$\mathcal{N} = 1$ Lagrangians for Argyres-Douglas theories

Prarit Agarwal (Seoul National University)

Supersymmetric Quantum Field Theories in Non-perturbative Regime, 2018

- Based on
- N=1 Deformations and RG Flows of N=2 SCFTs J. Song, K. Maruyoshi (arXiv: 1607.04281)
- N=1 Deformations and RG Flows of N=2 SCFTs, Part II: Non-principal deformations P. A., J. Song, K. Maruyoshi (arXiv:1610.05311)
- 3. N=1 Lagrangians for generalized Argyres-Douglas theories P. A. , J. Song, A. Sciarappa , (arXiv:1707.04751)

Plan of the talk

- Brief review of Argyres-Douglas theories
- An $\mathcal{N} = 1$ Lagrangian for the H_0 theory
- Generalization of the Lagrangian for ${\cal H}_0$ theory
- Summary

Review of Argyres-Douglas theories

Review of Argyres-Douglas theories

- $\mathcal{N} = 2$ Superconformal theories (SCFTs)
- Describe the low energy theory at special loci on the Coulomb branch of generic $\mathcal{N}=2$ theories
- At these special loci, monopoles and electrically charged particles simultaneously become massless

Simplest AD theory

- Supersymmetric U(1) gauge theory + electron + monopole/dyon
- AD point on the Coulomb branch of $\mathcal{N}=2\,$ SU(2) gauge theory with 1 doublet hyper [Argyres-Douglas `95] [Argyres-Plesser-Seiberg-Witten '95]
- Often called as the H_0 theory

• H_0 has a single Coulomb branch operator with scaling dimension

$$\Delta_{\mathcal{O}} = \frac{6}{5}$$

central charges were computed by Shapere and Tachikawa in 2008

$$a = \frac{43}{120}, \ c = \frac{11}{30}$$

Minimal 4d theory with $\mathcal{N}=2~$ SUSY

- H_0 is believed to be the minimal 4d superconformal theory with 8 supercharges
- 4d N = 2 SCFTs obey an analytic lower bound on their central charge C[Liendo-Ramirez-Seo `15]

$$c \ge \frac{11}{30}$$

 \bullet H_0 theory saturates this bound

AD theories from type IIB

• AD theories can be obtained by compactification of type IIB on CY_3 with an isolated singularity

$$CY_3 \subset \mathbf{C}^4 : W(x_i) = 0$$

$$dW = 0 \quad iff \quad x_i = 0$$

• Gives a (G, G') classification of AD theories [Cecotti-Neitzke-Vafa`10]

$$W(x, y, z, w) = W_G(x, y) + W_{G'}(z, w) = 0$$

• $W_G(x,y)$ is the superpotential defining ADE singularities

$$W_{A_n}(x, y) = x^{n+1} + y^2$$

$$W_{D_n}(x, y) = x^{n-1} + xy^2$$

$$W_{E_6}(x, y) = x^3 + y^4$$

$$W_{E_7}(x, y) = x^3 + xy^3$$

$$W_{E_8}(x, y) = x^3 + y^5$$

AD theories are Non-Lagrangian

- Impossible to write a manifestly Lorentz invariant Lagrangian with electrons as well as monopoles as elementary degrees of freedom
- Therefore AD theories are inherently non-perturbative
- Their Coulomb phase is well understood; much less is known about their conformal phase
- How to compute their partitions function on $S^4, \ S^3 imes S^1$ etc ?

$\mathcal{N} = 1$ Lagrangian for H_0 theory

	q	q'	Φ	M
SU(2)	2	2	Adj	1

$$W = \mathrm{tr}q\Phi q + M\mathrm{tr}\Phi q'q'$$

- The term in red is irrelevant in the UV
- In reality it is dangerously irrelevant and therefore can not be ignored [Maruyoshi-Song`16]
- This theory reproduces the central charges and coulomb branch of ${H}_0$

• Central charges of supersymmetric theories are exact functions of the R-charge [Anselmi-Freedman-Grisaru-Johansen`97]

$$a = \frac{9}{32} \text{tr}R^3 - \frac{3}{32} \text{tr}R$$
$$c = \frac{9}{32} \text{tr}R^3 - \frac{5}{32} \text{tr}R$$

• The scaling dimension of gauge invariant chiral operators can be obtained from their exact IR R-charges

$$\Delta_{\mathcal{O}} = \frac{3}{2} R_{\mathcal{O}}$$

• In $\mathcal{N} = 1$ theories axial U(1) symmetries generically mix with the R-symmetry along the RG flow.

$$R_{IR} = R_{UV} + \sum \alpha_i A_i$$

- The mixing coefficients α_i have to maximize the central charge a[Intriligator-Wecht`03]
- There is an axial U(1) flavor symmetry under which the various fields have charges given by

$$q:\frac{1}{2}, q':\frac{7}{2}, \Phi:-1, M:-6$$

• Naïve a-maximization for the H_0 Lagrangian leads to

 $\Delta_{\mathrm{Tr}\Phi^2} < 1$

 For gauge invariant operators, unitarity in conformal field theory requires

$$\Delta_{\mathcal{O}} \ge 1$$

• The inequality is saturated if and only if \mathcal{O} is a free field

- It must be that $\, Tr \Phi^2$ decoupled (as a free field) from the interacting CFT
- We have to remove this decoupled operator and re-maximize *a* [Kutasov-Parnachev-Sahakyan'03]
- Finally, a gets maximized at a point where R-charge of M is given by

$$R_M = \frac{4}{5}$$

 Charges of other fields can be fixed by requiring IR R-symmetry to be non-anomalous and that each term in the superpotential should have R-charge 2 • At the fixed point of the above Lagrangian we therefore find that

$$a = \frac{43}{120}, c = \frac{11}{30}$$

• In particular, we find that

$$\Delta_M = \frac{3}{2} \times \frac{4}{5} = \frac{6}{5}$$

• Recall, that for H_0

$$\Delta_{\mathcal{O}} = \frac{6}{5}, \ a = \frac{43}{120}, \ c = \frac{11}{30}$$

- The central charges match with that of the H_0 theory
- Gauge singlet M plays the role of the Coulomb branch operator
- Claim: The above Lagrangian experiences SUSY enhancement and flows to the $\,H_0$ theory in the IR

- We can use the above Lagrangian to compute the full $\mathcal{N}=2$ superconformal index (SCI) of H_0
- The Schur and Macdonald limits of the SCI of various AD theories were previously obtained by using 4d/2d correspondence
 [Buican - Nishinaka'15] [Song'15] [Cordova-Shao`15]
- These corresponding limits of the superconformal index computed from the Lagrangian match the above results
- What about other AD theories?

Lagrangians for generalized AD theories

- $\mathcal{N} = 1$ deformation of an $\mathcal{N} = 2$ SCFT
- $\mathcal{N}=2\,$ SCFT : SU(2) gauge theory with 8 fundamental half-hypers ($Q\,$)
- This has an SO(8) flavor symmetry
- Deform this by introducing gauge singlet chiral multiplets (M) in the adjoint representation of SO(8).
- Coupling is through a superpotential W = trMQQ

• Switch on a nilpotent vev for M : $\langle M \rangle = \rho(\sigma^+)$

[Gadde-Maruyoshi-Tachikawa-Yan`13] [PA-Song`13] [PA-Bah-Maruyoshi-Song`14][PA-Intriligator-Song`15]

• ρ is the choice an $\,SU(2)\subset SO(8)$, such that

 $(\mathbf{8})_{SO(8)}
ightarrow (\mathbf{7} \oplus \mathbf{1})_{SU(2)}$

• This is called the principal embedding in math literature

- Integrate out the quarks that get masses
- Decouple the multiplets containing Goldstone bosons
- The effective Lagrangian so obtained flows to the $\,H_0$ theory, after removing the operators that hit the unitarity bound

In general

- $\mathcal{N} = 1$ deformations of the SU(N) gauge theory with 2N fundamental hypers
- This $\mathcal{N} = 2$ SCFT has an SU(2N) flavor symmetry
- Introduce a gauge singlet chiral multiplet $\,M\,$ in the adjoint representation of the flavor symmetry

• Consider the effective theory obtained after giving a nilpotent vev to M

$$\langle M \rangle = \rho(\sigma^+), \ \rho : SU(2) \hookrightarrow SU(2N)$$

- The SU(2) embeddings into Lie Algebras were classified by Dynkin
- For SU(2N), the SU(2) embeddings are in one-one correspondence with integer partitions of 2N
- The choice of integer partition tells us how to decompose the fundamental representation of SU(2N) into irreps of SU(2)

- Principal embedding : $(\mathbf{2N})_{SU(2N)}
 ightarrow (\mathbf{2N})_{SU(2)}$
- The resulting theory flows to an IR fixed point that describes the so called (A_1, A_{2N-1}) type AD theories [Maruyoshi-Song`16]
- What about other SU(2) embedding?

• Other than sporadic occurrences, only one other SU(2) embedding gives AD theory at the fixed point [PA-Maruyoshi-Song`16]

$$(\mathbf{2N})_{SU(2N)}
ightarrow (\mathbf{2N-1}\oplus\mathbf{1})_{SU(2)}$$

• This flows to the (A_1, D_{2N}) type AD theory

- We can also consider similar deformation of the N = 2 SCFT based on Sp(N) gauge theory with (4N+4) half-hypers
- This has an SO(4N+4) flavor symmetry
- The deformations to be studied are therefore labelled by SU(2) embeddings of SO(4N+4)

- Principal embedding : $(4N + 4)_{SO(4N+4)}
 ightarrow (4N + 3 \oplus 1)_{SU(2)}$
- Gives an $\mathcal{N} = 1$ Lagrangian that flows to the (A_1, A_{2N}) type AD theories [Maruyoshi-Song`16]
- When $\rho: (\mathbf{4N} + \mathbf{4})_{SO(4N+4)} \to (\mathbf{4N} + \mathbf{1} \oplus_{i=1}^{3} \mathbf{1})_{SU(2)}$
- The resulting Lagrangian describes (A_1, D_{2N+1}) AD theories [PA-Maruyoshi-Song`16]
- Other embeddings do not give anything interesting other than sporadically

Deformations of SU(N), Nf =2N

- Here we only list deformations that give rational central charges
- Other deformations give irrational central charges. These are necessarily fixed points with $\mathcal{N} = 1$ SUSY

SU(2N)	$\rho:SU(2)\hookrightarrow SU(2N)$	a	С	4d $\mathcal{N} = 2$ SUSY
	$[1^4]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 2$, $N_f = 4$
SU(4)	[3,1]	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
	[4]	$\frac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, A_3) AD th.
	$[1^{6}]$	$\frac{29}{12}$	$\frac{17}{6}$	Yes; $N_c = 3, N_f = 6$
SU(6)	[5, 1]	$\frac{13}{12}$	$\frac{7}{6}$	Yes; (A_1, D_6) AD th.
	[6]	$\frac{11}{12}$	$\frac{23}{24}$	Yes; (A_1, A_5) AD th.
	$[1^8]$	$\frac{107}{24}$	$\frac{31}{6}$	Yes; $N_c = 4, \ N_f = 8$
	$[2, 1^6]$	$\frac{73801}{17424}$	$\frac{43121}{8712}$?
SU(8)	[4,4]	$\frac{9097}{3888}$	$\frac{5129}{1944}$?
	[7,1]	$\frac{19}{12}$	$\frac{5}{3}$	Yes; (A_1, D_8) AD th.
	[8]	$\frac{167}{120}$	$\frac{43}{30}$	Yes; (A_1, A_7) AD th.
	$[1^{10}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 5, \ N_f = 10$
	$[5, 1^5]$	$\frac{5553943}{1383123}$	$\frac{6257387}{1383123}$?
SU(10)	$[5, 3, 1^2]$	$\frac{92540867}{24401712}$	$rac{52091009}{12200856}$?
	[9,1]	$\frac{25}{12}$	$\frac{13}{6}$	Yes; (A_1, D_{10}) AD th.
	[10]	$\frac{15}{8}$	$\frac{23}{12}$	Yes; (A_1, A_9) AD th.
SU(12)	$[1^{12}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 6, \ N_f = 12$
	$[4^3]$	$\frac{754501}{138384}$	$\frac{424727}{69192}$?
	[11, 1]	$\frac{31}{12}$	$\frac{8}{3}$	Yes; (A_1, D_{12}) AD th.
	[12]	$\frac{397}{168}$	$\frac{101}{42}$	Yes; (A_1, A_{11}) AD th.

SU(2N)	$\rho:SU(2)\hookrightarrow SU(2N)$	a	С	4d $\mathcal{N} = 2$ SUSY
	$[1^4]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 2, \ N_f = 4$
SU(4)	[3,1]	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
	[4]	$\frac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, A_3) AD th.
	$[1^{6}]$	$\frac{29}{12}$	$\frac{17}{6}$	Yes; $N_c = 3, N_f = 6$
SU(6)	[5, 1]	$\frac{13}{12}$	$\frac{7}{6}$	Yes; (A_1, D_6) AD th.
	[6]	$\frac{11}{12}$	$\frac{23}{24}$	Yes; (A_1, A_5) AD th.
	$[1^8]$	$\frac{107}{24}$	$\frac{31}{6}$	Yes; $N_c = 4, \ N_f = 8$
	$[2,1^6]$	$\frac{73801}{17424}$	$\frac{43121}{8712}$?
SU(8)	[4,4]	$\frac{9097}{3888}$	$\frac{5129}{1944}$?
	[7,1]	$\frac{19}{12}$	$\frac{5}{3}$	Yes; (A_1, D_8) AD th.
	[8]	$\frac{167}{120}$	$\frac{43}{30}$	Yes; (A_1, A_7) AD th.
SU(10)	$[1^{10}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 5, \ N_f = 10$
	$[5, 1^5]$	$\frac{5553943}{1383123}$	$\frac{6257387}{1383123}$?
	$[5, 3, 1^2]$	$\frac{92540867}{24401712}$	$\frac{52091009}{12200856}$?
	[9,1]	$\frac{25}{12}$	$\frac{13}{6}$	Yes; (A_1, D_{10}) AD th.
	[10]	$\frac{15}{8}$	$\frac{23}{12}$	Yes; (A_1, A_9) AD th.
SU(12) -	$[1^{12}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 6, N_f = 12$
	$[4^3]$	$\frac{754501}{138384}$	$\frac{424727}{69192}$?
	[11, 1]	$\frac{31}{12}$	<u>8</u> 3	Yes; (A_1, D_{12}) AD th.
	[12]	$\frac{397}{168}$	$\frac{101}{42}$	Yes; (A_1, A_{11}) AD th.

SU(2N)	$\rho:SU(2)\hookrightarrow SU(2N)$	a	С	4d $\mathcal{N} = 2$ SUSY
SU(4)	$[1^4]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 2$, $N_f = 4$
	[3,1]	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
	[4]	$\frac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, A_3) AD th.
	$[1^6]$	$\frac{29}{12}$	$\frac{17}{6}$	Yes; $N_c = 3, \ N_f = 6$
SU(6)	[5,1]	$\frac{13}{12}$	$\frac{7}{6}$	Yes; (A_1, D_6) AD th.
	[6]	$\frac{11}{12}$	$\frac{23}{24}$	Yes; (A_1, A_5) AD th.
	$[1^8]$	$\frac{107}{24}$	$\frac{31}{6}$	Yes; $N_c = 4, \ N_f = 8$
	$[2,1^6]$	$\frac{73801}{17424}$	$\frac{43121}{8712}$?
SU(8)	[4,4]	$\frac{9097}{3888}$	$\frac{5129}{1944}$?
	[7,1]	$\frac{19}{12}$	$\frac{5}{3}$	Yes; (A_1, D_8) AD th.
	[8]	$\frac{167}{120}$	$\frac{43}{30}$	Yes; (A_1, A_7) AD th.
SU(10)	$[1^{10}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 5, \ N_f = 10$
	$[5, 1^5]$	$\frac{5553943}{1383123}$	$\frac{6257387}{1383123}$?
	$[5, 3, 1^2]$	$\frac{92540867}{24401712}$	$\frac{52091009}{12200856}$?
	[9,1]	$\frac{25}{12}$	$\frac{13}{6}$	Yes; (A_1, D_{10}) AD th.
	[10]	$\frac{15}{8}$	$\frac{23}{12}$	Yes; (A_1, A_9) AD th.
SU(12) -	$[1^{12}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 6, \ N_f = 12$
	$[4^3]$	$\frac{754501}{138384}$	$\frac{424727}{69192}$?
	[11, 1]	$\frac{31}{12}$	$\frac{8}{3}$	Yes; (A_1, D_{12}) AD th.
	[12]	$\frac{397}{168}$	$\frac{101}{42}$	Yes; (A_1, A_{11}) AD th.

SU(2N)	$\rho:SU(2)\hookrightarrow SU(2N)$	a	С	4d $\mathcal{N} = 2$ SUSY
SU(4)	$[1^4]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 2, \ N_f = 4$
	[3,1]	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
	[4]	$\frac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, A_3) AD th.
	$[1^{6}]$	$\frac{29}{12}$	$\frac{17}{6}$	Yes; $N_c = 3, N_f = 6$
SU(6)	[5,1]	$\frac{13}{12}$	$\frac{7}{6}$	Yes; (A_1, D_6) AD th.
	[6]	$\frac{11}{12}$	$\frac{23}{24}$	Yes; (A_1, A_5) AD th.
	$[1^8]$	$\frac{107}{24}$	$\frac{31}{6}$	Yes; $N_c = 4, \ N_f = 8$
	$[2,1^6]$	$\frac{73801}{17424}$	$\frac{43121}{8712}$?
SU(8)	[4,4]	$\frac{9097}{3888}$	$\frac{5129}{1944}$?
	[7,1]	$\frac{19}{12}$	5 3	Yes; (A_1, D_8) AD th.
	[8]	$\frac{167}{120}$	$\frac{43}{30}$	Yes; (A_1, A_7) AD th.
	$[1^{10}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 5, N_f = 10$
SU(10)	$[5, 1^5]$	$\frac{5553943}{1383123}$	$rac{6257387}{1383123}$?
	$[5,3,1^2]$	$\frac{92540867}{24401712}$	$rac{52091009}{12200856}$?
	[9,1]	$\frac{25}{12}$	$\frac{13}{6}$	Yes; (A_1, D_{10}) AD th.
	[10]	$\frac{15}{8}$	$\frac{23}{12}$	Yes; (A_1, A_9) AD th.
SU(12)	$[1^{12}]$	$\frac{247}{24}$	$\frac{71}{6}$	Yes; $N_c = 6, \ N_f = 12$
	$[4^3]$	$\frac{754501}{138384}$	$\frac{424727}{69192}$?
	[11,1]	$\frac{31}{12}$	$\frac{8}{3}$	Yes; (A_1, D_{12}) AD th.
	[12]	$\frac{397}{168}$	$\frac{101}{42}$	Yes; (A_1, A_{11}) AD th.

Deformations of USp(2N), Nf =4N+4 (half-hypers)

 Here we only list deformations that give rational central charges

• Other deformations give irrational central charges. These are necessarily fixed points with $\mathcal{N} = 1$ SUSY

SO(4N+4)	$\rho:SU(2) \hookrightarrow SO(4N+4)$	a	С	4d $\mathcal{N} = 2$ SUSY
	$[1^8]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 1, \ N_f = 8$
	$[3^2,1^2]$	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
SO(8)	$[4,4] \equiv [5,1^3]$	$rac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, D_3) AD th.
	[5,3]	$\frac{6349}{13872}$	$\frac{3523}{6936}$?
	[7,1]	$\frac{43}{120}$	$\frac{11}{30}$	Yes; (A_1, A_2) AD th.
SO(12)	$[1^{12}]$	$\frac{37}{12}$	$\frac{11}{3}$	Yes; $N_c = 2, \ N_f = 12$
	$[4^2, 2^2]$	$\frac{105027}{59536}$	$\frac{61145}{29768}$?
	$[9,1^3]$	$\frac{19}{20}$		Yes; (A_1, D_5) AD th.
	[11,1]	$\frac{67}{84}$	$\frac{17}{21}$	Yes; (A_1, A_4) AD th.
SO(16)	$[1^{16}]$	$\frac{51}{8}$	$\frac{15}{2}$	Yes; $N_c = 3, N_f = 16$
	$[5, 1^{11}]$	$\frac{109031}{27744}$	$\frac{123889}{27744}$?
	$[5, 3^3, 1^2]$	$\frac{18250741}{5195568}$	$\frac{10440877}{2597784}$?
	$[13,1^3]$	$\frac{81}{56}$	$\frac{3}{2}$	Yes; (A_1, D_7) AD th.
	[15,1]	$\frac{91}{72}$	$\frac{23}{18}$	Yes; (A_1, A_6) AD th.
SO(4N+4)	$\rho:SU(2) \hookrightarrow SO(4N+4)$	a	С	4d $\mathcal{N} = 2$ SUSY
----------	---------------------------------------	----------------------------	----------------------------	----------------------------
	$[1^8]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 1, \ N_f = 8$
	$[3^2,1^2]$	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
SO(8)	$[4,4] \equiv [5,1^3]$	$\frac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, D_3) AD th.
	[5,3]	$\frac{6349}{13872}$	$\frac{3523}{6936}$?
	[7,1]	$\frac{43}{120}$	$\frac{11}{30}$	Yes; (A_1, A_2) AD th.
	$[1^{12}]$	$\frac{37}{12}$	$\frac{11}{3}$	Yes; $N_c = 2, \ N_f = 12$
SO(12)	$[4^2, 2^2]$	$\frac{105027}{59536}$	$\frac{61145}{29768}$?
	$[9,1^3]$	$\frac{19}{20}$		Yes; (A_1, D_5) AD th.
	[11,1]	$\frac{67}{84}$	$\frac{17}{21}$	Yes; (A_1, A_4) AD th.
SO(16)	$[1^{16}]$	$\frac{51}{8}$	$\frac{15}{2}$	Yes; $N_c = 3, N_f = 16$
	$[5, 1^{11}]$	$\frac{109031}{27744}$	$\frac{123889}{27744}$?
	$[5, 3^3, 1^2]$	$\frac{18250741}{5195568}$	$\frac{10440877}{2597784}$?
	$[13, 1^3]$	$\frac{81}{56}$	$\frac{3}{2}$	Yes; (A_1, D_7) AD th.
	[15,1]	$\frac{91}{72}$	$\frac{23}{18}$	Yes; (A_1, A_6) AD th.

SO(4N+4)	$\rho:SU(2) \hookrightarrow SO(4N+4)$	a	С	4d $\mathcal{N} = 2$ SUSY
	$[1^8]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 1, \ N_f = 8$
	$[3^2,1^2]$	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
SO(8)	$[4,4] \equiv [5,1^3]$	$rac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, D_3) AD th.
	[5,3]	$\frac{6349}{13872}$	$\frac{3523}{6936}$?
	[7,1]	$\frac{43}{120}$	$\frac{11}{30}$	Yes; (A_1, A_2) AD th.
	$[1^{12}]$	$\frac{37}{12}$	$\frac{11}{3}$	Yes; $N_c = 2, \ N_f = 12$
SO(12)	$[4^2, 2^2]$	$\frac{105027}{59536}$	$\frac{61145}{29768}$?
	$[9,1^3]$	$\frac{19}{20}$		Yes; (A_1, D_5) AD th.
	[11,1]	$\frac{67}{84}$	$\frac{17}{21}$	Yes; (A_1, A_4) AD th.
SO(16)	$[1^{16}]$	$\frac{51}{8}$	$\frac{15}{2}$	Yes; $N_c = 3, N_f = 16$
	$[5, 1^{11}]$	$\frac{109031}{27744}$	$\frac{123889}{27744}$?
	$[5, 3^3, 1^2]$	$\frac{18250741}{5195568}$	$\frac{10440877}{2597784}$?
	$[13, 1^3]$	$\frac{81}{56}$	$\frac{3}{2}$	Yes; (A_1, D_7) AD th.
	[15,1]	$\frac{91}{72}$	$\frac{23}{18}$	Yes; (A_1, A_6) AD th.

SO(4N+4)	$\rho:SU(2) \hookrightarrow SO(4N+4)$	a	С	4d $\mathcal{N} = 2$ SUSY
	$[1^8]$	$\frac{23}{24}$	$\frac{7}{6}$	Yes; $N_c = 1, \ N_f = 8$
	$[3^2,1^2]$	$\frac{7}{12}$	$\frac{2}{3}$	Yes; (A_1, D_4) AD th.
SO(8)	$[4,4] \equiv [5,1^3]$	$\frac{11}{24}$	$\frac{1}{2}$	Yes; (A_1, D_3) AD th.
	[5,3]	$\frac{6349}{13872}$	$\frac{3523}{6936}$?
	[7,1]	$\frac{43}{120}$	$\frac{11}{30}$	Yes; (A_1, A_2) AD th.
SO(12)	$[1^{12}]$	$\frac{37}{12}$	$\frac{11}{3}$	Yes; $N_c = 2, N_f = 12$
	$[4^2,2^2]$	$\frac{105027}{59536}$	$\frac{61145}{29768}$?
	$[9,1^3]$	$\frac{19}{20}$		Yes; (A_1, D_5) AD th.
	[11,1]	$\frac{67}{84}$	$\frac{17}{21}$	Yes; (A_1, A_4) AD th.
SO(16)	$[1^{16}]$	$\frac{51}{8}$	$\frac{15}{2}$	Yes; $N_c = 3, N_f = 16$
	$[5, 1^{11}]$	$\frac{109031}{27744}$	$\frac{123889}{27744}$?
	$[5, 3^3, 1^2]$	$\frac{18250741}{5195568}$	$\frac{10440877}{2597784}$?
	$[13, 1^3]$	$\frac{81}{56}$	$\frac{3}{2}$	Yes; (A_1, D_7) AD th.
	[15,1]	$\frac{91}{72}$	$\frac{23}{18}$	Yes; (A_1, A_6) AD th.

Deformations of SO(N), Nf = 2N-4 (half-hypers)

- No organizing principal behind the cases with rational central charges
- No correspondence with $\mathcal{N} = 2$ SCFTs

Sp(N-2)	$\rho: SU(2) \hookrightarrow Sp(N-2)$	a	С	$4d \mathcal{N} = 2 \text{ SUSY}$
Sp(2) -	$[1^4]$	$\frac{19}{12}$	$\frac{5}{3}$	Yes; $N_c = 4$, $N_f = 4$
$\mathcal{D}p(2)$	$[2, 1^2]$	$\frac{10111}{7056}$	$\frac{5381}{3528}$?
Sp(3)	$[1^{6}]$	$\frac{65}{24}$	$\frac{35}{12}$	Yes; $N_c = 5, \ N_f = 6$
$\mathcal{D}p(0)$	$[4, 1^2]$	$\frac{325}{192}$	$\frac{341}{192}$?
Sp(4)	$[1^8]$	$\frac{33}{8}$	$\frac{9}{2}$	Yes; $N_c = 6, \ N_f = 8$
Sp(5)	$[1^{10}]$	$\frac{35}{6}$	$\frac{77}{12}$	Yes; $N_c = 7, \ N_f = 10$
Sp(6)	$[1^{12}]$	$\frac{47}{6}$	$\frac{26}{3}$	Yes; $N_c = 8, N_f = 12$
	$[2^2, 1^8]$	$\frac{589093}{80688}$	$\tfrac{329335}{40344}$?
	$[4, 1^8]$	$\frac{13065}{2312}$	$\frac{7085}{1156}$?
Sp(7)	$[1^{14}]$	$\frac{81}{8}$	$\frac{45}{4}$	Yes; $N_c = 9, N_f = 14$
	$[5^2, 1^4]$	$rac{59094550}{10978707}$	$\frac{129141025}{21957414}$?
	$[6, 3^2, 2]$	$\frac{375975613}{72745944}$	$\frac{406255085}{72745944}$?
Sp(8) -	$[1^{16}]$	$\frac{305}{24}$	$\frac{85}{6}$	Yes; $N_c = 10, \ N_f = 16$
	$[4^2, 2^2, 1^4]$	$\frac{389}{48}$	$\frac{53}{6}$?
	$[5^2, 3^2]$	$\frac{30593927}{4642608}$	$\frac{16735805}{2321304}$?
	$[5^2, 4, 1^2]$	$\frac{28118905}{4348848}$	$\frac{3828919}{543606}$?

• The deformations of $\mathcal{N}=2$ gauge theories based on SU(N) and Sp(N) gauge groups, together give all the AD theories of type (A_1, A_n) and (A_1, D_n)

- However, the AD theories have a much richer classification
- To begin with there are AD theories of type (A_k, A_n) and (A_k, D_n)
- Therefore an immediate question is to look for Lagrangians for these more general classes of AD theories

- A partial solution was reported in **arXiv:1707.04751** (in collaboration with A. Sciarappa and J. Song)
- Also see related work (arXiv:1707.05113) by Benvenuti and Giacomelli
- Consider $\mathcal{N} = 1$ preserving "principal nilpotent deformations" of the following $\mathcal{N} = 2$ quivers

$$(N) - (2N) - \dots - (mN - N) - [mN]$$

- These flow to (A_{m-1}, A_{Nm-1}) type AD theories
- Deformations corresponding to other SU(2) embeddings of SU(mN) do not give anything interesting

• (A_{2m-1}, D_{2Nm+1}) type AD theories can be obtained from principal deformation of

 $[SO(2)] - Sp(N) - SO(4N+2) - Sp(3N) - \dots - Sp(2mN-N) - [SO(4mN+2)]$

• $(A_{2m}, D_{m(N-2)+\frac{N}{2}})$ type AD theory can be obtained from principal deformations of

$$SO(N) - Sp(N-2) - SO(3N-4) - Sp(2N-4) - \dots - Sp(mN-2m) - [SO(2mN+N-4m)]$$

In addition to the above quivers, we also found that

$$1 - (k+1) - (2k+1) - \dots - (mk - k + 1) - mk + 1 \rightsquigarrow (I_{m,mk}, S)$$

and

$$Sp(N) - SO(4N+4) - Sp(3N+2) - SO(8N+8) - \dots - Sp((m-1)(2N+2) + N) - SO(4m(N+1)) \longrightarrow D_{m(2N+2)}^{m(2N+2)}[m]$$

 Quivers with USp(n) flavor symmetries usually do not give rational central charges

Deformations of general $\mathcal{N}=2$ SCFTs

- We can always consider $\mathcal{N} = 1$ preserving deformations of any $\mathcal{N} = 2$ SCFTs with global symmetry \mathcal{G}
- Couple to ${\cal G}$ Adjoint chiral mutliplet M via $\,W={
 m Tr}\mu M$
- μ is the scalar in the current multiplet for ${\cal G}$
- Turn on a nilpotent vev for M

Deformations of general $\mathcal{N}=2~\mathrm{SCFTs}$

• Here we only list deformations that give rational central charges

\mathcal{T}_{UV}	ρ	Residual Flavor	$\mathcal{T}_{IR}[\mathcal{T}_{UV}, ho]$
$(I_{N,k},F)$	[N]	Ø	(A_{N-1}, A_{N+k-1}) theory
$(I_{N,-N+2},F)$	[N-1,1]	U(1)	(A_1, D_N) theory
	E_6	Ø	H_0
E_6 SCFT	D_5	SU(2)	H_1
	D_4	SU(3)	H_2

 H_2 is identical to (A_1, D_4)

• Interesting Duality:

$$Sp(n) \text{ SQCD with } N_f = 2n+2 \quad \leftrightarrow \quad (I_{2n+1,-2n+1},F) \text{ AD theory}$$

$$\rho = [4n+1,1^3] \searrow \qquad \swarrow \rho = [2n,1]$$

$$(A_1, D_{2n+1}) \text{ AD theory}$$

[PA-Maruyoshi-Song`16]

\mathcal{T}_{UV}	ho	Residual Flavor	$\mathcal{T}_{IR}[\mathcal{T}_{UV}, ho]$
$E_7 \ \mathrm{SCFT}$	E_7	Ø	H_0
	E_6	SU(2)	H_1
	$A_2 + 3A_1$	G_2	$a = \frac{12163}{8214}, \ c = \frac{121465}{65712}$
	E_8	Ø	H_0
E_8 SCFT	$E_{7}(a_{4})$	SU(2)	$a = \frac{1691}{1452}, \ c = \frac{541}{363}$
	$E_{7}(a_{5})$	SU(2)	$a = \frac{445}{324}, \ c = \frac{281}{162}$
	$A_3 + A_1$	$SU(2) \times SO(7)$	$a = \frac{139189}{60552}, \ c = \frac{91127}{30276}$
	A_3	SO(11)	$a = \frac{497803}{221952}, \ c = \frac{635435}{221952}$

[PA-Maruyoshi-Song (unpublished)]

 Deformations of theories in Bhardwaj-Tachikawa : Only sporadic occurrence of deformations with rational central charges [PA-Sciarappa-Song (unpublished)]

Summary

- Non-Lagrangianity of AD theories poses a major hurdle in our understanding of them
- We have been successful in constructing $\mathcal{N} = 1$ Lagrangians whose IR fixed points describe AD theories
- Can use these to compute RG protected quantities such as the superconformal index

- These lagrangians are interesting in their own regard.
- Rare examples of 4d QFTs with accidental SUSY
- The mechanism of SUSY enhancement is still not understood. This will be an interesting direction to pursue
- It will also be interesting to find string theory realization of the above Lagrangians and thereby understand the geometric settings that lead to theories with accidental SUSY

• These Lagrangians imply interesting integral identities

For e.g. the Schur limit of the SCI of the H_0 theory can be written as

[Buican - Nishinaka'15] [Song'15] [Cordova-Shao`15] [Song-Xie-Yan`17]

$$I_{Schur,H_0} = \frac{1}{(q^2;q^5)_{\infty}(q^3;q^5)_{\infty}}$$

The Lagrangian description suggests that the Schur index should be

$$I_{Schur,H_0} = \lim_{t \to q} \kappa \frac{\Gamma((\frac{pq}{t})^{\frac{6}{5}})}{\Gamma((\frac{pq}{t})^{\frac{2}{5}})} \oint_C \frac{dz}{2\pi i z} \frac{\Gamma(z^{\pm}(pq)^{\frac{2}{5}}t^{\frac{1}{10}})\Gamma(z^{\pm}(pq)^{-\frac{1}{5}}t^{\frac{7}{10}})\Gamma(z^{\pm 2,0}(\frac{pq}{t})^{\frac{1}{5}})}{2\Gamma(z^{\pm 2})}$$

THANK YOU!

Superconformal Index

• The $\mathcal{N} = 1$ superconformal index is defined as

$$\mathcal{I}_{\mathcal{N}=1} = \operatorname{tr}(-1)^F p^{j_1 + j_2 + \frac{R}{2}} q^{j_2 - j_1 + \frac{R}{2}} \prod_i a_i^{f_i}$$

- generically, a function of two fugacities p and q
- The $\mathcal{N}=2$ superconformal index is a function of 3 fugacities p , q and t

$$\mathcal{I}_{\mathcal{N}=2} = \operatorname{tr}(-1)^F p^{j_1 + j_2 + \frac{r}{2}} q^{j_2 - j_1 + \frac{r}{2}} t^{R - \frac{r}{2}} \prod_i a_i^{f_i}$$

• Recall, that all our Lagrangians necessarily have a U(1) axial symmetry

• A linear combination of this with the $\mathcal{N} = 1$ R-symmetry becomes the cartan of the SU(2) R-symmetry of the $\mathcal{N} = 2$ algebra

• A second independent linear combination becomes the $U(1)_r$

- Call the fugacity for axial U(1) as ξ_{\parallel}
- $\mathcal{N} = 1$ superconformal index can be transformed into $\mathcal{N} = 2$ if

$$\xi = (t(pq)^{-\frac{2}{3}})^{\beta}$$

• β can be fixed by comparing the axial charge of the gauge singlets in the Lagrangian, to the $U(1)_r$ charge of the corresponding Coulomb branch operator in the AD theory

$$\mathcal{F}_{axial} = \frac{1}{\beta} (R - \frac{r}{2})$$