had simplified emissions, without exact 
energy-momentum conservation, and used both approximated and actual 
observable subroutines
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Figure 1: F(R′) for the thrust and the two broadenings. The lines are the analytical

results, while the points are the numerical results.

3.2 e+e− → 3 jets: thrust minor (a.k.a. Kout)

The procedure can also be applied to multi-jet event shapes, such as Tm and D
parameter, which have been studied recently in the near-to-planar three-jet region [8,

9]. In particular, we would like to compare the numerical results to the analytical
resummation of Tm distribution, which is much more involved than that of the D

parameter due to hard parton recoil effects.

In the near to planar three-jet region T ∼ TM ≫ Tm, a three-jet event consists

of a hard quark-antiquark-gluon system accompanied by soft secondary partons. We
denote the hard partons by p1, p2 and p3 with p0

1 > p0
2 > p0

3 and call δ = 1, 2, 3 the

configuration in which the gluon momentum is pδ. As discussed in [8], the function
FTm(R′) depends on the colour configuration of the hard underlying system.

The simple observable Tm,s is determined by (2.10). In terms of soft parton
momenta this gives Tm,s = maxi{Ni|kix|/Q}, where kix is the out-of-event-plane

momentum component of emitted parton i and, due to the recoil kinematics, Ni is
4 or 2 respectively according to whether or not emission i is in the same hemisphere
as the most energetic hard parton (as was shown in [8] and can easily be determined

numerically as well as analytically).

The analytical result forF (δ)
Tm

(R′) has been computed in [8].5 We do not reproduce

5Note that in [8] F represented a different quantity.
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Figure 2: F (δ)(R′) for the thrust minor distributions in the three different colour con-

figurations. The lines indicate the analytical results, while the points are the numerical

results.

here its explicit form, since its various components involve up to as many as five
nested integrals, but we plot in figure 2 the analytical results as a function of R′

together with F (δ)
Tm

obtained using the numerical procedure.

4. New results

We now exploit our method to compute the function F for some observables for

which an analytical expression for the resummed PT distribution has not so far been
found: the thrust major, the oblateness and the Durham three-jet resolution. In

the first two cases we suspect that it may not even be possible to find analytical
expressions.

4.1 Thrust major

The thrust major, TM , is defined in (B.2). In order to compute FTM
we have as the

‘simple’ observable

TM,s ≡ 2 · max
i

|⃗kti|
Q

. (4.1)

Our numerical procedure gives the function FTM
(R′) shown in figure 3. The re-

summed TM distribution is then given by (2.8), where Σs(TM), defined generally in
(2.14), is

13

Thrust minor

[Banfi Salam Zanderighi ‘01]



Automated NLL resummation
It is possible to perform NLL resummations by just providing to a computer 
program (CEASAR, the Computer Expert Automated Semi-Analytical 
Resummer) the observable                               in the form of a computer 
subroutine, as happens for fixed-order calculations
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[Banfi Salam Zanderighi ‘05]

V ({p̃}, k1, . . . , kn)

Such automation requires understanding the general principles of final-state 
resummations in QCD



Automated NLL resummation
Principles of NLL resummation in the CAESAR approach 

formulate the needed conditions so that independent soft-collinear emissions 
lead to correct NLL resummation       recursive infrared and collinear safety 

compute the Sudakov exponent form the behaviour of an observable in the soft 
and collinear limit, determined using multiple-precision arithmetics 

compute multiple-emission effects with a suitable Monte Carlo procedure 
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[Banfi Salam Zanderighi ‘05]
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Multiple-emission effects
General master formula for NLL resummation
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Measure defined by the   
soft-collinear ensemble

...
=

Z
dZ[{R0

`i , ki}]

Multiple-emission effects at NLL computed by MC simulation of soft and 
collinear gluons independently emitted in a suitable single-logarithmic region

[Banfi Salam Zanderighi ‘05]

CAESAR uses the actual observable’s subroutine                       and 
eliminates subleading effects by numerically taking the limit    

V ({p̃}, {ki})
v ! 0

FNLL(v) =

⌧
⇥

✓
1� lim

v!0

V ({p̃}, {ki})
v

◆�

⌃(v) = e�RNLL(v)FNLL(v)



Jet-veto efficiencies beyond NLL
The CAESAR philosophy was extended to NNLL to compute cross section 
for Higgs production without extra jets 
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Figure 6. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-
pared to NNLO+NNLL (left) and fixed-order at N3LO (right).

Figure 7. Matched NNLO+NNLL+LLR prediction for the inclusive one-jet cross section
(blue/hatched) compared to fixed-order at NNLO (left) and to the matched result with direct
scale variation for the uncertainty (right), as explained in the text.

Figure 7 shows the inclusive one-jet cross section ⌃�1-jet, for which the state-of-the-art
fixed-order prediction is NNLO [9–11]. The left-hand plot shows the comparison between
the best prediction at NNLO+NNLL+LLR, and the fixed-order at NNLO. Both uncertainty
bands are obtained with the JVE method outlined in Sec. 2.3. We observe that the effect of
the resummation on the central value at moderately small values of pt,veto is at the percent
level. Moreover, the inclusion of the resummation leads to a slight increase of the theory

– 15 –

[Banfi Monni Salam Zanderighi ’12]



The ARES method
NNLL corrections are often sizeable and important for precision physics 

The Automated Resummer for Event Shapes (ARES) is a novel semi-
numerical approach that: 

is fully general for rIRC safe observables (~ all that can be possibly resummed 
at NNLL accuracy) 

is NNLL accurate and extendable to higher orders 

is flexible and automated 

ARES uses as inputs the observable’s subroutine in relevant soft and 
collinear limits, which have to be taken analytically by the user, e.g.  

17

⌃(v) = e�RNLL(v)FNLL(v)

FNLL(v) =

⌧
⇥

✓
1� lim

v!0

V NLL
sc ({p̃}, {ki})

v

◆�



NNLL resummation 
The NNLL radiator, encoding the cancellation of real and virtual corrections, 
is known only for observables that scale like the jet mass or jet broadening
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NNLL resummation 
All NNLL corrections can be written in terms of finite integrals in four 
dimensions
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NNLL resummation 
Every NNLL correction requires to determine an approximate expression for 
the observable in the relevant kinematic limit

20

⌃(v) = e�RNNLL(v)
h
FNLL(v) +

↵s

⇡
�FNNLL(v)

i

... ... ... ... ... ...

... ...

Clustering  
(jet algorithms only)

Correlated emission

Hard collinear 
Recoil

Soft wide-angle
Running coupling 

Rapidity 
(jet algorithms)

Soft-collinear 
(event shapes)

�F
NNLL

= �F
clust

+ �F
correl

+ �F
hc

+ �F
rec

+ �F
wa

+ �F
sc

Vsc({p̃}, {ki}) 6= V NLL
sc ({p̃}, {ki}) Vsc({p̃}, {ki})

Vsc({p̃}, {ki})
Vwa({p̃}, {ki})

V NLL
sc ({p̃}, {ki})

Vhc({p̃}, {ki})

Vsc({p̃}, {ki})



CAESAR vs ARES

Establishes the range in which actual 
emissions can be considered soft and 
collinear 

Uses the actual observable subroutine 
and computes its soft-collinear limit 
numerically 

Requires careful extrapolations to be 
extended at NNLL 21

Generates emissions that are by 
construction soft and collinear (no 
energy-momentum conservation)  

Uses analytically determined soft and 
collinear limits of each observable 

Can be in principle extended to any 
logarithmic accuracy

[Banfi McAslan Monni Zanderighi ‘15][Banfi Salam Zanderighi ‘05]



Event-shape variables
Event-shapes distributions at NNLL matched to exact NNLO 

Reproduced existing results for thrust, heavy-jet mass and broadenings 

New results for thrust-major, C-parameter and oblateness 
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[Banfi McAslan Monni Zanderighi ‘15]

* *

[* Gehrmann-De Ridder Gehrmann Glover Heinrich]
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Two-jet rate
First-ever NNLL resummation of the two-jet rate for the Durham and 
Cambridge algorithms 
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Conclusions
Recent years have seen an impressive progress towards the understanding 
of QCD dynamics behind soft-collinear resummations 

These developments encode many of Pino’s ideas 

factorisation properties of soft-emissions 

QCD coherence and branching algorithms 

Parton-shower event generators 

Work in progress 

New global fit of      from          event shapes 

More NNLL resummations in multi-jet events 

Pino’s legacy: use solution of QCD evolution equations as the key 
ingredient to build the next generation of parton-shower event generators
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Higgs plus zero jets at NNLL
The resummed jet-veto efficiency is a Sudakov form factor, with corrections 
due to the jet algorithm starting only at NNLL 
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NNLL jet-veto distribution

Bringing all together one obtains a NNLL resummation formula, which contains for the 
first time a non-trivial dependence on the jet radius

Two nearby gluons clustered in one jet One gluon giving two jets

The function                             due to a cutoff collinear singularity in gluon splitting. 
There is general interest in understanding the structure of these logarithms, and the 
term                     has been recently computed by Alioli and Walsh   

NNLL jet-veto distribution

Bringing all together one obtains a NNLL resummation formula, which contains for the 
first time a non-trivial dependence on the jet radius

Two nearby gluons clustered in one jet One gluon giving two jets

The function                             due to a cutoff collinear singularity in gluon splitting. 
There is general interest in understanding the structure of these logarithms, and the 
term                     has been recently computed by Alioli and Walsh   

�
0�jet

' Lgg(pt,veto)

0

B@1 + ↵s(pt,veto)R
0(p

t,veto) f(R)
| {z }

NNLL

1

CA e�R(p
t,veto)

[Banfi Monni Salam Zanderighi ’12]

Logarithm of the jet radius appearing in  
can be again resummed through the 
Monte-Carlo  solution of an evolution 
equation [Dasgupta Dreyer Salam Soyez ’15]

242 A. Bassctio cc al.. Jet structure and infrared sensitive quantities in perturbative QC’D

so that also the position of the maximum of D(x) gets displaced by an amount

/ 1\ ,/ITb Q2\112~log—) = Ct~-~-log-~-~), (5.29)x Max ~

which is of relative order V~(Q2).
Therefore, the inclusion of subleading terms does not modify in a significant way the double-log

analysis, but the displacement (5.29) of the maximum towards the small x region may contribute, among
other effects, to make the experimental detection of the dip more difficult.

6. Momentum and colour structure of jets

The analysis of soft gluon contributions for x = 0, 1 given in sections 4 and 5 shows that most of the
physics is embodied in the ladder approximation with some kinematical restrictions. It seems natural
therefore to try to extend the considerations above from the single parton distributions tc the whole jet
evolution.
It is known [5—10]that, as far as hard partons are concerned, the LLA is obtained by the sum of

dressed tree diagrams, neglecting interference terms (jet calculus [141,section 2). Properties of this
model in the soft region x = 0, 1 have been analyzed in ref. [16].
Here we shall present a generalization of the model above which (a) includes the interference effects

described in sections 3 and 5 and (b) takes into account exact phase space, thus recovering the LLA
model for hard partons. Interference effects for exclusive soft gluon emission have been studied so far
to double log accuracy in section 3 and in refs. [37, 39]. Here we shall essentially follow ref. [39]for the
soft region, but our formalism will also interpolate between hard and soft regions.

6.1. Description of the branching process with interference terms

Let us recall that the tree model for hard partons leads, at exclusive level, to a branching process (fig.
6.la) whose vertex is given by the differential distribution

~

(a) (b)

Fig. 6.1. Branching vertex for the parton cascade for (a) the tree model and (b) the angular ordering process.
[Bassetto Ciafaloni Marchesini ’83]


