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A (by now) quite long story
started with Pino and Enrico as supervisors

In early 90’s Parma was provided an APE100 prototype (tubo). Only a few Gflops
computing power, but something very intriguing at that time (well.. by now a piece
of cake..)

QUESTION: what to do? From my point of view: I was starting my PhD

Pino and Enrico were very keen on numerically 1implementing Stochastic
Perturbation Theory.

From my point of view: the start of a career 1in research, under the
supervision of people who have always been firm reference points.



An i1nvitation

Perturbation Theory (PT) 1is nothing less than ubiquitous in Field Theory. In principle the lattice
1s a regulator among the others ... in practice it is a dreadful one so that when it comes to

compute something in Lattice Perturbation Theory (LPT) you will probably start to get nervous

In particular for LGT:
— kyp A lot of vertices (not given once and for all)
Sums and/or integrals ... a lot of trigonometrics
A variety of actions (both for glue and for quarks)

and as an extra bonus ... often bad convergence properties
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Despite this
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Agenda

Basics of Stochastic Quantization and Stochastic Perturbation Theory

From Stochastic Perturbation Theory to NSPT (moving straight to LGT)
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(*) Of course I had to make a selection, with Pino on my mind

- Conclusions



Basics of Stochastic Quantization and Stochastic Perturbation Theory



Basics of Stochastic Quantization and Stochastic Perturbation Theory
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You start with a field theory you want to solve (Oo])

Parisi-Wu, Sci. Sinica 24 (1981) 35, Damgaard-Huffel, Phys Rept 152 (1987) 227

You now want an extra degree of freedom which you will think of as a stochastic time in which an
evolution takes place according to the Langevin equation
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dpn(z;t)
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The drift term is given by the equations of motion...

. but beware! This is a stochastic differential equation due to the presence of the
gaussian noise
n(z;t) . (n(z,t) n(z’,t)), =26z —2) 6(t—1t)

_ fDU(Z,T) e [ dzdmn?®(z,7)
- f DW(Za 7_) 6_% J dzdtn?(z,7)

Noise expectation values are now naturally defined (e

The key assertion of Stochastic Quantization can be now simply stated




A conceptually simple proof comes from the Fokker Planck equation formalism
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for the solution of which we can introduce a perturbative expansion which generates a hierarchy of

equations
k=0

Floratos-Iliopoulos, Nucl.Phys. B 214 (1983) 392

Leading order is easy to solve and admits an infinite time (equilibrium) limit such that

cq e—So[¢]
PO [¢7 t]_>t—>ooP0 [¢] — 7
0
In a convenient weak sense at every order one gets equilibrium Pylo, t] =100 P @)

1n terms of quantities which are 1interelated by a set of relations in which one recognizes the
Schwinger-Dyson equations ... 1.e. we are done!

We want to go via another expansion, 1i.e. the expansion of the solution of Langevin equation 1in
power of the coupling constant

¢n(w;t):=<¢g”(x;t)%-jgjsf“ﬁg”(x;t) Parisi-Wu, Damgaard-Huffel
n>0




Langevin equation for the free scalar field (momentum space) é%qﬁ?”};t)::-—(k2—+7n2)¢gn(k,t)+—n(k,t)

¢
0
Look for (propagator) ¢(kat) — / dr G(kat - 7') n(kﬁ) EG(())(k,t) — _(k2 + m2) G(O)(k,t) + 5(t)
0

i.e. GO (k,t) = 0(t) exp (—(k% +m>)t)

o\ (k1) = ¢\V (k,0) exp (= (k> +m®)t) + /O dr exp (—(k* +m?)(t — 7))n(k,7)

Interacting case (cubic interaction in the following) is solved by superposition ...

okit) = [ drexp (4 m?)(e =) [nlhr) — 5 [ GBS 00,7 8(0m) 80k~ p )

. which leaves the solution in a form which 1is ready for iteration. It 1is actually also ready
for a graphical intepretation and for the formulation of a

diagrammatic Stochastic Perturbation Theory

G(Gn)(Gn) + ... ¢ = X+ <i-+————~5i* + m———zgf + -

The stochastic diagrams one obtains when

( | averaging over the noise (contractions!)
— 5\ + + . . . . . .
o), 7~ reconstruct, 1n a convenient 1infinite time

limit, the contributions of the (topologically)
correspondent Feynman diagrams

+ —x } + + — >— - ,
4:ji:>—ee— N but we do not want to go this way ...




From Stochastic Perturbation Theory to NSPT (directly for LGT..)



Stochastic Quantization for LGT Batrouni et al (Cornell group) PRD 32 (1985)

We now start with the Wilson action Sag = — B 2{: 1&'(Lha—kl]£)
2N, >

We now deal with a theory formulated in terms of group variables and Langevin equation reads

_ oAu(@) 0 . .
U,WC — € an,u (t§ 77) — (_va,uSG[U] T anu (t)) U:L‘pb (t; 77)
where the Lie derivative is in place
axva __ raxoa a 1 1 1T
Vou =TVe, =TV, Vef(V) = lim —(f (¢7"V) = £(V))

This 1s again a stochastic differential equation with (gaussian) noise averages satisfying

In order to proceed we now need a (numerical) integration scheme to simulate, e.g. Euler
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NSPT (directly in the LGT case) Di Renzo, Marchesini, Onofri 94

Now we look for a solution in the form of a perturbative expansion

Coten 1 TS
k=1

then we plug 1t into the (numerical scheme!) Langevin equation and get a hierarchy of equations!

gL' — g _ p

LwV:Um_F@+éFm2_pnwn

mw:U@_F@+%Q@Fm+pmﬂm_§ﬁms_wm_épm%Um_mem

In practice: we do not look closely at the (underlying) Stochastic Perturbation Theory because the

computer 1is going to (numerically) take care of it and all that you are interested in are the
observables, for which

t— 00 T'— o0

<O[Z gk¢$7k)<t)]>n - ng<0k<t)>n lim (O (t)), = lim 1/TZOk(jn)
k k =1

Beware! Lattice PT 1is (always!) a decompactification of lattice formulation, so that ultimately
one should be able to make contact with the continuum Langevin equation, 1i.e.

0 .
5E142(n,x;t):: l?g@Ffu(n,m;t)%—nZ(w;t) Where has this gone?



We did not loose anything, since we can always think of all this in the algebra

App(t:n) %Zﬁ k/2A(k)
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and the (expanded) Langevin equation now reads

A0 4 _ p)

A2 4@ _p@ L na) 4]
2o l0
AB) — 4B) _ g _ % () A@)] _ : {F@) A(l)} 4 % {Fa) [F“),A(l)H - {Au) [F“),A(l)H

. which I wanted to specify because it is an effective way of preparing for the fact that this
1s not the end of the story! Problems are going to pop out which we have to take care of ...

1)



Stochastic Gauge Fixing



Stochastic Gauge Fixing
Let’s go back to the continuum 9

S AL wit) = DIVES,(n,@t) + (1)

whose expanded version has a (momentum space) solution

t t
A (ks t) = TS / ds e ) fib (K, s)(+ LY / ds " (k, s)

0 0
1n which vertices pop in (as they should ...)
féo)a(k,t) _ ny(k;t)a f,sn)a(k',t) _ gI/SS)(n—l)a(k;t> + 921154)(n—2)a(k;t)
?:gfabc

gI P (k;t) = L/dmm5@*%p+Q)A%Fpﬁkﬁﬂ—%tﬁﬁixhpwﬂ

2(2m)n

vlg?;)a(k,p, q) = 0, (k —p)s + cyclic permutations

t

Remember the scalar case ... o¢(k,t) = / drexp —(k* + m?)(t — 1) [n(k,T) — %/ fgi‘)]ff d(p,7) p(q,7) P(5,7)6(k —p—q—s)
0 !

BUT ALL THIS IS GOING TO BE ONLY FORMAL ... WE WILL NOT OBTAIN LONG TIME CONVERGENCE BECAUSE OF

THE LOSS OF DAMPING IN THE LONGITUDINAL (NON-gauge-invariant) SECTOR



5S[A]

SOLUTION: add an extra piece
dAﬂ(x;ﬂ

{a /... _ ab 17b

A(zit) = — DY, 1)

OF[A] _ / L OFA] 9Ag(ait)
dt AL (i) Ot

Any functional evolves like

SF[A]
Db =0
HSAL (z)

but GAUGE INVARIANT ones are such that

and thus physics 1is unaffected! (integration by parts ...)
choice for the extra term we have new damping factors in place!

1
~D¥V® = — D9, A
. 0

On the lattice we interleave a gauge fixing step to the Langevin evolution
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while i1f we make a convenient
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which has by the way an obvious interpretation
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Figure 1. The effect of stochastic gauge fixing.



Fermionic loops 1in NSPT



FERMIONIC LOOPS 1in NSPT Di Renzo, Scorzato 2001

Let’s add fermions (Wilson fermions, in this case) in the Langevin equation
W _
S](T ) = wa Macy[U] ¢y
Ty

_ 1 - B
- Z(m +4) the e — 9 Z (¢x+,& (1+ %w) U:Jch, Ve + e (1 - V/J) Uzp %;ﬂz)

T

From the point of view of the functional integral measure (:E;i%{égtﬂd'::e—Sqn"::6—(5G€§Efizzz:>
and in turns Vi Sg+— Vi Serr =V, 5S¢ — Vg, Tr In M @ Tr ((V:%MM>M_1)

Batrouni et al (Cornell group) PRD 32 (1985)

In Upu(n+1;n) =e =0 (n;n) we now write

F=T(ed +/en") & = V2,56 Re (&1(Ve,M)u(M )t )]

where (&&;)e = d;; or (this is what we always do)

O = {V%SG — Re (&T(VguMhnwn)} M = &k

From a numerical point of view this boils down to the (technically challenging) problem of
inverting the Dirac operator efficiently. This 1is a heavy task, making unquenched simulations much
more demanding in terms of computer time.

But we have not put our expansion in the coupling in place! Once we do 1it, we find much less
problems than expected from the non-perturbative simulations point of view!



M=M©O ¢ ZB_’“/QM(’“ M= O Zﬂ—k/QM—l(k)
k>0 k>0

In NSPT we have to deal with only one 1inverse (known once and for all: the Feynman free
propagator) plus a tower of recursive relations

M_l(l) — _]\4(0)_1]\4(1)]\4(0)_1
M—1(2) _ _M(O)—lM(Q)M(O)—l B M(O)_lM(l)M_l(l)
Y S V(O Rl IR PE (O R VO el Ve R PR KON VO Ry VEO P RS

1.e.
n—1
qumy:_er1§:Aw%ﬁMmrl
7=0

This has a direct counterpart in the solution of the linear system we have to face, which 1is also

translated into a perturbative version (beware! the noise source is 0-th order)
;

O = A0 ¢

NACORN V(g V{COMAC)

e _M@*jwww+Mm¢ﬂ
wm_dmw4@mw@+Mm¢n+meﬂ

1.e.
n—1 1

¢Kn)::__ﬂd(0)_1 jg: A4(n—j)¢xj) with M9 the (tree-level, field independent)
— Feynman propagator
]:

which 1s particularly nice, since it can be solved by going back and forth from momentum to
coordinate representation!




A few different frameworks for NSPT (i.e. a few handles to possibly improve it)

(there are projects going on this!)



There are various formulations of NSPT one can think of ..

(1) Is Langevin the only stochastic equation one can play with in NSPT?
NO! e.g. Stochastic Molecular Dynamics (SMD Horowitz 1985 ..) (not to mention ISPT Luescher 2014)

I have been talking to Pino on this several times..

n(z;t) s (n(z,t) n(@', 1)), = 4pod(z —z')6(t —t')

-9 .t ;L
. pom (25 t) + n(@; ) which is Langevin for pop — 00

Notice that one can tune the lattice parameter v = 2uga to minimize errors!
(which depend on both autocorrelation times and standard deviations (*)!)

(*) subtle issues in the continuum Limit! Beware! Variances are not intrinsic properties of QFT..
Beware! Quite often gains in autocorrelation times come with losses on the variance side..

Dalla Brida Kennedy Garofalo 2015 Dalla Brida Luescher 2016 (Gradient Flow!)

(2) Numerical 1integrators (numerical integration schemes) DO MATTER!
. and of course various combinations are possible .. e.g.

(2a) Langevin with 2nd order integrator

(2b) Stochastic Molecular Dynamics with 4th order OMF integrator

Bali Bauer Torrero 2008 Dalla Brida Kennedy Garofalo 2015 Dalla Brida Luescher 2016



- A canonical application: renormalization constants



Renormalization constants used to be the realm of LPT ..

.. but these days this is NOT the case. A non-perturbative determination (where possible) is now the
preferred choice (RI-MOM , SF ). Still,

Renormalization is strictly speaking proved in PT
There are different systematics involved in PT and non-PT
. and at some point PT 1s supposed to converge (this 1s a UV problem ..)

The RI-MOM schemes ( ) are a good framework (in the massless limit). Being the
scheme Regulator Independent, the coefficients of the logs are known! .. and the finite parts are
the easy part in NSPT ..

Let’s see how 1t works for quark bilinear (currents)

Gr(p) = / dz (p| Y(x)Ty(x) [p)  Tr(p)=S"'(p)Gr(p)S~'(p)  Or(p)=Tr (PopFr(p))
1 Tr(pS—(p))

Zor (,u,oz)Zq_l(,u,oz)Op( )pr=p2 =1 Zq(p, ) = —i 19 2 |p2=p
We know what to expect Z(p,ap) =1+ Z dn (1) ag dn(l) = Zdﬁf)li | = log(na)?
n>0 =
A key ingredient is the quark 2-points function (beware! we will work with Wilson fermions..)
alo(p, ey, 1) = ip + i (P) — X(D, 1her, 1)
N B ~ ~ ~ A . _ 27‘(’0&0
S, frer, B71) = Be(p, Mrer, B71) + Xy (D, Mter, 871) + Lother (B, er, ) (ﬁ = )

1 . .
1 Z Vo Trspin (Y0 2) = X,



What one really computes 1is

where the limits are encoded in expansions, e.g.

i’Y (]37 pLa :L_L) ‘log subtr — CgO) + Ca

and finite size effects come from

ossl D S JE -

ol SO -

2.5

Three-loop computations of RI-MOM
(*) for different glue action

)

, [

Y(p,pL

— W0

ZOF (:u = D 5_1)

~0.55|

_0.65}

~0.75|

finite part

2.5

renormalization constants (*)



Something maybe more field-theoretic (numerics stumbles on fundamental QFT..)

a. Renormalons



An old goal: a lattice determination of the gluon condensate ..

. where an OPE is in place .. V@’::<cm3172>/624 = Wo+ (A*/Q*) Wy + - -
. 1
. how the plaquette is our observable W(N) ::ﬁl——E§<TTCQ)

. unavoidably computed on a lattice of finite extent Na

Perturbative (PT) contribution (associated to the identity) should
be subtracted from Non-Perturbative (NPT) Monte Carlo (MC) data Wie — Woen ::(A4/624)VV2-+---
measured at various values of the lattice coupling 3, looking for
the signature dictated by asymptotic scaling, i.e. Aa ~ e P/12bo

PROBLEM: expect RENORMALONS! Q° k2¢1k2
From dimensional and RG arguments ( W'™" = j/ s (k2)

1
by changing variable 1-—-0@ 622 /st k2 20 = —
3bg
z0_
ren ::/VF]/ dze_ﬂz(z()-—-z)_']‘_7 The experts will recognize a Borel integral ..

dros(Q*) =6/ v = 22—; 0<2z<z2. =201 —as(Q%)/ass(rA?))

Tyren — Z 6 {Cren+0(e—zoﬁ)} Czen N/ (f +D

CAN WE INSPECT RENORMALONS IN A NSPT COMPUTATION OF THE PLAQUETTE? Di Renzo Marchesini Onofri 1995
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PROBLEMS

1. Computing power ..

2. The IR renormalon deserves its name and relevant momenta go like

Q k2 de
. rather study W (N)=C j/ ———jz——(yS(SkQ)
Gy @

. where the finite lattice has been explicitly taken
into account, while the change of scale can be
reabsorbed in a change of scheme (i.e., look for a
scheme in which renormalon is better described..)

. but all in all the final result for the subtraction
was signaling something odd going on .. WRONG SCALING!

We now know that NSPT CAN ACTUALLY DIRECTLY INSPECT
RENORMALONS, but one has to go to HIGHER ORDERS .. (at

the time the first 8 orders had been computed)

S

- ) B GM(N; s, 0)
=1

10”7

6.2
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Solution of the puzzle and direct inspection of renormalons Bali Bauer Pineda 2014

In 2012, Horsley et al computed the first 20 orders.

In 2013 Bali and Pineda detected the renormalon in the HQET/pole mass framework: dimensions do
matter! The order at which renormalons show up increases with the dimension of the operator!

Improvements (Bali Pineda) for the plaquette case (2014):

1. Twisted BCs (which kill zero modes; I have cheated a little bit about those till now..)
2.2nd order integrator for Langevin equation(s)

3. computer power (well .. it was 20 years later ..)

4. careful treatment of finite size effects by perturbative OPE (separation of scales!)

2

(P)urd(N) = Pron(@){2) + 55 Cs (@) 0O r + O ( ]3) >

2

T4 1 n+1 —1
pert an %a’ <OG>soft — _m ana + ((Na’) )

n>0 n>0
@o‘ch p, and f,, asymptotically dominated by the IR renor@

o
Normalization for Wilson action is fixed by ——1-+-§£:cka; = 50

N
. and one can finally fit the computed <l3%wﬁ(fV):::j£: lpn-— féé4 )]cy"+1
n>0

IT WORKS!



Cr(73’0) 0513,1/6) (8 O)C /Ca C,(78,1/6) Cr/Ca
Co 2.117274357 0.72181(99) 2. 1 17274357  0.72181(99)
Cy 11.136(11) 6.385(10) 11.140(12) 6.387(10)
c2/10 8.610(13) 8.124(12) 8.587(14) 8.129(12)
c3/10? 7.945(16) 7.670(13) 7.917(20) 7.682(15)
cs/10° 8.215(34) 8.017(33) 8.197(42) 8.017(36)
cs/10* 9.322(59) 9.160(59) 9.295(76) 9.139(64)
cs/10° 1.153(11) 1.138(11) 1.144(13) 1.134(12)
c7/107 1.558(21) 1.541(22) 1.533(25) 1.535(22)
cg/10° 2.304(43) 2.284(45) 2.254(51) 2.275(45)
Cco/10° 3.747(95) 3.717(97) 3.64(11) 3.703(98)
C10/10'"° 6.70(22) 6.65(22) 6.49(25) 6.63(22)
ci1/10'" 1.316(52) 1.306(53) 1.269(59) 1.303(53)
ci2/10"® 2.81(13) 2.79(13) 2.71(14) 2.78(13)
ci3/10™ 6.51(35) 6.46(35) 6.29(37) 6.45(35)
ci4/10'® | 1.628(96) 1.613(97) 1.57(10) 1.614(97)
ci5/10" 4.36(28) 4.32(28) 4.22(29) 4.33(28)
ci/10'° 1.247(86) 1.235(86) 1.206(89) 1.236(86)
ci7/10%° 3.78(28) 3.75(28) 3.66(28) 3.75(28)
cis/10% 1.215(93) 1.204(94) 1.176(95) 1.205(94)
C19/10%° 4.12(33) 4.08(33) 3.99(34) 4.08(33) £3:0 £3:1/8) f8OCr/Ca F3VOCr/Ca
fo 0.7696256328 0.7810(59) 0.7696256328  0.7810(69)
f; 6.075(78) 6.046(58) 6.124(87) 6.063(68)
/10 5.628(91) 5.644(62) 5.60(11) 5.691(78)
f3/10? 5.87(11) 5.858(76) 6.00(18) 5.946(91)
f1/10° 6.33(22) 6.29(17) 6.57(40) 6.26(23)
fs /10 7.73(35) 7.71(26) 7.67(66) 7.78(42)
fs/10° 9.86(53) 9.80(42) 9.68(99) 9.79(69)
f, /107 1.388(81) 1.378(71) 1.35(15) 1.38(11)
fs /108 2.12(12) 2.11(12) 2.06(22) 2.10(17)
f5/10° 3.54(20) 3.52(20) 3.40(37) 3.51(27)
fi0/10° 6.49(33) 6.44(34) 6.23(67) 6.44(43)
fi1/10'2 1.296(64) 1.286(66) 1.24(13) 1.286(74)
fi2/10" 2.68(19) 2.64(18) 2.65(33) 2.65(21)
fi3/10™ 6.70(54) 6.68(52) 6.36(90) 6.66(57)
f14/1018 1.58(14) 1.56(14) 1.55(22) 1.57(15)
fi5/10" 4.41(34) 4.37(33) 4.24(47) 4.37(35)
fis/10"° 1.241(92) 1.230(91) 1.20(11) 1.231(94)
fi7/10% 3.79(28) 3.75(28) 3.67(30) 3.76(28)
f1g/10% 1.215(94) 1.204(94) 1.176(97) 1.205(94)
f19/10% 4.12(33) 4.08(33) 3.99(34) 4.08(33)
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Model Independent Determination of the Gluon Condensate in Four Dimensional
SU(3) Gauge Theory
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We determine the nonperturbative gluon condensate of four-dimensional SU(3) gauge theory in a model-
independent way. This is achieved by carefully subtracting high-order perturbation theory results from
nonperturbative lattice QCD determinations of the average plaquette. No indications of dimension-two
condensates are found. The value of the gluon condensate turns out to be of a similar size as the intrinsic
ambiguity inherent to its definition. We also determine the binding energy of a B meson in the heavy quark
mass limit.

DOI: 10.1103/PhysRevLett.113.092001 PACS numbers: 12.38.Gc, 11.55.Hx, 12.38.Bx, 12.38.Cy



Something maybe more field-theoretic (numerics stumbles on fundamental QFT..)

b. Resurgence?



Resurgence, trans-series and all that

From Gerald Dunne’s lectures at the Parma School 2016 (Decoding the path 1integral: resurgence,
Lefschetz thimbles, non-perturbative physics)

Divergent series are the invention of
the devil, and it is shameful to base on
them any demonstration whatsoever ...
That most of these things [summation
of divergent series| are correct, in spite
of that, s extraordinarily surprising. [
am trying to find a reason for this; it
18 an exceedingly interesting question.

THEV MTUNAH STIIN

N. Abel, 1802 — 1829

The series is divergent; therefore we

may be able to do something with it resurgent functions display at each of their singular

points a behaviour closely related to their behaviour at
the origin. Loosely speaking, these functions resurrect,
or surge up - in a slhghtly different quise, as it were - at
thewr singularities

O. Heavistde, 1850 — 1925

J. Ecalle, 1980



Resurgence, trans-series and all that

From ’s presentation at LATTICEZ2015

Simpler question: Can we make sense of the Argyres, MU,

semi-classical expansion of QFT? Dunne, MU, 2012
FOAR) ~ > " cop (M) Z O e AN ey (AR
k=0 n=1 k=0
pert. th. n-instanton factor pert. th. around n-instanton

All series appearing above are asymptotic, i.e., divergent as c - k!. The
combined object is called trans-series following resurgence terminology:

Actually the “Resurgence people” have quite a number of predictions for perturbative expansions
and they went many steps further than the typical claim for QM cases (double-well potential ...)

resurgence: fluctuations about the instanton/anti-instanton saddle
are determined by those about the vacuum saddle.

There quite a lot of work we can do! ... The main point is that NSPT can compute expansions 1in
the background of (in principle) any classical solution! In particular, for field theories the
resurgence scenario needs to be tested ..
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All series appearing above are asymptotic, i.e., divergent as c - k!. The
combined object is called trans-series following resurgence terminology:

Actually the “Resurgence people” have quite a number of predictions for perturbative expansions
and they went many steps further than the typical claim for QM cases (double-well potential ...)

resurgence: fluctuations about the instanton/anti-instanton saddle
are determined by those about the vacuum saddle.

There quite a lot of work we can do! ... The main point is that NSPT can compute expansions 1in
the background of (in principle) any classical solution! In particular, for field theories the
resurgence scenario needs to be tested ..

(I am pretty sure Pino would be curious on this..)



Conclusions

- NSPT has been around for roughly 20 years. Maybe i1t has never been
extremely popular, but it 1s fair to say that it has never stopped
attracting attentions .. even more in recent times.

- I think there are many applications one can think of, but what I am
really interested in 1s how (brute..) numerics can lead you to tackle
fundamental 1ssues 1n field theories (it has been the case for
renormalons; now .. tackle Resurgence!)

- I would say this 1is one (of the) thing(s) I owe Pino a great debt for



