HOLOGRAPHIC RG FLOWS FOR FOUR-DIMENSIONAL N=2 SCFTs

Davide Cassani

INFN Padova

Based on: 1804.03276 with Nikolay Bobev & Hagen Triendl

Supersymmetric QFT in the Non-Perturbative Regime Galileo Galilei Institute — 10 May 2018

Introduction

SCFTs with 16 supercharges appeared several times (and will still appear) in this conference.

Many different techniques :

- Iocalization Nekrasov, Pestun, ...
- Gaiotto construction, AGT
- Indices
- Bootstrap

 Holography. AdS₅: Maldacena, Nunez '00 Maldacena, Gaiotto '09

What can holography say about d=4, N=2 SCFTs ?

Introduction

What can holography say about d=4, N=2 SCFTs ?

- should study string or M theory AdS₅ x M solutions with 16 supercharges and their deformations
- if there is a consistent truncation, can also use d=5 half-maximal supergravity

We take a different approach :

we work in d=5 sugra without committing to any specific higher-dimensional solution

What can d=5 supergravity say about d=4, N=2 SCFTs ?

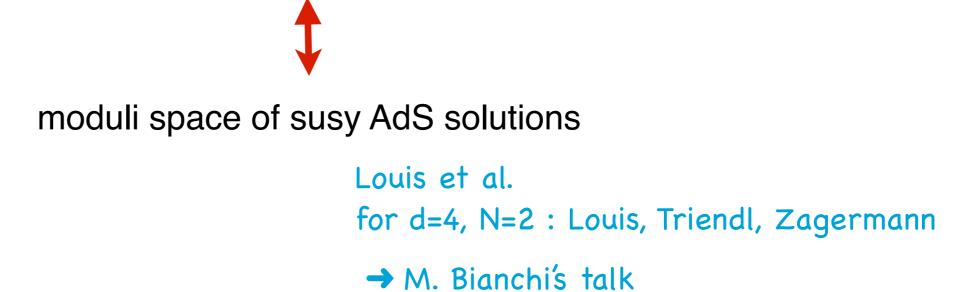
drawback: less control on the duality

advantage: general results exploiting constrained structure of half-maximal sugra

Introduction

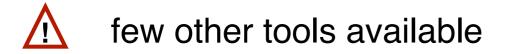
Recently this approach has been taken to study :

marginal deformations of SCFTs in various dimensions



We will instead focus on relevant deformations

What can d=5 supergravity say about susy RG flows of d=4, N=2 SCFTs ?



Outline

- Half-maximal supergravity in 5d
- Holographic RG flows
- Holographic flows between N=2 SCFTs
- Holographic flows between N=2 and N=1 SCFTs
- Discussion & open questions

Half-Maximal Supergravity in 5D

Ungauged theory specified by number of vector multiplets n

Global symmetry $G_{\text{global}} = \text{SO}(1,1) \times \text{SO}(5,\mathfrak{n})$

Bosonic fields:

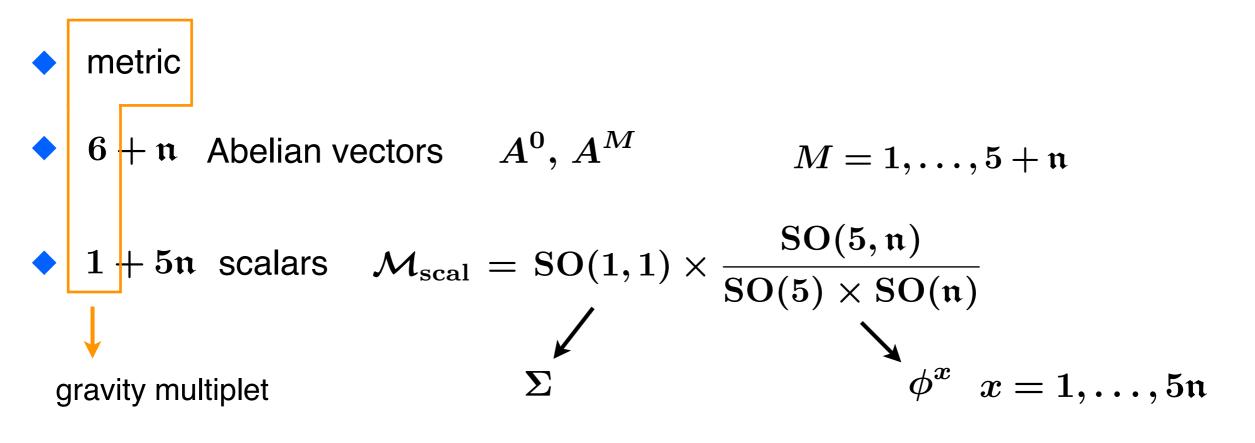
metric

6+n Abelian vectors A⁰, A^M M = 1,...,5+n
 1+5n scalars M_{scal} = SO(1,1) × SO(5,n)/SO(5) × SO(n)

Half-Maximal Supergravity in 5D

Ungauged theory specified by number of vector multiplets n

Global symmetry $G_{\text{global}} = \text{SO}(1,1) \times \text{SO}(5,\mathfrak{n})$



 $\mathcal{V} = e^{\phi^x t_x}$ coset representative

5D Half-Maximal Supergravity

● Gauged theory specified by embedding tensor ⊖

deWit, Samtleben, Trigiante '04 Schon, Weidner '06

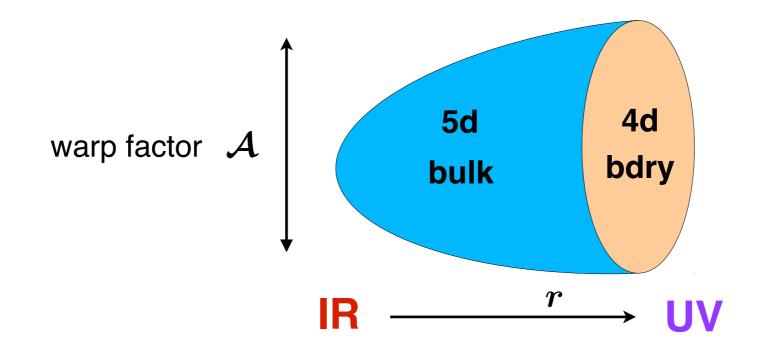
$$G_{\text{gauge}} \xrightarrow{\Theta} G_{\text{global}} = \text{SO}(1,1) \times \text{SO}(5,\mathfrak{n})$$

$$\Theta = \{f^{[MNP]}, \xi^{[MN]}, \xi^{N}\}$$
quadratic constraints: $f_{R[MN}f_{PQ]}{}^{R} = 0$, $\xi_{M}{}^{Q}f_{QNP} = 0$
(for $\xi^{N} = 0$)
(for $\xi^{N} = 0$)
covariant derivative $D = \nabla - A^{M}f_{M}{}^{NP}t_{NP} - A^{0}\xi^{NP}t_{NP}$
structure constants for assigns charges under A^{0}
subgroup of SO(5,n)

charged non-adjoint vectors are eaten up by auxiliary tensor fields

→ theory **fully** specified, including susy variations and scalar potential

Holographic RG flows



Holographic RG flows

vanishing of fermionic susy variations solution controlled by a superpotential W

function of scalars & emb. tensor its form depends on preserved susy

Flow equations
$$egin{array}{c} \mathcal{A}' &= W \ \Sigma' &= -\Sigma^2 \partial_\Sigma W \ \phi^{x\prime} &= -3\,g^{xy}\partial_y W \end{array}$$

Scalar potential
$$V = rac{9}{2}g^{xy}\partial_x W\partial_y W + rac{3}{2}\Sigma^2(\partial_\Sigma W)^2 - 6W^2$$

AdS fixed point: $\partial_{\Sigma} W = \partial_x W = 0$ $W_* = rac{1}{
ho}$

additional constraints; equations above true after these are satisfied

Conditions for AdS₅ vacuum with half-maximal susy

due to homogeneity, we can assume this is at the origin of scalar manifold



Conditions for AdS₅ vacuum with half-maximal susy

Louis, Triendl, Zagermann '15

- due to homogeneity, we can assume this is at the origin of scalar manifold
- embedding tensor $\xi^N = 0$ \rightarrow forget from now on

$$f^{123} = g$$
, $\xi^{45} = -\frac{1}{\sqrt{2}}g$
SO(3)

other non-vanishing components: $f^{1AB}, f^{2AB}, f^{3AB}, f^{ABC}, \xi^{AB}$

$$A, B, C = 6, 7, \dots, n + 5$$

$$\downarrow$$
arbitrary

Conditions for AdS₅ vacuum with half-maximal susy

Louis, Triendl, Zagermann '15

- due to homogeneity, we can assume this is at the origin of scalar manifold
- embedding tensor $\xi^N = 0$ \rightarrow forget from now on

$$f^{123} = g$$
, $\xi^{45} = -\frac{1}{\sqrt{2}}g$
SO(3)

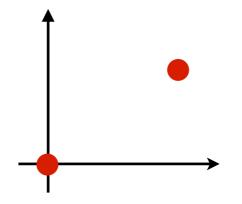
other non-vanishing components: $f^{1AB}, f^{2AB}, f^{3AB}, f^{ABC}, \xi^{AB}$

$$A,B,C=6,7,\ldots,\mathfrak{n}+5$$
 \downarrow
 $G_{ ext{gauge}}=\mathrm{U}(1) imes H_{ ext{nc}} imes H_F\ \subset\ \mathrm{SO}(5,\mathfrak{n})$

 $H_{\rm nc}$ non-compact, admits SO(3) as maximal compact subgroup $H_F \subset SO(\mathfrak{n})$ compact

In the vacuum broken to $U(1) \times SO(3) \times H_F$

R-symmetry of dual SCFT flavor symmetry

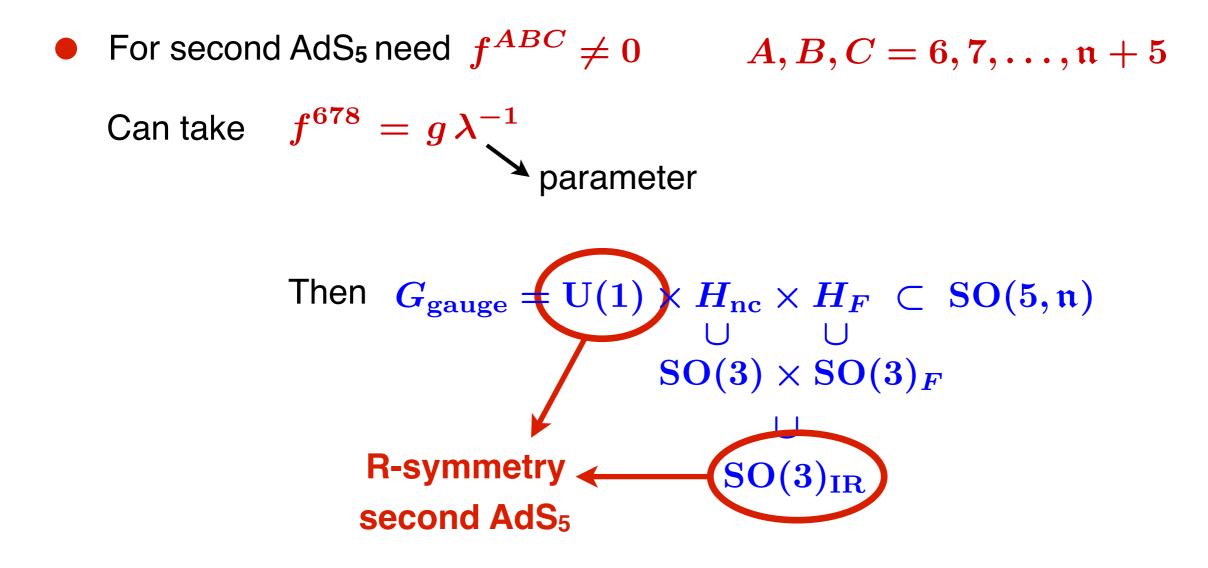


$$f^{123}=g\;,~~\xi^{45}=-rac{1}{\sqrt{2}}g$$

• If $H_F \subset SO(\mathfrak{n})$ trivial (no flavor symmetries), then AdS₅ with 16 supercharges is **unique** (up to moduli) \rightarrow no holographic flows connecting two $\mathcal{N} = 2$ SCFTs

$$f^{123}=g\;,~~\xi^{45}=-rac{1}{\sqrt{2}}g$$

• If $H_F \subset SO(\mathfrak{n})$ trivial (no flavor symmetries), then AdS₅ with 16 supercharges is **unique** (up to moduli) \rightarrow no holographic flows connecting two $\mathcal{N} = 2$ SCFTs



Ansatz	$1,\ldots,5$					6, 7, 8				
	$(\cosh\phi)$	0	0	0	0	$-\sinh\phi$	0	0)	
${\cal V} = e^{\phi(t_{16}+t_{27}+t_{38})} =$	0	$\cosh\phi$	0	0	0	0	$-\sinh\phi$	0)	
	0	0	$\cosh\phi$	0	0	0	0	$-\sinh\phi$		
	0	0	0	1	0	0	0	0		
	0	0	0	0	1	0	0	0		
	$-\sinh\phi$	0	0	0	0	$\cosh\phi$	0	0		•
	0	$-\sinh\phi$	0	0	0	0	$\cosh\phi$	0		
	0	0	$-\sinh\phi$	0	0	0	0	$\cosh\phi$		
		:	:	:	:	:	÷	•	·)	

Non-trivial solution to susy conditions:

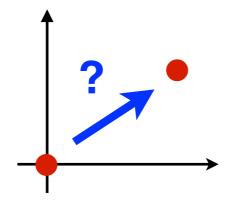
$$\tanh \phi = \lambda \qquad \Rightarrow \qquad |\lambda| < 1$$
$$\Sigma = (1 - \lambda^2)^{-1/6}$$

• ratio of cosmological constants
$$rac{V_{
m IR}}{V_{
m UV}} = \left(1-\lambda^2
ight)^{-2/3}$$

• symmetry of UV vacuum $U(1) imes SO(3) imes H_F$

of IR vacuum $U(1) \times SO(3)_{IR} \times Comm[SO(3)_F, H_F]$

Flows between N=2 SCFTs



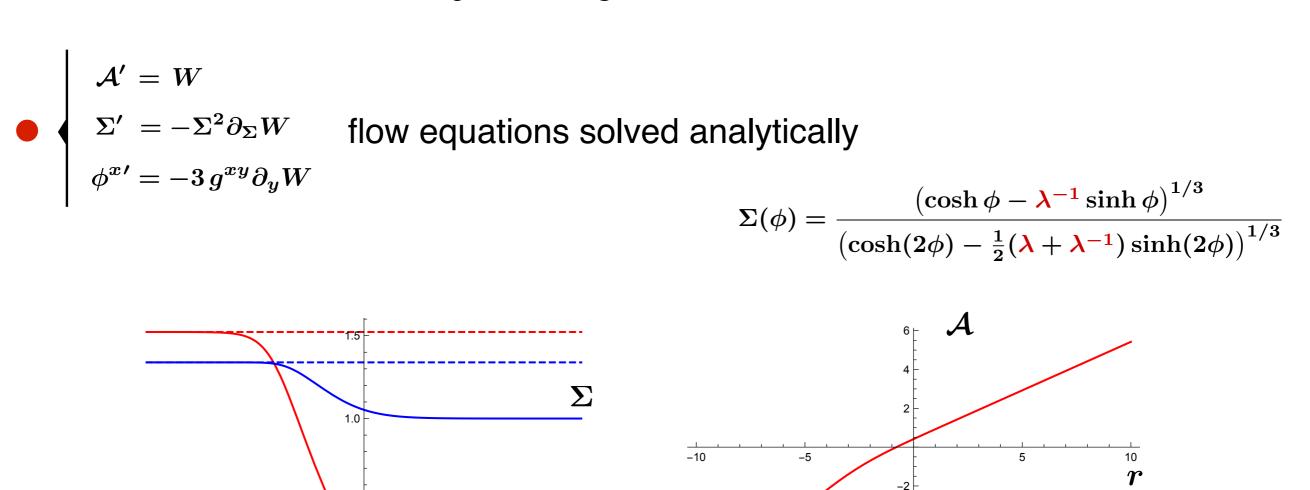
Flows between N=2 SCFTs

• superpotential $W = \frac{1}{6}g\Sigma^2 + \frac{1}{3}g\Sigma^{-1}(\cosh^3\phi - \lambda^{-1}\sinh^3\phi)$

Φ

UV

5



IR

UV

Flow preserves 8 Poincaré supercharges

0.5

-10

IR

-5

Flows between N=2 SCFTs

Close to UV vacuum

$$\phi pprox v_{\phi} \, e^{-2r/\ell_{
m UV}} \,, \qquad \Sigma pprox 1 + v_{\Sigma} \, e^{-2r/\ell_{
m UV}} \,, \qquad \mathcal{A} pprox rac{r}{\ell_{
m UV}} \,, \qquad \ell_{
m UV} = rac{2}{g}$$

Flow triggered by vevs of operators with $\Delta=2$ (in IR: $\Delta_{\Sigma}=$

(in IR:
$$\Delta_{\Sigma}=2\,,\;\Delta_{\phi}=6$$
)

$$v_{\Sigma}\,=\,rac{oldsymbol{\lambda}}{oldsymbol{3}}\,v_{\phi}$$

- \mathcal{O}_{Σ} in energy-momentum tensor multiplet
- \mathcal{O}_{ϕ} in SO(3) flavor current multiplet (moment map)

(3,3) of SO(3)_R x SO(3)_{flavor}, \mathcal{O}_{ϕ} invariant under diagonal subgroup

$$rac{a_{\mathrm{IR}}}{a_{\mathrm{UV}}} = rac{c_{\mathrm{IR}}}{c_{\mathrm{UV}}} = \left(rac{V_{\mathrm{IR}}}{V_{\mathrm{UV}}}
ight)^{-3/2} = 1 - \lambda^2$$

 $\boldsymbol{\lambda}$

SUPERGRAVITY

STANDBY

Field theory derivation c_{IR}/c_{UV}

$$rac{a_{\mathrm{IR}}}{a_{\mathrm{UV}}} = rac{c_{\mathrm{IR}}}{c_{\mathrm{UV}}} = 1-\lambda^2$$

Does this make sense from a field theory perspective?

 $k_F \, \delta_{ab} = -2Tr(R_{\mathcal{N}=2}T_aT_b)$ flavor central charge

$$\bullet \qquad a_{\rm IR} = a_{\rm UV} - \frac{1}{4}k_F , \qquad c_{\rm IR} = c_{\rm UV} - \frac{1}{4}k_F$$

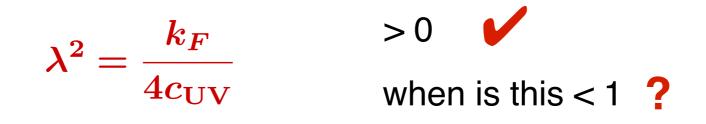
Field theory derivation c_{IR}/c_{UV}

$$a_{
m IR} = a_{
m UV} - rac{1}{4}k_F \;, \qquad \qquad c_{
m IR} = c_{
m UV} - rac{1}{4}k_F$$

• unitary SCFT $k_F > 0$

a-theorem

- not assuming large N here
- Taking a = c we can compare with sugra result:



match to gravitational Chern-Simons term

1

Summary of flows between N=2 SCFTs

Supergravity analysis + anomaly argument

→ large N, $\mathcal{N} = 2$ SCFT with SO(3) flavor symmetry such that $\lambda^2 = \frac{k_F}{4c} < 1$

→ give vevs to scalar $\Delta = 2$ operators \mathcal{O}_{Σ} , \mathcal{O}_{ϕ} belonging to e.m. tensor and flavor current multiplets, so that $v_{\Sigma} = \frac{\lambda}{3} v_{\phi}$

$$ightarrow$$
 should flow to an $\mathcal{N}=2$ SCFT

$$a_{
m IR} = a_{
m UV} - rac{1}{4}k_F \;, \qquad \qquad c_{
m IR} = c_{
m UV} - rac{1}{4}k_F$$

seems quite universal

Explicit field theory realization?

One AdS₅ vacuum with 16 supercharges

$$f^{123}=g\;,~~\xi^{45}=-rac{1}{\sqrt{2}}g$$

other non-vanishing components: $f^{1AB}, f^{2AB}, f^{3AB}, f^{ABC}, \xi^{AB}$

 $A, B, C = 6, 7, \ldots, \mathfrak{n} + 5$

- When is there also an AdS₅ vacuum with 8 supercharges ?
 - We worked out general conditions for such vacua
 - Here: simple model with $\mathfrak{n} = 2$ $f^{123} = g$, $\xi^{45} = -\frac{g}{\sqrt{2}}$, $\xi^{67} = -\sqrt{2}g\rho^{-1}$ parameter

For $\rho = 2$ uplifts to type IIB on S⁵, describes flow of mass-deformed N=4 SYM to Leigh-Strassler fixed point (and Z_k orbifolds) Freedman, Gubser, Pilch, Warner '99

$$f^{123}=g\;,\qquad \xi^{45}=-rac{g}{\sqrt{2}}\;,\qquad \xi^{67}=-\sqrt{2}\,g
ho^{-1}$$

• Ansatz $\mathcal{V} = e^{-2\phi t_{16} - 2\phi t_{27}} = \begin{pmatrix} \cosh \phi & 0 & 0 & 0 & 0 & -\sinh \phi & 0 \\ 0 & \cosh \phi & 0 & 0 & 0 & 0 & -\sinh \phi \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -\sinh \phi & 0 & 0 & 0 & 0 & \cosh \phi & 0 \\ 0 & -\sinh \phi & 0 & 0 & 0 & 0 & \cosh \phi \end{pmatrix}$

Susy conditions solved by

$$\sinh^2 \phi = \frac{\rho - 1}{3} \qquad \Rightarrow \qquad \rho > 1$$
$$\Sigma^3 = \rho$$

ratio of cosmological constants

$$rac{c_{\mathrm{IR}}}{c_{\mathrm{UV}}} = rac{27
ho}{(2+
ho)^3}$$

$$f^{123}=g\;,\qquad \xi^{45}=-rac{g}{\sqrt{2}}\;,\qquad \xi^{67}=-\sqrt{2}\,g
ho^{-1}$$

• Ansatz $\mathcal{V} = e^{-2\phi t_{16} - 2\phi t_{27}} = \begin{pmatrix} \cosh \phi & 0 & 0 & 0 & 0 & -\sinh \phi & 0 \\ 0 & \cosh \phi & 0 & 0 & 0 & 0 & -\sinh \phi \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -\sinh \phi & 0 & 0 & 0 & 0 & 0 & \cosh \phi & 0 \\ 0 & -\sinh \phi & 0 & 0 & 0 & 0 & \cosh \phi & 0 \\ \end{pmatrix}$

Susy conditions solved by

$$\sinh^2 \phi = \frac{\rho - 1}{3} \qquad \Rightarrow \qquad \rho > 1$$
$$\Sigma^3 = \rho$$

ratio of cosmological constants

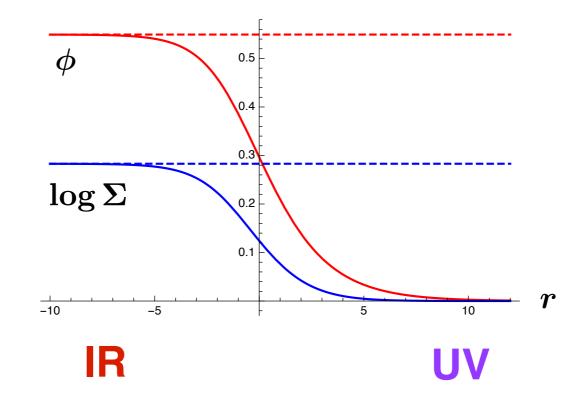
$$ho=2$$
 $rac{c_{\mathrm{IR}}}{c_{\mathrm{UV}}}=rac{27
ho}{(2+
ho)^3} \stackrel{
ightarrow}{=}rac{27}{32}$

Tachikawa, Wecht '09

There is a marginal coupling

•
$$W = \frac{g}{3} \Sigma^{-1} \cosh^2 \phi + \frac{g}{6} \Sigma^2 \left(1 - 2\rho^{-1} \sinh^2 \phi\right)$$

D.C., Dall'Agata, Faedo '12



Flow preserves 4 Poincaré supercharges

$$\Delta_{{\mathcal O}_\phi}=2+rac{2}{
ho}\,,\qquad \qquad \Delta_{{\mathcal O}_\Sigma}=2\,.$$

Triggered by source for \mathcal{O}_{ϕ} (when $\rho = 2 \rightarrow$ mass term)

anomaly argument, generalizing Tachikawa-Wecht

studying the gauge symmetries in the IR AdS₅ vacuum, we find

$$R_{\mathcal{N}=1}^{ ext{IR}} = rac{
ho}{
ho+2} R_{\mathcal{N}=2} + rac{4}{
ho+2} I_3$$

Plugging in $a = \frac{9}{32}Tr(R_{\mathcal{N}=1}^3) - \frac{3}{32}Tr(R_{\mathcal{N}=1}), \quad c = \frac{9}{32}Tr(R_{\mathcal{N}=1}^3) - \frac{5}{32}Tr(R_{\mathcal{N}=1})$

 \rightarrow obtain a linear map between $a_{\rm IR}, c_{\rm IR}$ and $a_{\rm UV}, c_{\rm UV}$

for
$$a = c$$
 reproduces $\frac{c_{\mathrm{IR}}}{c_{\mathrm{UV}}} = \frac{27\rho}{(2+\rho)^3}$

- We can also construct models with one AdS₅ vacuum with 16 supercharges and multiple AdS₅ vacua preserving 8 supercharges
 - → study the flows between them

Discussion

Message

half-maximal gauged supergravity is both general and constrained

can treat all possible supergravity models in a unifying approach

general results for holography without committing to specific models in particular: holographic flows for d=4, N=2 SCFTs

Holographic flow between N=2 SCFTs

similar flows known in examples of d=6 and d=7 half-maximal sugra Karndumri `12, `14 most likely also possible in d=4 \rightarrow quite universal

- Embedding in higher dimension? Maldacena, Gaiotto ?
- Field theory realization? Finite N?

Holographic flows from N=2 to N=1 SCFTs

could model MN2 → MN1of "27/32 type"Maldacena, Nunez `00MN2 → BBBWnot of "27/32 type"Bah, Beem, Bobey, Wecht `12

SCTFs describing M5 branes on Riemann surfaces

thanks for your attention !