Supersymmertric vortex
defects in two dimensions

Takuya Okuda
University of Tokyo, Komaba



Plan

Part I: Supersymmetric vortex

deFeC'I'S [1705.10623 with K. Hosomichi and S. Lee]

Part II: SUSY renormalization
(Pauli-Villars and counterterms)

[1705.06118 TO]



S

Plan for Part I
(vortex defects)

Motivations and the set-up

Three inequivalent definitions of defects
Relations among definitions

Applications

- Twisted chiral ring relations

- Mirror symmetry for minimal models

3



Motivations

Defects characterized by gauge field singularity

A~ ndp
@ Surface operator in 4d theory

@ Vortex line operafor in 3d theory ~illhte

@ Vortex (local) operator in 2d theory
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Defects characterized by gauge field singularity

A~ ndy

@ Surface operator in 4d theory
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Motivations

@ Sometimes, defects characterized by the gauge

field singularity A ~ ndy are also described by

the insertion of local degrees of freedom. (3d:
Assel-Gomis,..., 4d: Gukov-Witten, Gaiotto, Nawafta,
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@ What is the that guarantees the
equivalence of the two descriptions?

@ Will give an answer in the 2d abelian case.



More moftivations

@ Meaning of vortex defects in N=(2,2) GLSM for
Calabi-Yau models.

@ Holonomy for discrete symmetry

==> Twist field in orbifold theory



More moftivations

@ Mirror symmeftry
- Hori-Vafa mirror symmetry
- Minimal model and its orbifold
- Fundamental fields are mapped to defects

@ Path integral description of the defects in
these theories.



Set-up

@ 2d N=(2,2) gauged linear sigma models.

@ First focus on a single chiral multiplet coupled
with charge +1 to U(1) gauge multiplet.

@ Will embed to a larger theory, such as the
quintic Calabi-Yau model.



o

Chiral multiplet with charge +1 ¢,y F

U(1) gauge multiplet: dynamical or non-
dynamical AR, \E Y. D

1/2 BPS (twisted chiral) defect

Invariant under type A supercharges
A chiral multiplet decomposes into (¢,v™) (v, F)

Use SUSY as guidance fo construct defects
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Three inequivalent
definitions of defects

1. Boundary conditions
2. Smearing regularization

3. 0d-2d couplings
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Three inequivalent
definitions of defects

1. Boundary conditions (~ [Drukker-TO-Passerini] in 3d)

2. Smearing regulariza’rion ([Kapustin-Willet-Yaakov] in 3d)

3. 0d-2d couplings (~ [Assel-Gomis] 3d)

Will derive relations among the definitions.
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1: Defects via boundary
conditions

There are two natural boundary conditions
compatible with type A SUSY.

Normal boundary condition:
(b, vT), D, (¢, F) : finite
(7, B) =S8 ), ~ T
Flipped boundary condition:
Dz (¢, 9T, (v, F) : finite
(¢,9™) = O(r7)
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1: Defects via boundary
conditions

For multiple chiral multiplets, choose one

boundary condition for each. The choice is a
label of the defect.

We can and did perform SUSY localization for
the two-point function of defects on the sphere.
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2: Defects via smearing

A~nde  Fig ~n-6%(z) OT’
ot +ix? = re'f ;

@ Regularize by a smooth function %
/N
Frg = p(z) \
o Type A SUSY ==> D=27i o >

(3d: [Kapustin-Willet-Yaakov], 2d: TO)
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3: Defects by 0d-2d
couplings
Od SUSY with two super charges

= type A subalgebra of 2d N=(2,2) SUSY

~ 2d N=(0,2) SUSY

Use terminology for N=(0,2)
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3: Defects by Od-2d
couplings

S ~ aXYu + X

Od Chiral multiplet (u, () a1
/dud{e s

S ~ 7¥n + hh

Od Fermi multiplet (7, h)
/dndhe_s ~ >
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Derivation of the relations
among the definitions

Key points

@ Start with the smearing definition. For some
values of vorticity n, the 2d bulk fields develop

localized modes.

@ The localized modes form Od multiplets.

@ The non-localized modes obey normal/flipped
boundary conditions.
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Localized modes in smeared
vortex background

@ Recall SUSY condition D=27ip. We get

S~/¢ —D,D; +ZE)¢+¢<E l;)erFF

v= ()

@ Expand ¢, ¢+in eigenmodes of = DD Zero-modes, if
present, are annihilated by Dz and are localized.

@ Expand w_, F'in eigenmodes of —D:D.. Zero-modes, if
present, are annihilated by [), and are localized.
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First order ODE for
Zzero-mode

D.U =0 for ¥ = ¢, o

A - A g for r < e
V=0(r)em™ b~y
(r)e " <\ TSSO - T \

@ Need m=0 for regularity. s 2 s

N
7

@ Need m-7 < -1 for the mode to be localized.
==> Localized modes exist for m =0,1,...,|n| —1

if n > 1. (Non-integer n assumed.)
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T—m

m—n

for r < e
for > €

1

> I






Effective boundary conditions
for non-localized modes

@ We performed the asymptotic analysis of the
second-order ODEs as € -> 0.

—D.D-U =\ for U = ¢, opT
DD, U =)0 for U =, F

@ Non-localized modes in the bulk region behave

as if they obey the normal/flipped boundary
conditions.
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Relations for the path
iIntfegral measures

D(Qd Chlral)vns eeeee d
(7] -1
D(2d chiral)yaippea x| | d(0d chiral), (n > 0)
a=0
=1
D(2d (:hilral)vq7 nnnnn 1 X H d(0d Fermi), (n < 0)

a=0
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Vortex defect for gauge
symmetry

@ When the gauge field is dynamical, the
smearing regularization gives a trivial defect
because the gauge field is integrated over.

@ Triviality of the smeared "gauge vortex
defect” implies the equivalence of a defect
defined by boundary conditions and a defect
defined by Od-2d couplings.
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Chiral ring relations and
defects: CPN-1 model

@ U(1) gauge multiplet and N chiral multiplets of
charge +l.

@ For 1«2, from the relations between the
measures, N
___ys/smeared __ y/flipped . —S
1=V, =V, PP (/D(Od chiral)e >
@ We can invert the 0d-2d coupling

N
Vnﬂipped = (/D(Od Fermi)es> — 2N
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@ For shifted vorticity,

flipped
S il =8

@ The boundary conditions are invariant under
an integer shift of #. Only the FI-theta

coupling is affected. ==>
flipped _ _—ty flipped
V,,7 = ¢ V,,7_1

@ Putting everything together, we get the chiral
ring relation

g
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@ On the sphere, a similar consideration leads to
the Picard-Fuchs equation for the sphere
parfifion Funcfion. [Closset-Cremonesi-Park, ...]

@ From the Picard-Fuchs equation also one can
read off the chiral ring relation by taking the
|le'g€ radius limit. [Givental]

@ The same works for the quintic Calabi-Yau.

Twisted chiral operators 2J can be realized as
vortex defects Vygauge for suitable values of #.
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Vortex defect for flavor
symmetry

@ When the gauge field is non-dynamical, the
smearing regularization gives a non-frivial
defect. (7o}

@ Flavor vortex defect Vyflavor realizes the twisted

chiral operator e in the Hori-Vafa mirror
theory.

@ For discrete symmetries, vortex defects are
nothing but twist fields.

9



Application: N=2 Minimal

o

o

model and its mirror

Level h-2 minimal model with h=2,3,4,...
3(h — 2)
h
Its mirror is the Zn orbifold of itself.

Cl s

N=2 Landau-Ginzburg model with superpotential

W = go®".
Twist fields are vortex defects with vorticity

n=-p/h, p=0,1,...,h-1.
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Two-point function of twist fields
in the Z,-orbifolded Minimal model

Two-point functions of twist fields can be computed
by localization. Agree with known results and mirror
symmetry expectations.

T(1+p
<V—p/h(N)V—p/h(S)>52 i fllF(l( hl;;p)
o TRy ) ™
h h

Explicit renormalization by Pauli-Villars and
supergravity counterterms. [T0]

Coincides with the known and mirror results.
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Summary for Part I

@ Found a mechanism for the equivalence of the
vortex defect defined by boundary condition
and the defect defined by 0d-2d coupling.

@ Gave a precise path-integral formulation of
twist fields in Landau-Ginzburg realization of
the minimal model.

@ (In the paper) gave prescriptions for computing
two-point functions of vortex defects.
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Future directions for
Part 1

More detailed study of the non-Abelian case.

Higher dimensions: vortex lines, surface
operators.

Brane construction, chiral ring relations from
branes? ([Assel] in 3d)

Relation fo the Higgsing construction of a
surFace opera’ror [Gaiotto-Rastelli-Razamat]
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How does renormalization actually
work in a supersymmetric theory?
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Will see an explicit example in 2d
N=(2,2) theory

For amusement/obsession
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Plan for Part II
(SUSY renormalization)

@ Pauli-Villars regularization in 2d N=(2,2)
theory

@ Supergravity counterterms

@ Renormalization
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SUSY Pauli-Villars

@ Goal: regularize the one-loop determinant for
a single physical chiral multiplet.

@ Add 2Npy-1 ghost/regulator chiral multiplets.

@ Introduce fictitious symmetry U(1)py

3%



JES() J:jE{l,...,ZNPV—l}
physical unphysical (PV ghosts)
statistics €0 = +1 e; = =xl
U(1)py-charge apg =0 aff@R — {0}
flavor /gauge charge | by = +1 b, € Z
twisted mass % twisted mass a; A\ + b0
vector R-charge o = ¢ R-charge c;q

Co=l
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Linear constraints

@ Often in localization literature, the
one-loop defterminant is given as an
infinite product after bose/fermi
cancellation.

@ In this case, the following linear
constraints are enough for UV
regularization.

ZE]ZZE]CLJ:ZEJ[)J:ZGJCJ:O
J 9,

J J

4.0



Quadratic constraints

@ It is possible to UV regularize the
bosonic and fermionic determinants
separately, by imposing quadratic
constraints.

E EJGQJ:E 6Jb2J:E EJC%ZE EJanJ:E EJbJCJ:E EJCJaJ:O

J J J J J J

@ Can be seen by explicit enumeration of
eigenvalues or the heat kernel analysis.
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An example that satisfies the linear and
quadratic constraints:

(€1,...,€65) = (+1,+1,—1,—-1,—1),
b; = c; = 11058l 7,
(CLl,..., ) (3 3,1,1,4)
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Combinations of
parameters

i H ‘aj|_€j )
J

=y iesb, log |agls
J

L= Z €A, lOg |Clj‘ *
J

=) ejc;loglayl,
J

4-3

El — Z ejbjsgn(aj) :
J

Hy= N ;|
J

3 .= Z ejcjsgn(aj) ]

J

4 = Z ejsgn(aj) :

J

[1]

[1]



Pauli-Villars regularization
for SUSY two-sphere

® The usual expression for the 1-loop
determinant is

O

p 1 b
ZSUSY Y H 1 LS §‘B‘ i

1-loop
n=0 2

@ By Pauli-Villars we get

ZSUSY OIS ﬁ nt1+g|B -6 I <n+1+ 210, B] —Mg)ej'
IR n+ 5|B|+6 n+ |b;B| + M,

n=0}5 9

M; = ¢;5 + if(a;A + b;Re(0))

44




® Gamma function identities allow us to remove

the absolute value symbols without changing
the resulf.

@ Stirlings formula gives, for large A >0,

sry Ly el T (106 ST )0

1-loop, reg — F(l N 4 % (1 = Mj —|—b3§

Lt C'Oe’igglBe(Cs—Cl)q62016€2ngéA(KA)1—26 F(a- 5 %)
r1—-6+2)
@ This is reqgularized by not renormalized,

because of the A-dependence. Also we need
to deal with the ugly prefactors...

(1+0A™h),
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Supergravity
counterterms

@ Claim: the counterterms given by the following twisted
superpotential renormalize the one-loop partition functions

in arbitrary backgrounds. ((t: renormalization scale)

i H a; A
Welo, 7o A) = == > ¢; log m;
J

1 Ciq a; A +bjo + a9
+E§j:ej(ajA+bja+”7H)1og 4 ki)

o 7 :twisted chiral field constructed from the gravity
multiplet/R-symmetry gauge multiplet in N=(2,2) U(1)v
SUGRA.

@ Similar to Wittens effective twisted superpotential.
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C;: / dZ:U\[quog%

Renormalization of FI-

theta terms for flavor/
gauge symmetry

For large A >0,

e PL = q ~ A | 1
Wct (0-77_[7 A) s Q7 HlOg 10 | AR (Ol i lOg
1 ST q
i E (CZ—FZ?HQ)A—F E
| e
+ W (log Co — t5 =4
Renormalization of FI- Renormalization o'FI-
theta terms for U(1)py theta terms for vector

R-symmeftry
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Renormalization of FI-theta
terms for flavor/gauge symmetry

t=1r — 10

4%



Renomarlization for
SUSY two-sphere

Combining the physical action, Pauli-Villars
regularization, and supergravity
counterterms, we get

Z5USY _ 1im e

A— o0

_Sren _Sct ZSUSY
1-loop, reg

['(6+ 2)

remn g['

— €

it 6—@'B9€47m'[r(,u)—% log(Zu)]lRe a(glu)l—q
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@ A convenience choice is to take = 1/¢. Then

ZSUSY it 64772'7“06—1'39 F(O 7

@ This is the formula often quoted in the
literature.
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Comments

® Zeta function regularization is equivalent to a
specialization (limit) of parameters.

@ Our scheme works uniformly for different
SUSY backgrounds, such as A-twist with/
without omega deformation on two-sphere.
(See paper.) It is meaningful to compare
partition functions in different backgrounds.
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Comments

@ For vortex defects, we can read off the
scaling dimension from ¢ or | dependence.

@ With boundary, we also need boundary
counterterms. One has to choose different
counterterms depending on which the
symmetry (gauge or charge conjugation
symmetry) to preserve (unpublished).
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