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Review of Argyres-Douglas theories



Review of Argyres-Douglas theories

« N = 2 Superconformal theories (SCFTs)

* Describe the low energy theory at special loci on the Coulomb branch
of generic N/ = 2 theories

* At these special loci, monopoles and electrically charged particles
simultaneously become massless






Simplest AD theory

* Supersymmetric U(1) gauge theory + electron + monopole/dyon

* AD point on the Coulomb branch of N/ = 2 SU(2) gauge theory with
1 doublet hyper [Argyres-Douglas ‘95] [Argyres-Plesser-Seiberg-Witten ‘95]

 Often called as the H theory



* H¢ has a single Coulomb branch operator with scaling dimension

e central charges were computed by Shapere and Tachikawa in 2008
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Minimal 4d theory with N' = 2 SUSY

* H, is believed to be the minimal 4d superconformal theory with 8
supercharges

* 4d N/ = 2 SCFTs obey an analytic lower bound on their central charge ¢

[Liendo-Ramirez-Seo "15]
c> il
— 30

« Ho theory saturates this bound



AD theories from type IIB

* AD theories can be obtained by compactification of type IIB on C'Y3
with an isolated singularity

CY3CC4ZW($1):O
dW =0 Zﬁ ZU@'ZO

* Gives a (G, G’) classification of AD theories [cecotti-Neitzke-Vafa'10]

Wi(x,y,z,w) =Wa(z,y) + Wg (2, w) =0



* Wa(x,y) isthe superpotential defining ADE singularities

Wa, (z,y) = 2" +y?
Wp, (z,y) = 2" ' 4+ zy?
Wie(2,y) = 2° + y*
We. (z,y) = 2° + zy°




AD theories are Non-Lagrangian

* Impossible to write a manifestly Lorentz invariant Lagrangian with
electrons as well as monopoles as elementary degrees of freedom

* Therefore AD theories are inherently non-perturbative

* Their Coulomb phase is well understood; much less is known about
their conformal phase

* How to compute their partitions function on S4, 2 x S! etc?



N =1 Lagrangian for Hy theory



q q () M
SU(2) 2 2 Ad] 1

W = trqdq+

e The term inredis irrelevant in the UV

* Inreality it is and therefore can not be ignored
[Maruyoshi-Song 16]

* This theory reproduces the central charges and coulomb branch of H



* Central charges of supersymmetric theories are exact functions of the
R-charge [Anselmi-Freedman-Grisaru-Johansen 97]

9 3 3
a = S_QtrR — 3—2tI'R

9 3 5
C = S—QtI'R — 3—2tI'R

* The scaling dimension of gauge invariant chiral operators can be
obtained from their exact IR R-charges

Ao = 2Ro



* In N/ =1 theories axial U(1) symmetries generically mix with the R-
symmetry along the RG flow.

Rir = Ryv + > _ a;A;

* The mixing coefficients «; have to maximize the central charge a
[Intriligator-Wecht 03]

* There is an axial U(1) flavor symmetry under which the various fields have
charges given by

, [ ]

N~

q:%,q , D —1, M :—6



* Naive a-maximization for the Ho Lagrangian leads to

Aqge <1

* For gauge invariant operators, unitarity in conformal field theory
requires

Ap > 1

* The inequality is saturated if and only if O is a free field



* It must be that Tr®? decoupled (as a free field) from the interacting
CFT

* We have to remove this decoupled operator and re-maximize a

[Kutasov-Parnachev-Sahakyan’03]

* Finally, ¢ gets maximized at a point where R-charge of A/ is given by

4
RMZE

* Charges of other fields can be fixed by requiring IR R-symmetry to be
non-anomalous and that each term in the superpotential should have
R-charge 2



* At the fixed point of the above Lagrangian we therefore find that

43 _ 11
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* In particular, we find that

e Recall, that for H



* The central charges match with that of the H; theory

e Gauge singlet M plays the role of the Coulomb branch operator

* Claim: The above Lagrangian experiences SUSY enhancement and flows
to the [, theory in the IR



* We can use the above Lagrangian to compute the full N/ = 2
superconformal index (SCI) of H

* The Schur and Macdonald limits of the SCI of various AD theories
were previously obtained by using 4d/2d correspondence
[Buican - Nishinaka’15] [ Song’15] [Cordova-Shao'15]

* These corresponding limits of the superconformal index computed
from the Lagrangian match the above results

 What about other AD theories?



Lagrangians for generalized AD theories



« N =1 deformation of an N =2 SCFT

* N =2 SCFT : SU(2) gauge theory with 8 fundamental half-hypers (Q )

* This has an SO(8) flavor symmetry

* Deform this by introducing gauge singlet chiral multiplets (/) in the
adjoint representation of SO(8).

* Coupling is through a superpotential W = trM Q@)



* Switch on a nilpotent vev for M : (M) = p(c™)

[Gadde-Maruyoshi-Tachikawa-Yan 13] [PA-Song 13]
[PA-Bah-Maruyoshi-Song 14][PA-Intriligator-Song 15]

e pisthe choice an SU(2) C SO(8), such that

(8)sos) = (T 1)sy(2)

* This is called the principal embedding in math literature



* Integrate out the quarks that get masses

* Decouple the multiplets containing Goldstone bosons

* The effective Lagrangian so obtained flows to the H theory, after
removing the operators that hit the unitarity bound

e
\




In general ....

N = 1deformations of the SU(N) gauge theory with 2N fundamental
hypers

* This N = 2 SCFT has an SU(2N) flavor symmetry

* Introduce a gauge singlet chiral multiplet M in the adjoint
representation of the flavor symmetry



* Consider the effective theory obtained after giving a nilpotent vev to M
(M) = p(c™), p: SU(2) — SU(2N)
* The SU(2) embeddings into Lie Algebras were classified by Dynkin

* For SU(2N), the SU(2) embeddings are in one-one correspondence
with integer partitions of 2N

* The choice of integer partition tells us how to decompose the
fundamental representation of SU(2N) into irreps of SU(2)



* Principal embedding : (2N)SU(2N) — (ZN)SU@)

* The resulting theory flows to an IR fixed point that describes the so
called (Al, AQN_l) type AD theories [Maruyoshi-Song'16]

* What about other SU(2) embedding?



* Other than sporadic occurrences, only one other SU(2) embedding
gives AD theory at the fixed point [pA-Maruyoshi-Song'16]

(2N)su@en) = (2N =1 & 1) g9

* This flows to the (A1, Dan) type AD theory



* We can also consider similar deformation of the N =2 SCFT based on
Sp(N) gauge theory with (4N+4) half-hypers

* This has an SO(4N+4) flavor symmetry

* The deformations to be studied are therefore labelled by SU(2)
embeddings of SO(4N+4)



* Principal embedding : (4N + 4)30(4N+4) — (AN +3 & 1)SU(2)

* Gives an M = 1 Lagrangian that flows to the (A1, Aan ) type AD theories
[Maruyoshi-Song'16]

* When p (4N —+ 4)80(4N—}—4) — (4N +1 @?:1 1)SU(2)

* The resulting Lagrangian describes (A;, Do) AD theories
[PA-Maruyoshi-Song 16]

* Other embeddings do not give anything interesting other than
sporadically



Deformations of SU(N),
Nf =2N

* Here we only list deformations
that give rational central
charges

* Other deformations give

These are necessarily fixed
points with A =1 SUSY

4d N =2 SUSY

SU(2N) | p: SU(2) — SU(2N) a c
[14] 2 1 Yes; N. =2, Ny =4
SU(4) 3,1] = 2 Yes; (A1, Dy) AD th.
[4] % % Yes; (A1, A3) AD th.
[1°] 8 g Yes; N. =3, Ny =6
SU(6) [5,1] - g Yes; (A1, Dg) AD th.
(6] 5 = Yes; (A1, As) AD th.
[15] DL 3 Yes; N. =4, Ny =8
2,1% o | W ?
SU(8) [4, 4] 9097 5129 2
[7,1] 2 % Yes; (A1, Dg) AD th.
8] o 32 Yes; (A1, A7) AD th.
[110] % 7—61 Yes; N, =5, Ny =10
5.1 men | e ?
SU(10) 5,3, 17 2iio17is | 12200856 ’
[9,1] = 2 Yes; (A1, D1g) AD th.
[10] 2 - Yes; (A1, Ag) AD th.
[112] B I Yes; N. =6, Ny =12
[4°] Tisssl | cotor ?
SU(12)
[11,1] sl 5 Yes; (A1, D12) AD th.
[12] 807 L Yes; (A1, A11)AD th.




4d N =2 SUSY

SU@2N) | p: SU(2) — SU(2N) a c
[14] = % Yes; No =2, Ny =4
SU(4) (3,1] " 2 Yes; (A1, Dy) AD th.
[4] = E Yes; (A1, Az) AD th.
[16] 2 n Yes; N, =3, Ny =6
SU(6) [5,1] o z Yes; (A1, Dg) AD th.
@ 5 = Yes; (Ay, As) AD th.
[1%] e 2l Yes; N, =4, Ny =8
2,19 TFioi | s ’
SU(8) [4,4] B Lo ?
7,1] o 2 Yes; (A1, Dg) AD th.
8] oI 32 Yes; (Ay, A7) AD th.
[119] % 7—61 Yes; N. =5, Ny =10
5.1 ooty | et ?
SU(10) 5,3,1°] Si0i71s | 12200880 ’
[9,1] % 1—63 Yes; (A1, Do) AD th.
[10] 2 = Yes; (A1, Ag) AD th.
[1'2] . I Yes; N, =6, Ny =12
£ p | aE ?
SU(12)
[11,1] % % Yes; (A1, D12) AD th.
[12] % e Yes; (A1, A11)AD th.




SU(2N) | p:SU(2) — SU(2N) a c 4d N =2 SUSY
[14] = % Yes; No =2, Ny =4
SU(4) (3,1] = 2 Yes; (A1, Dy) AD th.
[4] 4 1 Yes; (A1, Az) AD th.
[16] » - Yes; N. =3, Ny =6
SU(6) [5,1] o z Yes; (A1, Dg) AD th.
[6] = = Yes; (A1, As) AD th.
[1%] e 2l Yes; N, =4, Ny =8
2,19 731 | sy ?
SU(8) [4,4] B Lo ?
(7,1] = 2 Yes; (A1, Dg) AD th.
8] oI 32 Yes; (Ay, A7) AD th.
[119] % 7—61 Yes; N. =5, Ny =10
5,1 e | o :
SU(10) 5,3,17 25087 | 52001000 ?
[9,1] % 1—63 Yes; (Ay, Do) AD th.
[10] 2 z Yes; (A1, Ag) AD th.
[1'2] . I Yes; N, =6, Ny =12
] | 8% i
SU(12)
[11,1] 2 8 Yes; (A1, D12) AD th.
[12] % o Yes; (Ay, A11)AD th.




4d N =2 SUSY

SU@2N) | p: SU(2) — SU(2N) a c
[14] = % Yes; No =2, Ny =4
SU(4) [3,1] " % Yes; (A1, Dy) AD th.
[4] 4 1 Yes; (A, A3) AD th.
[16] 2 i Yes; No =3, Ny =6
SU(6) [5,1] o z Yes; (A1, Dg) AD th.
[6] = = Yes; (A1, As) AD th.
[18] e 8 Yes; N. =4, Ny =38
[2,1° 71| st ?
SU(8) [4, 4] e o ?
7,1] o 2 Yes; (A1, Dg) AD th.
8] oI 32 Yes; (Ay, A7) AD th.
[119] % 7—61 Yes; N. =5, Ny =10
5.1% ?
SU(10) 5,3,1%] 2101715 | 13300856 ’
[9,1] % 1—63 Yes; (A1, Do) AD th.
[10] 2 2 Yes; (A1, Ag) AD th.
[112] S I Yes; No = 6, Ny =12
] e | 8% :
SU(12)
[11,1] % % Yes; (A1, D12) AD th.
[12] 31 o Yes; (Ay, A11)AD th.




Deformations of USp(2N), Nf =4AN+4 (half-hypers)

* Here we only list
deformations that give

* Other deformations give

. These are
necessarily fixed points
with A/ = 1 SUSY

SO(AN +4) | p: SU(2) = SO(4N +4) a c 4d N =2 SUSY
(18] = : Yes; N. =1, Ny =8
32,12] 5 2 Yes;(A1,Dy) AD th.
SO(8) [4,4] = [5,1°] i 5 Yes; (A1, D3) AD th.
6349 3523
5, 3] 13872 6936 !
[7,1] g - Yes; (A, Ay) AD th.
[1'2] i o Yes; No =2, Ny =12
[42 22] 105027 61145 2
80(12) ? 59536 29768 '
(9, 1°] o Yes; (A1, Ds) AD th.
(11, 1] o " Yes; (A, As) AD th.
[116] 2 = Yes; N. =3, Ny =16
[5 111] 109031 123889 2
) 27744 27744 )
18250741 10440877
50(16) [57 33’ 12] 5195568 2597784 !
(13, 13] e : Yes; (A, D7) AD th.
15, 1] 2 o Yes; (Aq, Ag) AD th.




SOM4N +4) | p: SU(2) — SO(4N +4) a c 4d N =2 SUSY
(18] = : Yes; N. =1, Ny =8
32, 17] 5 2 Yes;(Ay, Dy) AD th.
SO(8) [4,4] = [5,1°] i 5 Yes; (A1, D3) AD th.
[5 3] 6349 3523 9
) 13872 6936 )
[7,1] g - Yes; (A1, Ay) AD th.
[1'2] i o Yes; No =2, Ny =12
[42 22] 105027 61145 2
50(12) ? 59536 29768 )
(9, 1°] o Yes; (A1, Ds) AD th.
(11, 1] o . Yes; (A, As) AD th.
[116] o = Yes; N. =3, Ny =16
[5 111] 109031 123889 2
) 27744 27744 )
18250741 10440877
50(16) [5’ 33’ 12] 5195568 2597784 !
(13, 13] 5 : Yes; (A, D7) AD th.
15, 1] 2 o Yes; (A;, Ag) AD th.




4d N =2 SUSY

SOM4N +4) | p: SU(2) — SO(4N +4) a c
23 7 . — —
18] o B Yes; N. =1, Ny =38
SO(8) [4,4] = [5,1°] i 5 Yes; (A1, D3) AD th.
[5’ 3] 163384792 % !
[7,1] e - Yes; (A, Ay) AD th.
[1'2] i o Yes; No =2, Ny =12
[42 22] 105027 61145 2
50(12) ? 59536 29768 )
(9, 17] o Yes; (A1, Ds) AD th.
(11, 1] o " Yes; (A, As) AD th.
[116] o 2 Yes; N, =3, Ny =16
[5 111] 109031 123889 2
) 27744 27744 )
50(16) [ 5’ 337 12] 158129550576481 12054947(')78831 7 ?
(13, 13] & : Yes; (A, D7) AD th.
15, 1] 2 o Yes; (Aq, Ag) AD th.




SOM4N +4) | p: SU(2) — SO(4N +4) a c 4d N =2 SUSY
(18] = : Yes; N. =1, Ny =8
32,17] 5 2 Yes;(Ay, Dy) AD th.
SO(8) [4,4] = [5,1°] i 5 Yes; (A1, D3) AD th.
15, 3] 163384792 2332 !
[7,1] e - Yes; (A, Ay) AD th.
[1'2] i o Yes; No =2, Ny =12
105027 61145
SO(12) [42> 22] 59536 29768 !
(9, 1°] o Yes; (A1, Ds) AD th.
(11, 1] o " Yes; (A, As) AD th.
[116] o 2 Yes; N, =3, Ny =16
[5 111] 109031 123889 9
) 27744 27744 )
18250741 10440877
SO(16) 5, 37, 12} 5195568 2597784 !
(13, 13] 5 : Yes; (A, D7) AD th.
15, 1] 2 o Yes; (Aq, Ag) AD th.




Deformations of SO(N),Nf =2N-4 (

No organizing principal
behind the cases with
rational central charges

No correspondence with
N = 2 SCFTs

nalf-hypers)

Sp(N —2) | p: SU(2) — Sp(N —2) a c 4d N =2 SUSY
Sp(2) [14] 19 3 Yes; N, =4, Ny =4
2,1 Yo | 3 ’
S$p(3) [19] % % Yes; N. =5, Ny =6
[4,17] a 4l ?
Sp(4) 18] a3 2 Yes; N. = 6, Ny =38
Sp(5) [110] s o Yes; N =7, Ny =10
[112] = & Yes; N. =8, Ny =12
Sp(6) 22, 1°] T S TRTYE ?
[ 4’ 18] 123301625 % ?
[114] 8l 4 Yes; N. =9, Ny =14
Sp(7) 5% 1] 10075707 | 21057411 ?
[6, 327 2] 37725794755964143 47026724555904845 ?
[116] s 8 Yes; N. = 10, Ny = 16
Sp(8) 42,22, 14] e = ?
[ 527 32] 340654923690287 126372315380045 ?
[ 52’ 4’ 12] 248314188894085 3584238690169 ?




* The deformations of NV =2 gauge theories based on SU(N) and Sp(N)
gauge groups, together give all the AD theories of type (A4, A,,) and

(AlaD’n)

 However, the AD theories have a much richer classification
* To begin with there are AD theories of type (Ax,A4n) and (A, D,,)

* Therefore an immediate question is to look for Lagrangians for these
more general classes of AD theories



* A partial solution was reported in arXiv:1707.04751 ( in collaboration
with A. Sciarappa and J. Song)

* Also see related work (arXiv:1707.05113) by Benvenuti and
Giacomelli

* Consider NV =1 preserving “principal nilpotent deformations” of the
following N = 2 quivers

(N)—(2N)—---— (mN — N) — [mN]|

* These flow to (A,,—1, ANm—1) type AD theories

* Deformations corresponding to other SU(2) embeddings of SU(mN)
do not give anything interesting



¢ (A2m—1, Danm+1) type AD theories can be obtained from principal
deformation of

(SO(2)]—Sp(N)—SO(AN+2)—Sp(3N) —- - ~—Sp(2mN—N)—[SO(4mN +2)]

* (A2m, D, (n—2)+2 ) type AD theory can be obtained from principal
deformations of

SO(N)— Sp(N —2) — SO(3N —4) — Sp(2N —4) —
oo — Sp(mN —2m) — [SO2mN + N — 4m)]



* In addition to the above quivers, we also found that

and

1[—(k+1)—(2k+1)—...—(mk—k+1)—|mk+1

Sp(N) — SO(4N + 4) — Sp(3N + 2) — SO(8N + 8) —

.= Sp(m—-1)(2N +2)+ N) —

SO(4m(N + 1)) | ~

el (Im,'mk:a ) )

m(2N+2)
Dm(2N+2)

e Quivers with USp(n) flavor symmetries usually do not give rational

central charges

ud



Deformations of general N =2 SCFTs

* We can always consider N =1 preserving deformations of any N =2
SCFTs with global symmetry g

* Couple to G - Adjoint chiral mutliplet M via W = TruM
* [ is the scalar in the current multiplet for §

* Turn on a nilpotent vev for M



Deformations of general N/ = 2 SCFTs

* Here we only list deformations that give

Tov 0 Residual Flavor Tir|Tuv, pl
(IN .k, F) N 0 (AN-1, AN4k—1) theory
(IN—Ny2, F) | [N —1,1] U(1) (Ay, Dy ) theory
Eig 0 Hy
Fs SCFT D- SU(2) H,
D, SU(3) H,

[PA-Maruyoshi-Song 16]

Sp(n) SQCD with Ny = 2n + 2| < | (I2n41,—2n+1, F) AD theory

* Interesting Duality:

(Al’ D2‘7'2-+l) AD the()ry




Tirv 0 Residual Flavor Tir|Tuv, Pl
E7 @ HO
E. SCFT F SU(2) H,
A+ 34, 0= 1822116437 - 16251 741625
FEy 0 H
Fr(aq) SU(2) a = %v C= %
Es SCFT | Eq(as) SU(2) a= %7 c= 1
A3+ Ay | SU(2) x SO(7) | a= 16309515829’ C= g(l)%%
497803 . 635435
As SO(11) @ = 5319520 € = 221952

[PA-Maruyoshi-Song (unpublished)]



/T% 0 Residual Flavor Tir|Tuv, p
/Gy SCET\ | Gy(ay) ! 0= -1
_ 83993 _ 181571
F, SCFT I D @ = 562086° €= 524172
Fy(ar) SU(2) 0= 1i35, C= 353
> [PA-Maruyoshi-Song (unpublished)]

[Argyres-Martone ' 16]

* Deformations of theories in Bhardwaj-Tachikawa : Only
sporadic occurrence of deformations with rational central

C h a rges [PA-Sciarappa-Song (unpublished)]



Summary

* Non- Lagrangianity of AD theories poses a major hurdle in our
understanding of them

* We have been successful in constructing N’ = 1 Lagrangians whose IR
fixed points describe AD theories

* Can use these to compute RG protected quantities such as the
superconformal index



* These lagrangians are interesting in their own regard.

e Rare examples of 4d QFTs with

* The mechanism of SUSY enhancement is still not understood. This will
be an interesting direction to pursue

* It will also be interesting to find string theory realization of the above
Lagrangians and thereby understand the geometric settings that lead
to theories with accidental SUSY



* These Lagrangians imply interesting integral identities

For e.g. the Schur limit of the SCI of the Hj theory can be written as
[Buican - Nishinaka’15] [ Song’15] [Cordova-Shao 15][Song-Xie-Yan 17]

1
5q5)00(q3§q5)00

ISchur,Ho — (q2

The Lagrangian description suggests that the Schur index should be

D((22)3) 4 (2% (pg) 5 £10)D(2% (pg) ~ 510 )T (2120 (29)5)
C 2wt

ISchur,Ho — hmt—)q I{I‘((p—f)%) e ANCED



THANK YOU!



Superconformal Index

* The N =1 superconformal index is defined as
— v —1\Fpi1tiet+ 5 de—dit+5 fi
Ian—1 = tr(—1)"p 2q27 T2 ], a;

* generically, a function of two fugacities p and ¢

* The A = 2 superconformal index is a function of 3 fugacities p, g and ¢

Trn—o = tr(_l)ijl-l-Jé-i—%qu—jl-l—gtR—% Hz a{i



* Recall, that all our Lagrangians necessarily have a U(1) axial symmetry

* A linear combination of this with the /' =1 R-symmetry becomes the
cartan of the SU(2) R-symmetry of the A/ = 2 algebra

* A second independent linear combination becomes the U(1).,.



* Call the fugacity for axial U(1) as &

* N = 1superconformal index can be transformed into N =2 if
_2
£ = (t(pg)~3)P

* 3 can be fixed by comparing the axial charge of the gauge singlets in
the Lagrangian, to the [/(1), charge of the corresponding Coulomb
branch operator in the AD theory

Fa:mlal — %(R_ )

D3



