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Overview

• Dynamics of branes in M-theory and Type II suggest

– Existence of five-dimensional superconformal fixed points with 16 supercharges
possessing Coulomb branch and Higgs branch deformations

– Despite the lack of perturbative renormalizability of Yang-Mills theory

• Prior approaches

– Field theory: approach from the Coulomb branch
– D4/D8 branes in massive Type IIA, D5/NS5 brane webs in Type IIB
– Superconformal phase difficult to access in either approach

• Holographic approach to the super-conformal phase

– Type IIB supergravity on AdS6 × S2 warped over Riemann surface Σ

– Obtain exact local solutions to the BPS equations for 16 supersymmetries

– Construct global solutions

– Many open problems
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Five-dimensional supersymmetry

• Minimal Poincaré supersymmetry in five dimensions
– has 2 supersymmetry spinor generators = 8 real supersymmetries
– and thus SU(2)R symmetry

• Supermultiplets
– gauge multiplet A = (Aµ, λα, φ) with φ a real scalar;
– hypermultiplet H = (ψ,Ha) with Ha four real scalars;

• Super-conformal symmetry
– the conformal algebra in d ≥ 3 dimensions is SO(2, d)
– the superconformal algebra contains SO(2, d), the R-symmetry algebra,

and fermionic generators which are spinors under SO(2, d)

d = 3 OSp(2m|4) SO(2, 3) = Sp(4,R), m = 1, 2, 3, 4

d = 4 SU(2, 2|m) SO(2, 4) = SU(2, 2), m = 1, 2, 3, 4

d = 5 F (4) SO(2, 5) ⊕ SU(2) max bosonic subalgebra

d = 6 OSp(8
∗
|2m) SO(2, 6) = SO(8

∗
), m = 1, 2

– maximal 32 supersymmetries in d = 3, 4, 6 but only 16 in d = 5.
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Five-dimensional supersymmetric gauge theory

• Five-dimensional gauge theory (e.g. SU(N) gauge group)

L ∼ g−2 tr(F 2) +
c

24π2
tr(A ∧ F ∧ F + · · ·)

– [g−2] = mass and hence perturbatively non-renormalizable;
– c quantized in integers by gauge invariance;

• Poincaré supersymmetric theories with gauge and hypermultiplets,
– Coulomb branch: gauge scalars acquire vevs 〈φ〉 6= 0
– Higgs branch: hypermultiplet scalars acquire vevs 〈H〉 6= 0

• Reach super-conformal fixed point via Coulomb branch (Seiberg, 1996)

– generically SU(N) → U(1)N−1/Weyl
– U(1) gauge supermultiplets Ai = (Ai

µ, λ
i
α, φ

i)
with i = 1, · · · , N,

∑

i A
i = 0
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The pre-potential

• Dynamics in the Coulomb branch is governed by a pre-potential F(Ai)

– bosonic part of the effective Lagrangian dictated by supersymmetry

L ∼
∑

i,j

∂i∂jF(φ)

(

F
i
F

j + ∂φ
i
∂φ

j

)

+
∑

i,j,k

∂i∂j∂kF(φ)

(

A
i ∧ F

j ∧ F
k + · · ·

)

– Gauge invariance Ai → Ai + dθi requires ∂3F to be constant.
– Hence the pre-potential is at most cubic in φi,Ai.

• Exact pre-potential for SU(N) with Nf hypermultiplets in the N of SU(N)

F(φ) =
1

2g2
0

∑

i

φ
2
i +

c

6

∑

i

(φi)
3
+

1

6

∑

i<j

|φi − φj|
3
−

1

12

Nf
∑

f=1

∑

i

|φi + mf |
3

– the bare coupling g20 is a UV cutoff, mf are hypermultiplet masses.
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Dynamics on the Coulomb branch

• Regularity requires the gauge kinetic energy to have positive sign,
– ∂i∂jF must be positive for φ ∈ R

N−1/Weyl

• For SU(2) gauge group φ = φ1 = −φ2, and Nf hypermultiplets,

1

g2(φ)
=

1

g20
+ 2 |φ| −

1

4

Nf
∑

f=1

|φ−mf |
1

g2(φ)
= ∂2F(φ)

• Regularity g2(φ) > 0 requires Nf ≤ 7.
– g20 → ∞ leaves UV finite theory on the Coulomb branch.
– Super-conformal fixed point as φ,mf → 0 is strongly coupled.
– Exceptional global symmetries E8, E7, E6, SO(10), SU(5), · · ·
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Supersymmetric field theories from branes

• Standard cases have maximal supersymmetry
– 16 Poincaré supercharges
– in the near-horizon limit enhanced to 32 conformal supercharges

dim theory brane near-horizon asymptotic symmetry

d=3 M-theory M2 AdS4 × S7 SO(2, 3)× SO(8)
d=4 Type IIB D3 AdS5 × S5 SO(2, 4)× SO(6)
d=6 M-theory M5 AdS7 × S4 SO(2, 6)× SO(5)

• For d = 5, superconformal F (4) is unique and has 16 supercharges (8 Poincaré)

• Brane approaches to five-dimensional gauge theory
– D4 probe brane and parallel D8 branes in massive Type IIA

(Seiberg, 1996) and (Brandhuber, Oz 1999)

– D5 intersecting NS5 branes in Type IIB
(Aharony, Hanany 1997)

• M-theory on 6-dim Calabi-Yau approach to five-dimensional fixed points
(Morrison, Seiberg, 1996)
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Five-branes in Type IIB string theory

• D5 and NS5 branes intersecting along a five-dimensional space-time

branes 0 1 2 3 4 5 6 7 8 9

D5 × × × × × ×

NS5 × × × × × ×

– Poincaré ISO(1, 4) invariant along 01234 parallel directions
– SO(3) invariant along 789-transverse directions
– has 8 Poincaré supersymmetries

• D5 and NS5 transform under SL(2,Z) duality of Type IIB (Schwarz 1995)
– (p, q) five-branes with p, q ∈ Z

– x5 labels positions of NS5 branes,
– x6 labels positions of D5 branes

x5

x6

(1, 0) D5

(0, 1)

NS5 (1, 1)
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(p, q) brane webs

• (p, q)-brane intersections conserve p, q-charges due to SL(2,Z) symmetry

x5

x6 (1, 0)

(0, 1)

(1, 1)

• N parallel D5 branes suspended between two semi-infinite branes
– non-coincident: U(1)N−1 gauge theory plus massive W -bosons
– coincident: SU(N) gauge theory
– superconformal: web collapses to a single point

· · ·
N D5

N D5

non-coincident coincident superconformal

(p1, q1)

(p2, q2)

(p1 + N, q1)

(p2 − N, q2)
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Near-horizon limit

• Take the near-horizon limit of a (p, q) web configuration
– with a large number N of coincident D5 branes

branes 0 1 2 3 4 5 6 7 8 9

D5 × × × × × ×

NS5 × × × × × ×

– radial coordinate in 789 direction combines with 01234 to AdS6

– remaining angular directions of 789 give S2

– with combined isometries SO(2, 5)× SO(3)

• Total space-time geometry
AdS6 × S2 × Σ

– where AdS6 × S2 is warped over the two-dimensional surface Σ
– Σ contains the structure of the web in the near-horizon limit

• Our approach: obtain the Type IIB supergravity solutions directly
– several earlier attempts (with unphysical singularities)

Lozano et al, 2012; Apruzzi et al, 2014; Kim et al 2015; O’Colgain et al 2015
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Type IIB supergravity

• The fields of Type IIB sugergravity are

gMN metric
B axion/dilaton P,Q ∼ dB (contains χ,Φ)
C2 complex 2-form G (contains NSNS,RR)
C4 real 4-form F5 ⋆F5 = F5

ψM gravitino Weyl spinor
λ dilatino Weyl spinor

• Type IIB supergravity is invariant under global SL(2,R) = SU(1, 1)

– Einstein-frame metric and F5 are invariant,
– dilaton/axion B in coset SU(1, 1)/U(1), complex C2 transforms linearly,

B →
uB + v

v̄B + ū
C2 → uC2 + vC̄2 |u|2 − |v|2 = 1

• Bianchi identities and field equations.
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Supersymmetric solutions and BPS equations

• Susy variations in Type IIB at vanishing Fermi fields

δλ = iP · ΓB−1ε∗ −
i

4
(G · Γ)ε

δψM = DMε+
i

4
(F5 · Γ)ΓMε−

1

16

(

ΓM(G · Γ) + 2(G · Γ)ΓM

)

B−1ε∗

– ΓM are Dirac matrices, B effects charge conjugation.

– A configuration is supersymmetric if δψM = δλ = 0 has solutions with ε 6= 0
– A configuration is half-BPS if there are 16 linearly independent solutions ε

• BPS equations remind of Lax equations in integrable systems

field equations ⇔ integrability of system of linear differential eqs

– with 32 susys, BPS eqs imply all Bianchi and field equations;
– with ≥ 28 susy, several general results (Gran, Gutowski, Papadopoulos)

– with 16 susys, BPS eqs plus some Bianchi identities imply all the field eqs;
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The supergravity Ansatz

• The SO(2, 5)× SO(3) symmetry dictates the space-time structure,

AdS6 × S2 warped over a Riemann surface Σ

• The metric and flux fields are restricted by symmetry,

ds2 = f26 dŝ
2
AdS6

+ f22 dŝ
2
S2 + ds2Σ

F3 = ga e
a ∧ e6 ∧ e7

P = pa e
a

Q = qae
a

F5 = 0

– dŝ2AdS6
and dŝ2

S2 have unit radius “round” metrics;

– eA is orthonormal frame, A = 6, 7 for S2 and A = a = 8, 9 for Σ

– ds2Σ = ea ⊗ ebδab with a, b = 8, 9.
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Reducing the BPS equations

• Use Killing spinors on AdS6 × S2 as basis for the susy parameter ε,

ε =
∑

η1,η2

χη1,η2 ⊗ ζη1,η2

– χη1,η2 fixed basis of Killing spinors, η1 = ± and η2 = ± independently;
– ζη1,η2 are 2-component spinors on Σ.

• The BPS equations reduce to a system of 4 spinor equations,

0 = 4paγ
a
γ
9
ζ
∗ − gaτ

3
(2)γ

a
ζ

0 = −
i

2f6
τ
2
(1) ⊗ τ

1
(2)ζ +

Daf6

2f6
γ
a
ζ −

1

16
gaτ

3
(2)γ

a
γ
9
ζ
∗

0 =
1

2f2
τ
2
(2)ζ +

Daf2

2f2
γ
a
ζ +

3

16
gaτ

3
(2)γ

a
γ
9
ζ
∗

0 =

(

Da +
i

2
ωaσ

3
−

i

2
qa

)

ζ +
3

16
gaτ

3
(2)γ

9
ζ
∗
−

1

16
gbτ

3
(2)γa

b
γ
9
ζ
∗

– Derivative Da and connection ωa are defined with respect to the frame ea,
– τ(1,2) are Pauli matrices acting on indices η1,2.
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Decoupling the reduced BPS equations

• Algebraic methods used to restrict range of ζ (ED, Estes, Gutperle 2007)

ᾱ = ζ+++ = −ζ−−+ = −iνζ+−+ = +iνζ−++ ν
2
= 1

β̄ = ζ−−− = +ζ++− = −iνζ−+− = −iνζ+−−

• The radii f6 and f2 may be obtained algebraically in terms of α, β,

f6 = 3(|α|2 + |β|2) f2 = −ν(|α|2 − |β|2)

– Choose local complex coordinates (w, w̄) with ez = e8 + ie9 = ρ dw
– Use Bianchi identities to express the fields pz, qz, pz̄, qz̄ in terms of B

• Two of the four differential equations may be integrated exactly,

ρᾱ2 = f(κ+ +B κ−) κ± = ∂wA±

ρβ̄2 = f(B̄ κ+ + κ−) f−2 = 1− |B|2

– where A± are arbitrary locally holomorphic functions on Σ.
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The secret to integrability

• The remaining reduced equations for B, B̄, ρ are as follows

2 ∂w ln ρ − f
2(∂wB̄)

κ+ + Bκ−

B̄κ+ + κ−

− 2f2(∂wB̄) e+iϑ =
B̄∂wκ+ + ∂wκ−

B̄κ+ + κ−

2 ∂w ln ρ − f
2
(∂wB)

B̄κ+ + κ−

κ+ + Bκ−

− 2f
2
(∂wB) e

−iϑ
=

∂wκ+ + B∂wκ−

κ+ + Bκ−

(∂wB)
(κ̄+ + B̄κ̄−)

3
2

(Bκ̄+ + κ̄−)
1
2

− (∂wB̄)
(Bκ̄+ + κ̄−)

3
2

(κ̄+ + B̄κ̄−)
1
2

+
2ρ2

3f3
= 0

– where the phase angle ϑ is defined by,

e
2iϑ =

(

κ+ + Bκ−

κ̄+ + B̄κ̄−

) (

Bκ̄+ + κ̄−

B̄κ+ + κ−

)

• This system is actually solvable,
– Effectively a Lax system on Σ, and thus integrable in principle,
– Three fields (B, B̄, ρ) version of the sine-Gordon-Liouville-Toda type
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Local solutions to the BPS equations

• Metric components of the solution are given as follows,

ρ4 =
R(1 +R)(κ2)3

|∂wG|2(1−R)
f22 =

κ2(1−R)

ρ2(1 +R)
f26 =

9κ2(1 +R)

ρ2(1− R)

– in terms of the following combinations,

κ2 = −|∂wA+|
2 + |∂wA−|

2 R +
1

R
= 2 +

6κ2G

|∂wG|2

G = |A+|
2 − |A−|

2 + B + B̄ ∂wB = A+∂wA− −A−∂wA+

• SU(1, 1) symmetry of Type IIB acts naturally,

B →
uB + v

v̄B + ū

(

A+

A−

)

→

(

u −v

−v̄ ū

)(

A+

A−

)

|u|2 − |v|2 = 1

– manifestly leaves κ2,G and thus the Einstein frame metric invariant

• Positive metric functions f26 , f
2
2 , ρ

4 requires κ2, G > 0 choosing 0 < R < 1.
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Strategy for global solutions

• Summary of the associated mathematical problem
– Riemann surface Σ of unknown type (genus ? boundaries ?)
– Locally holomorphic functions A+,A− on Σ

⋆ with linear transformation law under SU(1, 1) symmetry of Type IIB
⋆ subject to positivity conditions

0 < κ2 = −|∂wA+|
2 + |∂wA−|

2

0 < G = |A+|
2 − |A−|

2 + B + B̄

• No (regular) solutions when Σ is compact without boundary,

∂w̄∂wG = −κ2 =⇒

∫

Σ

κ2 = 0

• The boundary ∂Σ of Σ has vanishing S2 radius

∂Σ : f2 → 0 f6 6= 0

– ∂Σ is not a boundary of the solution’s space-time manifold,
– ∂Σ corresponds to S2 slice of S3 cycle,
– requires κ2 = G = 0 on ∂Σ.
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Inspiration from Electro-statics

• Holomorphic SU(1, 1)-vector bundles give unproductive hint.

• Map this onto an electro-statics problem.
– Consider the locally meromorphic ratio λ on Σ (it can have poles)

λ =
∂wA+

∂wA−
κ2 = −|∂wA+|

2 + |∂wA−|
2

⋆ in the interior of Σ the condition κ2 > 0 requires |λ|2 < 1
⋆ on the boundary of Σ the condition κ2 = 0 requires |λ|2 = 1

– Consider the “electro-static potential”

Φ = − ln |λ|2

⋆ Φ is real harmonic on Σ
⋆ Φ > 0 in the interior of Σ, and Φ = 0 on the boundary of Σ

• Place an array of positive electric charges in the interior of Σ
and opposite image charges in the mirror image of Σ
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Σ of genus zero and one boundary component

• With a single boundary component, and genus zero,
– ∂Σ may be mapped onto the real line
– Σ may be mapped onto the upper half plane

Σ

∂Σ = R

·
· · · · ·

·
· · · · ·

s1

s2 sN

s̄1

s̄2
s̄N

\w

– The general electro-static solution is immediate

Φ(w) = − ln |λ|2 = −
N
∑

n=1

qn

(

ln |w − sn|
2 − ln |w − s̄n|

2
)

qn > 0

– for arbitrary N , qn, sn.
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Solving for the differentials

• Regularity of the meromorphic function λ requires qn = 1 for all n,

λ(w) =
N
∏

n=1

w − sn
w − s̄n

• Assuming ∂wA± meromorphic, ∂wA+ = λ∂wA− and regularity require,

∂wA+ =
1

R(w)

N
∏

n=1

(w − sn)

∂wA− =
1

R(w)

N
∏

n=1

(w − s̄n)

– R(w) is polynomials with only real roots rℓ

R(w) =

degR
∏

ℓ=1

(w − rℓ)

– real zeros are also allowed but may be viewed as the limit of Im(sn) → 0
– regularity at ∞ requires degR = N + 2
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Satisfying the regularity conditions

• Alternative form of ∂wA±,

∂wA±(w) =
N+2
∑

ℓ=1

Zℓ
±

w − rℓ
Z

ℓ
+ = (Zℓ

−)
∗ =

1

P ′(rℓ)

N
∏

n=1

(rℓ − s̄n)

– allows us to integrate up to A±,

A±(w) =
N+2
∑

ℓ=1

Zℓ
± ln(w − rℓ)

– and to obtain B in terms of “dilogarithm integrals”

B(w) =

N+2
∑

ℓ,ℓ′=1

(

Zℓ
+Z

ℓ′

− − Zℓ′

+Z
ℓ
−

)

∫ w

w0

dw
ln(w − rℓ)

w − rℓ′

– judicious choice of branch cuts allows one to show that

G = |A+|
2 − |A−|

2 + B + B̄

• obeys G = 0 on the boundary of Σ
• obeys G > 0 in the interior of Σ
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Asymptotics near pole = near (p, q) five-brane

• The solution is regular everywhere on Σ, except at the poles rℓ

w = rℓ + u eiθ

• The dilaton diverges and the string-frame metric becomes,

ds2 = (− lnu)dŝ2AdS6
+ |Zℓ

+ − Zℓ
−|

(

du2

u2
+ dŝ2S3

)

– AdS6 expands to infinite radius, by rescaling tends to R
6;

– (p, q)-charges at the pole given by pℓ = Re(Zℓ
+) and qℓ = −Im(Zℓ

+)

• Stack of N coincident NS5 branes produces string frame metric and dilaton,

ds2 = dxµdxµ + e2Φdy2 e2Φ(y) = e2Φ(∞) +N/y2

– xµ along 5-brane, y perpendicular to 5-brane, near-horizon u2 = y2 → 0

ds2 ∼ dxµdxµ +
du2

u2
+ ds2

S3 e2Φ(y) ∼ N/u2

– agrees with behavior near the poles of our solutions
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Poles represent semi-infinite “heavy” branes

• Conformally map the upper half plane to the unit disc;
– real axis to unit circle
– points rℓ ∈ R to points r̃ℓ on unit circle

•

•

•

•
•

r̃1

r̃2r̃3

r̃4
r̃5

Riemann surface Σ

(p1, q1)

(p2, q2)(p3, q3)

(p4, q4)
(p5, q5)

(p, q) five-brane web
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Correlators holographically ?

• Key motivation for obtaining our Type IIB supergravity solutions
– access the superconformal phase of five-dimensional SCFT
– compute operator dimensions and correlators

• For standard cases, asymptotic region has enhanced symmetry
– eg asymptotically SU(2, 2|4) for asymptotic AdS5 × S5

– In five dimensions superconformal algebra F (4) throughout

• The “heavy” effectively six-dimensional branes are part of the solution (as poles)
– Effects of warping persist to the holographic boundary
– For five-dim holography one must prevent access to six-dim regions
– impose boundary conditions on red “walls” ?

•

•

•

•
•

r̃1

r̃2r̃3

r̃4 r̃5
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Outlook

• We constructed exactly a wealth of AdS6 × S2 × Σ solutions in Type IIB
– regular except for expected asymptotics of “heavy” (p, q) branes,
– precise matching of parameters in brane and supergravity constructions,
– solutions with D7-branes (ED, Gutperle, Uhlemann arXiv:1706.00433)

– solutions to the “double analytic continuation” AdS2 × S6 × Σ
(Corbino, ED, Uhlemann, arXiv:1712.04463)

• Largely open questions

– spectrum of operator dimensions around the solutions ?
– Entanglement entropy: Gutperle, Marasinou, Trivella, Uhlemann, arXiv: 1708.03404

– probe (p, q) strings: Kaidi, arXiv: 1708.03404

– Do these solutions exhibit exceptional global symmetries E8, E7, E6, · · · ?

– Can disc-solutions be extended to global solutions on higher surfaces ?
– one would hope that such extensions may capture internal five-brane web structure

ED, Gutperle, Uhlemann tried hard but were not successful (yet ?)


