Discussion on B-anomalies

GGI Workshop - 24.08.2018

Luca Di Luzio

- I. Review of "B-anomalies"
 - charged currents
 - neutral currents
- 2. Combined explanations
 - EFT
 - Simplified models
 - UV completions

BSM Flavour

• Almost all the ''oddities'' of the SM related to the Higgs

$$\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm gauge} + (y_{ij}\overline{\psi}_i\psi_jH) + \text{h.c.}) - \lambda |H|^4 + \mu^2 |H|^2 - \Lambda_{\rm cc}^4$$

- Flavour puzzle
 - I. Is there a dynamics behind the pattern fermion masses and mixings?

BSM Flavour

• Almost all the ''oddities'' of the SM related to the Higgs

$$\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm gauge} + (y_{ij}\overline{\psi}_i\psi_jH) + \text{h.c.}) - \lambda |H|^4 + \mu^2 |H|^2 - \Lambda_{\rm cc}^4$$

- Flavour puzzle
 - I. Is there a dynamics behind the pattern fermion masses and mixings?
 - 2. How is possible to reconcile TeV-scale NP with the absence of indirect signals ?

BSM Flavour

• Almost all the ''oddities'' of the SM related to the Higgs

$$\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm gauge} + (y_{ij}\overline{\psi}_i\psi_jH) + \text{h.c.}) - \lambda |H|^4 + \mu^2 |H|^2 - \Lambda_{\rm cc}^4$$

- Flavour puzzle
 - I. Is there a dynamics behind the pattern fermion masses and mixings ?
 - 2. How is possible to reconcile TeV-scale NP with the absence of indirect signals ?
- pre-LHC scenario:
 - exciting NP at ATLAS/CMS, boring flavour physics at LHCb protected by MFV

Review of "B-anomalies"

"B-anomalies"

• A seemingly coherent pattern of SM deviations building up since ~ 2012

	$b \to c \tau \nu$	$b \rightarrow s \mu \mu$
	$b \xrightarrow{W} c$	$\overline{b} = \overline{b} = $
Lepton Universality	R(D), R(D*), R(J/ψ)	$R(K), R(K^*)$
Angular Distributions		$B \rightarrow K^* \mu \mu \ (P'_5)$
Differential BR $(d\Gamma/dq^2)$		$B \to K^{(*)} \mu \mu$ $B_s \to \phi \mu \mu$ $\Lambda_b \to \Lambda \mu \mu$

 $\mathcal{D}(\mathcal{D} \setminus \mathcal{D}^*) \setminus \mathcal{D}(\mathcal{D} \setminus \mathcal{D}^*)$

Charged current anomalies

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B^{\circ} \to D^{(\gamma)} \tau \tau \nu)}{\mathcal{B}(B^{\circ} \to D^{(*)} + \ell \nu)}$$

All results since 2012 consistently
above SWPPerfection:

$$R(J/\psi) = \frac{\mathcal{B}(B_{c}^{+} \to J/\psi \tau^{+} \nu_{\tau})}{\mathcal{B}(B_{c}^{+} \to J/\psi \mu^{+} \nu_{\mu})} \stackrel{\pm 0.052}{\oplus E^{i} \gamma_{\mu} \sigma} 2g \sigma \text{ above the}(\underline{S})$$

$$\sim 20\% \text{ enhant contract from the SM}_{g^{2} m_{V}^{2}} \quad (3)$$

$$\sim 4\sigma \text{ from the SM}_{gHmW} \quad (4)$$

$$R_{VV} \equiv \frac{\Gamma(\eta \to VV)}{\Gamma(\eta \to \gamma\gamma)} = \frac{\sigma(pp \to \eta \to VV)}{\sigma(pp \to \eta \to \gamma\gamma)} \quad (5)$$

$$\mathcal{L}_{\rho BB} = g_{\rho} a_{\psi}^{\rho} \bar{B}_{\psi} \gamma^{\mu} \tau^{a} B_{\psi} \rho_{\mu}^{a} \quad (6)$$

$$\mathcal{L}^{\text{eff}} \sim \frac{1}{\Lambda_{F}^{2}} \Psi \Psi \chi_{\psi} \psi^{\text{SM}} \quad (7)$$

$$\frac{c_{ff}^{ij}}{\Lambda_{F}^{2}} (\bar{\psi}_{\text{TC}} \gamma_{\mu} \psi_{\text{TC}}) (\bar{f}_{\text{SM}}^{i} \gamma_{\mu} f_{\text{SM}}^{j}) \quad (8)$$

)

 $\mathcal{D}(\mathcal{D}) \to \mathcal{D}(*) +$

$$B_d\rangle_{(\mathbf{3},\mathbf{1},-1/3)} \propto |QLL\rangle \sim d_R$$
 (9)

 $\mathcal{D}(\mathcal{D} \times \mathcal{D}^*) / \mathcal{D}(\mathcal{D} \times \mathcal{D}^*)$

Charged current anomalies

• BSM fit favours NP in LH tau operators (SM interference)*

[Freytsis, Ligeti, Ruderman, 1506.08896 Azatov at al, 1805.03209]

$$\tilde{\mathcal{L}}_{\text{BSM}} = \frac{2c}{\Lambda^2} (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_\tau)$$

$$g_{H} \ll g_{H}g_{q} \sim \sqrt{4\pi} \mathcal{O} \left(\frac{1}{2} m_{V} \lesssim 11 \text{eV} \right)$$

$$Charged currents \left(\sum_{q} m_{V} \lesssim 11 \text{eV} \right) \left(\sum_{q} m_{V} \approx 11$$

Neutral current anomalies

• Angular distributions $B \to (K^* \to K\pi)\mu\mu$

Challenging SM prediction

• LFU ratios $R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu\overline{\mu})}{\mathcal{B}(B \to K^{(*)}e\overline{e})}$

Combined R(K^(*)) significance ~ 4σ

- New Physics in muons wants destruction
- New Physics in electrons is possible.

Neutral current anomalies

- Well-described by NP in $b \rightarrow s \mu \mu$ (explains also angular distributions)
- RH currents in quark sector disfavoured (predict wrong correlation)
- Significance of global fits $> 4\sigma$

		A	.11	LF	UV
	1D Hyp.	Best fit	$\operatorname{Pull}_{\operatorname{SM}}$	Best fit	$\operatorname{Pull}_{\operatorname{SM}}$
	$\mathcal{C}^{\mathrm{NP}}_{9\mu}$	-1.10	5.7	-1.76	3.9
(LH)	$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.61	5.2	-0.66	4.1
		(Capdevila	et al. 170)4.05340

 $O_9 \propto (\overline{s}_L \gamma_\mu b_L) (\overline{\ell}_L \gamma^\mu \ell)$ $O_{10} \propto (\overline{s}_L \gamma_\mu b_L) (\ell_L \gamma^\mu \gamma_5 \ell)$

- New Physics in muons wants destruction
- New Physics in electrons is possible.

Neutral current anomalies

- Well-described by NP in $b \rightarrow s \mu \mu$ (explains also angular distributions)
- RH currents in quark sector disfavoured (predict wrong correlation)
- Significance of global fits $> 4\sigma$
- What is the scale of NP ?

Future prospects

• LHCb + Belle-II have the potential to fully establish NP in B-anomalies

[Albrecht et al, 1709.10308]

Future prospects

• LHCb + Belle-II have the potential to fully establish NP in B-anomalies

Belle II LHCb $5 ab^{-1} 50 ab^{-1} 8 fb^{-1} 22 fb^{-1} 50 fb^{-1}$ 2020 2024 2019 2024 2030

charged currents

neutral currents

[Albrecht et al, 1709.10308]

assuming current central values:

- LHCb will measure R(K) and R(K^{*}) at > 5 σ by 2019 and ~15 σ by 2030
- Belle-II will reach $\sim 7\sigma$ by 2024

Combined explanations

Bottom-up approach Theoretical input / bias qg'new signatures UV completions j \overline{q} Q_{L} L_L Q_L L W'(Z') simplified \mathbf{k} on-shell LQ models QI L QL L_L b_L b_L μ_L au_L EFT tails \overline{c}_L \overline{s}_L $\overline{\mu}_L$ $\overline{\nu}_L$ Experimental input $\Lambda_{R_K} = 31 \text{ TeV}$ $\Lambda_{R_D} = 3.4 \text{ TeV}$

• SU(2)_L triplet operator (neutral+charged currents in SMEFT)

$$\frac{\lambda_{ij}^q \lambda_{kl}^\ell}{\Lambda^2} (\overline{Q}_L^i \sigma^a \gamma_\mu Q_L^j) (\overline{L}_L^k \sigma^a \gamma^\mu L_L^l)$$

[Bhattacharya et al 1412.7164 Alonso, Grinstein, Camalich 1505.05164, Greljo, Isidori, Marzocca 1506.01705, Calibbi, Crivellin, Ota 1506.02661, ...]

$$Q_L^i = \begin{pmatrix} (V_{\rm CKM}^\dagger u_L)^i \\ d_L^i \end{pmatrix}$$

$$L_L^k = \begin{pmatrix} \nu_L^k \\ e_L^k \end{pmatrix}$$

• SU(2)_L triplet operator

• What is the scale of NP ?

• SU(2)_L triplet operator

• <u>Perturbative unitarity</u> bound from $2 \rightarrow 2$ fermion scatterings (worse case scenario)

$$\sqrt{s_{R_D}} < 9.2 \text{ TeV}$$
 $\sqrt{s_{R_K}} < 84 \text{ TeV}$

no-loose theorem for HL/HE-LHC ?

[LDL, Nardecchia 1706.01868]

• $SU(2)_L$ triplet operator

$$\frac{\lambda_{ij}^q \lambda_{kl}^\ell}{\Lambda^2} (\overline{Q}_L^i \sigma^a \gamma_\mu Q_L^j) (\overline{L}_L^k \sigma^a \gamma^\mu L_L^l) \supset -\frac{1}{\Lambda_{R_D}^2} 2 \,\overline{c}_L \gamma^\mu b_L \overline{\tau}_L \gamma_\mu \nu_L + \frac{1}{\Lambda_{R_K}^2} \overline{s}_L \gamma^\mu b_L \overline{\mu}_L \gamma_\mu \mu_L$$

- Flavour structure:
 - I. large couplings in taus (SM tree level)
 - 2. sizable couplings in muons (SM one loop)
 - 3. negligible couplings in electrons (well tested, not much room)

 $\lambda_{ij}^{q,\ell} = \delta_{i3}\delta_{j3} + \text{corrections}$ $U(2)_q \times U(2)_\ell$ approx flavor symmetry [Barbieri et al | 105.2296, 1512.01560]

 $\overline{Q}_3 Q_3 \longrightarrow V_{cb} \,\overline{c}_L b_L$ (pure mixing scenario)

• $SU(2)_L$ triplet operator

 $\frac{\lambda_{ij}^q \lambda_{kl}^\ell}{\Lambda^2} (\overline{Q}_L^i \sigma^a \gamma_\mu Q_L^j) (\overline{L}_L^k \sigma^a \gamma^\mu L_L^l)$

• Tree-level mediators:

EFT [problems]

- Three main problems mainly driven by R(D) [in the pure mixing scenario]
- I. High-p⊤ constraints

 $\Lambda_{33} = \Lambda_{R_D} V_{cb} = 0.7 \text{ TeV}$

[Faroughy, Greljo, Kamenik 1609.07138]

EFT [problems]

- Three main problems mainly driven by R(D) [in the pure mixing scenario]
- I. High-p_T constraints
- 2. Radiative constraints

$$\overline{Q}_3 Q_3 \longrightarrow V_{cb} \,\overline{c}_L b_L$$

 $\Lambda_{33} = \Lambda_{R_D} V_{cb} = 0.7 \text{ TeV}$

[Feruglio, Paradisi, Pattori 1606.00524, 1705.00929]

EFT [problems]

- Three main problems mainly driven by R(D)
- I. High-p⊤ constraints
- 2. Radiative constraints
- 3. Flavour bounds

(absent at tree-level with LQ)

(consequence of $SU(2)_L$ invariance)

EFT [solutions]

• Tension gets drastically alleviated if

[Zürich's guide for combined explanations, 1706.07808]

I.Triplet + Singlet operator (more freedom in $SU(2)_L$ structure)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T \; (\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \; (\bar{Q}_L^i \gamma_\mu Q_L^j) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right]$$

EFT [solutions]

• Tension gets drastically alleviated if

[Zürich's guide for combined explanations, 1706.07808]

I.Triplet + Singlet operator (more freedom in SU(2)_L structure)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right]$$

2. Deviation from pure-mixing scenario

$$\overline{Q}^{i}\lambda_{ij}^{q}Q^{j} = \begin{pmatrix} \overline{u}^{k}V_{ki} & \overline{d}^{i} \end{pmatrix}\lambda_{ij}^{q} \begin{pmatrix} V_{jl}^{\dagger}u^{l} \\ d^{j} \end{pmatrix} \supset \overline{c} \left(V_{cb}\lambda_{bb}^{q} + V_{cs}\lambda_{sb}^{q} + \dots \right)b$$

 $R_{D^{(*)}}^{\tau\ell} \approx 1 + 2C_T \left(1 - \lambda_{sb}^q \frac{V_{tb}^*}{V_{ts}^*} \right) \qquad \qquad \lambda_{sb}^q > \mathcal{O}(V_{cb}) \quad \text{allows for larger NP scale}$

EFT [solutions]

• Tension gets drastically alleviated if

[Zürich's guide for combined explanations, 1706.07808]

I.Triplet + Singlet operator (more freedom in SU(2)_L structure)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T \; (\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \; (\bar{Q}_L^i \gamma_\mu Q_L^j) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right]$$

2. Deviation from pure-mixing scenario

 $\lambda_{sb}^q > \mathcal{O}(V_{cb})$ allows for larger NP scale

Simplified models

• Finite list of tree-level mediators

[Zürich's guide for combined explanations, 1706.07808]

Simplified Model	Spin	SM irrep	C_S/C_T	$R_{D^{(*)}}$	$\mid R_{K^{(*)}}$	0.06	U_3	
Z'_{\perp}	1	(1, 1, 0)	∞	Х	\checkmark	0.04	i i i i i i i i i i i i i i i i i i i	B' 3σ
V'	1	(1, 3, 0)	0	\checkmark	\checkmark	0.04	i i	2σ
S_1	0	$(\overline{3}, 1, 1/3)$	-1	\checkmark	×	0.02		
S_3	0	$(\overline{3}, 3, 1/3)$	3	\checkmark	\checkmark	0.02		
U_1	1	(3, 1, 2/3)	1	\checkmark	\checkmark	\sim 0.00	i	
U_3	1	(3, 3, 2/3)	-3	\checkmark	\checkmark			W'
$\mathcal{B}(I)$	$B \to K$	$(C_{T}^{*}\nu\nu)\propto(C_{T}$	$T - C_S)$			-0.02 -0.04 -0.06	S_3 06 -0.04 -0.02.0	S_I
A clear winner:	Uı •		$C_T = C_S$	(at th	reshol	d)	C	$\tilde{C}T$
Linear combinat	tions a	also possib	le (e.g. S	$S_1 + S_2$	3 or Z'	+ \/')	🔶 tuning ı	required

UV completion: $U_1 \sim (3, 1, 2/3)$

• Massive vectors point to UV dynamics at the TeV scale

composite resonance of a new strong dynamics

gauge boson of an extended gauge sector

UV completion: $U_{I} \sim (3, I, 2/3)$

• Massive vectors point to UV dynamics at the TeV scale

$$\frac{G}{H} = \frac{SU(4) \times SO(5) \times U(1)_X}{SU(4) \times SO(4) \times U(1)_X}$$

[Barbieri, Isidori, Pattori, Senia 1502.01560 Barbieri, Murphy, Senia 1611.0493 Buttazzo et al, 1706.07808 Barbieri, Tesi 1712.06844]

- pNGB Higgs + U_1 as composite state of G
- e conceptual link with the naturalness issue of EW scale
- Iight LQ lowers the whole resonances' spectrum (direct searches + EWPTs)
- intrinsically non-calculable (divergent loop observables)

UV completion: $U_{I} \sim (3, I, 2/3)$

• An interesting option: minimal Pati-Salam (PS)

 $G_{PS} = SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

 $G_{PS}/G_{SM} = U_1 + Z' + W_R$

If the initial structure + everything's calculable $M_{U_1} \gtrsim 86 \text{ TeV}$ from $K_L^0, B^0, B_s \to \ell \ell'$ decays (L × R couplings)

[Kutznetsov et al 1203.0196 + update from A. D. Smirnov 1801.02895]

 $\beta^{L,R} = U_{d_{L,R}}^{\dagger} U_{e_{L,R}} \qquad \text{(unitary matrices)}$

UV completion: $U_{I} \sim (3, I, 2/3)$

• An interesting option: minimal Pati-Salam (PS)

 $G_{PS} = SU(4)_{PS} \times SU(2)_L \times SU(2)_R$

 $G_{PS}/G_{SM} = U_1 + Z' + W_R$

- hinted by SM chiral structure + everything's calculable
- $\mathfrak{B} M_{U_1} \gtrsim 86 \text{ TeV}$ from $K_L^0, B^0, B_s \to \ell \ell'$ decays (L × R couplings)
- \cong Z' direct searches ($M_{U_1} \sim M_{Z'} \sim \text{TeV} + O(g_s)$ Z' couplings to valence quarks)

 $\stackrel{()}{\simeq}$ neutrino masses also suggest $M_{U_1} \gg \text{TeV} (y_{\text{top}} \sim y_{\nu_3 - \text{Dirac}})$

Minimal PS <u>cannot</u> explain B-anomalies

• We look for something like

$$\beta^{L} \sim \begin{pmatrix} \epsilon & \epsilon & \epsilon \\ \epsilon & 0.01 & 0.2 \\ \epsilon & 0.05 & 1 \end{pmatrix} \qquad \beta^{R} \sim \epsilon \qquad \left(\begin{array}{c} \beta^{\dagger} \beta \neq 1 \end{array} \right)$$

• We look for something like

$$\beta^{L} \sim \begin{pmatrix} \epsilon & \epsilon & \epsilon \\ \epsilon & 0.01 & 0.2 \\ \epsilon & 0.05 & 1 \end{pmatrix} \qquad \beta^{R} \sim \epsilon \qquad \left(\begin{array}{c} \beta^{\dagger} \beta \neq 1 \\ \end{array} \right)$$

I): non-minimal matter content (mixing with heavy fermions)

[Calibbi, Crivellin, Li 1709.00692]

$$\frac{g_4}{\sqrt{2}} \overline{\mathcal{D}}^A \hat{\beta}_{AB} \gamma_\mu \mathcal{E}^B U_1^\mu \qquad \qquad \hat{\beta} = \begin{pmatrix} \beta_{\rm LL} & \beta_{\rm LH} \\ \beta_{\rm HL} & \beta_{\rm HH} \end{pmatrix} \qquad \qquad \hat{\beta}^\dagger \hat{\beta} = 1 \\ \beta_{\rm LL}^\dagger \beta_{\rm LL} \neq 1 \end{cases}$$

Z' direct searches

• We look for something like

$$\beta^{L} \sim \begin{pmatrix} \epsilon & \epsilon & \epsilon \\ \epsilon & 0.01 & 0.2 \\ \epsilon & 0.05 & 1 \end{pmatrix} \qquad \beta^{R} \sim \epsilon \qquad \left(\begin{array}{c} \beta^{\dagger} \beta \neq 1 \end{array} \right)$$

I): non-minimal matter content (mixing with heavy fermions) [Ca

[Calibbi, Crivellin, Li 1709.00692]

2): non-universal gauge interactions

[Bordone, Cornella, Fuentes-Martin, Isidori 1712.01368]

$$(422)^{3} \qquad \sum_{i=1,2,3} \frac{g_{4}^{i}}{\sqrt{2}} \overline{Q}^{i} \gamma^{\mu} L^{i} U_{\mu}^{i} \qquad \xrightarrow{m_{U_{1}} \gg m_{U_{2}} \gg m_{U_{3}}} \qquad \beta^{LO} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

e flavour hierarchies

😕 neutrino masses [Greljo, Stefanek 1802.04274]

• We look for something like

$$\beta^{L} \sim \begin{pmatrix} \epsilon & \epsilon & \epsilon \\ \epsilon & 0.01 & 0.2 \\ \epsilon & 0.05 & 1 \end{pmatrix} \qquad \beta^{R} \sim \epsilon \qquad \left(\begin{array}{c} \beta^{\dagger} \beta \neq 1 \end{array} \right)$$

I): non-minimal matter content (mixing with heavy fermions) [Calibbi, Crivellin, Li 1709.00692]

2): non-universal gauge interactions [Bordone, Cornella, Fuentes-Martin, Isidori 1712.01368]

3): non-minimal matter and gauge content (4321 model)

 $G = SU(4) \times SU(3)' \times SU(2)_L \times U(1)' +$ heavy fermions

[LDL, Greljo, Nardecchia 1708.08450, See also Diaz, Schmaltz, Zhong 1706.05033, for a similar constructions]

 $SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$

$$g_s = \frac{g_4 g_3}{\sqrt{g_4^2 + g_3^2}} \simeq g_3$$
$$g_Y = \frac{g_4 g_1}{\sqrt{g_4^2 + \frac{2}{3}g_1^2}} \simeq g_1$$

Matter content:

Field	SU(4)	SU(3)'	$SU(2)_L$	U(1)'
$q_L^{\prime i}$	1	3	2	1/6
$u_R^{\prime i}$	1	3	1	2/3
$d_R^{\prime i}$	1	3	1	-1/3
$\ell_L'^i$	1	1	2	-1/2
$e_R^{\prime i}$	1	1	1	-1
Ψ_L^i	4	1	2	0
Ψ^i_R	4	1	2	0
H	1	1	2	1/2
Ω_3	$\overline{4}$	3	1	1/6
Ω_1	$\overline{4}$	1	1	-1/2

Would-be SM fields

Vector-like fermions (Q'+L')

SSB

Field	SU(4)	SU(3)'	$SU(2)_L$	U(1)'
$q_L^{\prime i}$	1	3	2	1/6
$u_R^{\prime i}$	1	3	1	2/3
$d_R^{\prime i}$	1	3	1	-1/3
$\ell_L'^i$	1	1	2	-1/2
$e_R^{\prime i}$	1	1	1	-1
Ψ^i_L	4	1	2	0
Ψ^i_R	4	1	2	0
H	1	1	2	1/2
Ω_3	$\overline{4}$	3	1	1/6
Ω_1	$\overline{4}$	1	1	-1/2

LQ dominantly couples to 3rd generation <u>LH</u> fields [can satisfy Zürich's EFT criteria]

?

?

- NP interpretations of B-anomalies still challenged by
- I. Large quark-lepton transitions in 3-2 sector [mainly driven by $R(D^{(*)})$]
- 2. Severe constraints from quark-quark transitions [$\Delta F = 2, ...$]
- 3. Severe constraints from lepton-lepton transitions [LFV, ...]
- 4. Absence of signals in direct searches @ high-pT

• Pick-up a basis exploiting $U(3)^7$ symmetry of kinetic term

$$\mathcal{L}_{\rm SM-like} = -\overline{q}'_L \, \hat{Y}_d \, H d'_R - \overline{q}'_L \, V^{\dagger} \hat{Y}_u \, \tilde{H} u'_R - \overline{\ell}'_L \, \hat{Y}_e \, H e'_R$$

$$\mathcal{L}_{\text{mix}} = -\overline{q}_L' \,\lambda_q \,\Omega_3^T \Psi_R - \overline{\ell}_L' \,\lambda_\ell \,\Omega_1^T \Psi_R - \overline{\Psi}_L \hat{M} \Psi_R$$

Field	SU(4)	SU(3)'	$SU(2)_L$	$\left U(1)' \right $
$q_L^{\prime i}$	1	3	2	1/6
$u_R^{\prime i}$	1	3	1	2/3
$d_R^{\prime i}$	1	3	1	-1/3
$\ell_L'^i$	1	1	2	-1/2
$e_R^{\prime i}$	1	1	1	-1
Ψ^i_L	4	1	2	0
Ψ^i_R	4	1	2	0
Н	1	1	2	1/2
Ω_3	$\overline{4}$	3	1	1/6
Ω_1	$\overline{4}$	1	1	-1/2

$$\Psi = \begin{pmatrix} Q' \\ L' \end{pmatrix}$$

• $\mathcal{L}_{mix} \to 0$

$$\mathcal{L}_{\rm SM-like} = -\overline{q}'_L \, \hat{Y}_d \, H d'_R - \overline{q}'_L \, V^{\dagger} \hat{Y}_u \, \tilde{H} u'_R - \overline{\ell}'_L \, \hat{Y}_e \, H e'_R$$

- A well-known story:
- $Y_u \rightarrow 0$: $U(1)_d \times U(1)_s \times U(1)_b$
- $Y_d \rightarrow 0$: $U(1)_u \times U(1)_c \times U(1)_t$

• $\mathcal{L}_{mix} \to 0$

$$\mathcal{L}_{\rm SM-like} = -\overline{q}'_L \, \hat{Y}_d \, H d'_R - \overline{q}'_L \, V^{\dagger} \hat{Y}_u \, \tilde{H} u'_R - \overline{\ell}'_L \, \hat{Y}_e \, H e'_R$$

• A well-known story:

- Collective breaking in the SM ensures:
- I. No FCNC in either up or down sector [forbidden by the two $U(1)^3$ in isolation]
- 2. FCCC from up/down misalignement [due to CKM \neq 1]

• We <u>assume</u>: $\mathcal{L}_{SM-like} = -\overline{q}'_L \hat{Y}_d H d'_R - \overline{q}'_L V^{\dagger} \hat{Y}_u \tilde{H} u'_R - \overline{\ell}'_L \hat{Y}_e H e'_R$ $\mathcal{L}_{mix} = -\overline{q}'_L \lambda_q \Omega_3^T \Psi_R - \overline{\ell}'_L \lambda_\ell \Omega_1^T \Psi_R - \overline{\Psi}_L \hat{M} \Psi_R$

$$\lambda_{q} = \operatorname{diag}\left(\lambda_{12}^{q}, \lambda_{12}^{q}, \lambda_{3}^{q}\right)$$
$$\lambda_{\ell} = \operatorname{diag}\left(\lambda_{1}^{\ell}, \lambda_{2}^{\ell}, \lambda_{3}^{\ell}\right) W \qquad W = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta_{LQ} & \sin\theta_{LQ}\\ 0 & -\sin\theta_{LQ} & \cos\theta_{LQ} \end{pmatrix} \qquad \hat{M} \propto \mathbb{1}$$

• We <u>assume</u>: $\mathcal{L}_{\text{SM-like}} = -\overline{q}'_L \hat{Y}_d H d'_R - \overline{q}'_L V^{\dagger} \hat{Y}_u \tilde{H} u'_R - \overline{\ell}'_L \hat{Y}_e H e'_R$ $\mathcal{L}_{\text{mix}} = -\overline{q}'_L \lambda_q \Omega_3^T \Psi_R - \overline{\ell}'_L \lambda_\ell \Omega_1^T \Psi_R - \overline{\Psi}_L \hat{M} \Psi_R$ $\lambda_q = \text{diag} \left(\lambda_{12}^q, \lambda_{12}^q, \lambda_3^q \right)$ $\lambda_\ell = \text{diag} \left(\lambda_1^\ell, \lambda_2^\ell, \lambda_3^\ell \right) W \qquad W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{LQ} & \sin \theta_{LQ} \\ 0 & -\sin \theta_{LQ} & \cos \theta_{LQ} \end{pmatrix} \qquad \hat{M} \propto \mathbb{1}$ $\bullet \lambda_\ell \to 0$

 $\mathcal{G}_Q = U(2)_{q'+\Psi} \times U(1)_{q'_3+\Psi_3}$ [promoting approximate $U(2)_{q'}$ of SM to NP]

I. No tree-level FCNC in the down sector (λ_q and Y_d diagonal in the same basis) 2. CKM-induced tree-level FCNC in the up sector (D-mixing) protected by $U(2)_{q'}$

• We <u>assume</u>: $\mathcal{L}_{SM-like} = -\overline{q}'_L \hat{Y}_d H d'_R - \overline{q}'_L V^{\dagger} \hat{Y}_u \tilde{H} u'_R - \overline{\ell}'_L \hat{Y}_e H e'_R$ $\mathcal{L}_{mix} = -\overline{q}'_L \lambda_q \Omega_3^T \Psi_R - \overline{\ell}'_L \lambda_\ell \Omega_1^T \Psi_R - \overline{\Psi}_L \hat{M} \Psi_R$ $\lambda_q = \text{diag} \left(\lambda_{12}^q, \lambda_{12}^q, \lambda_3^q\right)$ (1 - 0) = 0

$$\lambda_{\ell} = \operatorname{diag}\left(\lambda_{1}^{\ell}, \lambda_{2}^{\ell}, \lambda_{3}^{\ell}\right) W \qquad W = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\theta_{LQ} & \sin\theta_{LQ} \\ 0 & -\sin\theta_{LQ} & \cos\theta_{LQ} \end{array}\right) \qquad \hat{M} \propto \mathbb{1}$$

• $\lambda_q \to 0$

$$\mathcal{G}_L = U(1)_{\ell'_1 + \tilde{\Psi}_1} \times U(1)_{\ell'_2 + \tilde{\Psi}_2} \times U(1)_{\ell'_3 + \tilde{\Psi}_3} \qquad \left[\tilde{\Psi} = W\Psi\right]$$

I. No tree-level FCNC in the lepton sector (λ_{ℓ} and Y_e diagonal in the same basis) 2. W is unphysical

• We <u>assume</u>: $\mathcal{L}_{SM-like} = -\overline{q}'_L \hat{Y}_d H d'_R - \overline{q}'_L V^{\dagger} \hat{Y}_u \tilde{H} u'_R - \overline{\ell}'_L \hat{Y}_e H e'_R$ $\mathcal{L}_{mix} = -\overline{q}'_L \lambda_q \Omega_3^T \Psi_R - \overline{\ell}'_L \lambda_\ell \Omega_1^T \Psi_R - \overline{\Psi}_L \hat{M} \Psi_R$ $\lambda_q = \operatorname{diag}(\lambda_{12}^q, \lambda_{12}^q, \lambda_3^q)$

$$\lambda_{\ell} = \operatorname{diag}\left(\lambda_{1}^{\ell}, \lambda_{2}^{\ell}, \lambda_{3}^{\ell}\right) W \qquad W = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos\theta_{LQ} & \sin\theta_{LQ}\\ 0 & -\sin\theta_{LQ} & \cos\theta_{LQ} \end{array}\right) \qquad \hat{M} \propto \mathbb{1}$$

• Collective breaking:

$$\mathcal{G}_Q \cap \mathcal{G}_L \xrightarrow{SU(4)+W} U(1)_{q'_1+\ell'_1+\Psi_1} \times U(1)_{q'+\ell'+\Psi}$$

 $I. \lambda_1^{\ell} = 0: U(1)_{q'_1 + \ell'_1 + \Psi_1} \rightarrow U(1)_{q'_1 + \Psi_1} \times U(1)_{\ell'_1 + \Psi_1} \text{ [no FV involving down and electrons]}$

2. Large effects in 3-2 lepto-quark transitions via W: $i\overline{\Psi}_L\gamma^{\mu}D_{\mu}\Psi_L \supset \frac{g_4}{\sqrt{2}}U_{\mu}\overline{Q}_L\gamma^{\mu}WL_L$

An suggestive analogy*

321	4321
θ_C	θ_{LQ}
$\mid V$	W
W^{μ}	U^{μ}
$ q_L = \begin{pmatrix} u_L \\ V d_L \end{pmatrix} $	$\Psi_L = \begin{pmatrix} Q_L \\ WL_L \end{pmatrix}$
Y_u, Y_d	λ_q,λ_ℓ
$SU(2)_L$	SU(4)
$U(1)_u \times U(1)_c \times U(1)_t$	$U(2)_{q'+\Psi} \times U(1)_{q'_3+\Psi_3}$
$U(1)_d \times U(1)_s \times U(1)_b$	$U(1)_{\ell'_{1}+\tilde{\Psi}_{1}} \times U(1)_{\ell'_{2}+\tilde{\Psi}_{2}} \times U(1)_{\ell'_{3}+\tilde{\Psi}_{3}}$
$U(1)_B$	$U(1)_{q'_1+\ell'_1+\Psi_1} \times \tilde{U(1)}_{q'+\ell'+\Psi}$
$u \to d$ tree level	$Q \to L$ tree level
$u_i \rightarrow u_j$ loop level	$Q_i \to Q_j$ loop level
$d_i \rightarrow d_j$ loop level	$L_i \to L_j$ loop level

* symmetries in 321 <u>accidental</u>, in 4321 <u>imposed</u> (still, helpful for understanding pheno)

I. Large quark-lepton transitions in 3-2 sector

$$\mathcal{L}_U \supset \frac{g_4}{\sqrt{2}} \beta_{ij} \,\overline{q}_L^i \gamma^\mu \ell_L^j U_\mu \qquad \qquad \beta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & c_{\theta_{LQ}} s_{12} s_{\mu_L} & s_{\theta_{LQ}} s_{12} s_{\tau_L} \\ 0 & -s_{\theta_{LQ}} s_{b_L} s_{\mu_L} & c_{\theta_{LQ}} s_{b_L} s_{\tau_L} \end{pmatrix}$$

$$\Delta R_{D^{(*)}} = \frac{g_4^2 v^2}{2 M_U^2} \beta_{b\tau} \left(\beta_{b\tau} - \beta_{s\tau} \frac{V_{tb}^*}{V_{ts}^*} \right)$$

I. Large quark-lepton transitions in 3-2 sector

$$\mathcal{L}_U \supset \frac{g_4}{\sqrt{2}} \beta_{ij} \,\overline{q}_L^i \gamma^\mu \ell_L^j U_\mu \qquad \qquad \beta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & c_{\theta_{LQ}} s_{12} s_{\mu_L} & s_{\theta_{LQ}} s_{12} s_{\tau_L} \\ 0 & -s_{\theta_{LQ}} s_{b_L} s_{\mu_L} & c_{\theta_{LQ}} s_{b_L} s_{\tau_L} \end{pmatrix}$$

$$\Delta R_{D^{(*)}} = \frac{g_4^2 v^2}{2 M_U^2} \beta_{b\tau} \left(\beta_{b\tau} - \beta_{s\tau} \frac{V_{tb}^*}{V_{ts}^*} \right)$$

 $\beta_{s\tau} > V_{ts} \sim 0.04$ allows to raise the LQ mass scale

we need: $\theta_{LQ} \sim \pi/4$ $\theta_{\tau_L} \sim \pi/2$ $\theta_{b_L} \sim \pi/2$ $\theta_{12} \sim \mathcal{O}(1)$

- I. Large quark-lepton transitions in 3-2 sector
- 2. Tree-level FCNC involving down quarks and leptons are absent
- 3. Tree-level FCNC involving up quarks are U(2) protected

 $C_1^D \propto (V_{cb} V_{ub}^*)^2 \sim 10^{-8}$

- I. Large quark-lepton transitions in 3-2 sector
- 2. Tree-level FCNC involving down quarks and leptons are absent
- 3. Tree-level FCNC involving up quarks are U(2) protected
- 4. FCNC @ I-loop under control

 $\sum_{\alpha} \lambda_{\alpha} = 0$ ensures cancellation of quadratic divergencies + GIM-like suppression

 $F(x_{\alpha}, x_{\beta}) \simeq X + x_{\alpha} + x_{\beta} + \dots$ light lepton partners welcomed !

- I. Large quark-lepton transitions in 3-2 sector
- 2. Tree-level FCNC involving down quarks and leptons are absent
- 3. Tree-level FCNC involving up quarks are U(2) protected
- 4. FCNC @ I-loop under control
- 5. Suppressed Z' and g' couplings to light generations

$$\begin{aligned} \mathcal{L}_{L} &= \frac{g_{4}}{\sqrt{2}} \overline{Q}'_{L} \gamma^{\mu} L'_{L} U_{\mu} + \text{h.c.} \\ &+ g_{s} \left(\frac{g_{4}}{g_{3}} \overline{Q}'_{L} \gamma^{\mu} T^{a} Q'_{L} - \frac{g_{3}}{g_{4}} \overline{q}'_{L} \gamma^{\mu} T^{a} q'_{L} \right) g'^{a}_{\mu} \\ &+ \frac{1}{6} \sqrt{\frac{3}{2}} g_{Y} \left(\frac{g_{4}}{g_{1}} \overline{Q}'_{L} \gamma^{\mu} Q'_{L} - \frac{2}{3} \frac{g_{1}}{g_{4}} \overline{q}'_{L} \gamma^{\mu} q'_{L} \right) Z'_{\mu} \\ &- \frac{1}{2} \sqrt{\frac{3}{2}} g_{Y} \left(\frac{g_{4}}{g_{1}} \overline{L}'_{L} \gamma^{\mu} L'_{L} - \frac{2}{3} \frac{g_{1}}{g_{4}} \overline{\ell}'_{L} \gamma^{\mu} \ell'_{L} \right) Z'_{\mu} \end{aligned}$$

- I. Large quark-lepton transitions in 3-2 sector
- 2. Tree-level FCNC involving down quarks and leptons are absent
- 3. Tree-level FCNC involving up quarks are U(2) protected
- 4. FCNC @ I-loop under control
- 5. Suppressed Z' and g' couplings to light generations

$$\mathcal{L}_{L} = \frac{g_{4}}{\sqrt{2}} \overline{Q}'_{L} \gamma^{\mu} L'_{L} U_{\mu} + \text{h.c.}$$

$$+ g_{s} \left(\frac{g_{4}}{g_{3}} \overline{Q}'_{L} \gamma^{\mu} T^{a} Q'_{L} - \frac{g_{3}}{g_{4}} \overline{q}'_{L} \gamma^{\mu} T^{a} q'_{L} \right) g'^{a}_{\mu}$$

$$+ \frac{1}{6} \sqrt{\frac{3}{2}} g_{Y} \left(\frac{g_{4}}{g_{1}} \overline{Q}'_{L} \gamma^{\mu} Q'_{L} - \frac{2}{3} \frac{g_{1}}{g_{4}} \overline{q}'_{L} \gamma^{\mu} q'_{L} \right) Z'_{\mu}$$

$$- \frac{1}{2} \sqrt{\frac{3}{2}} g_{Y} \left(\frac{g_{4}}{g_{1}} \overline{L}'_{L} \gamma^{\mu} L'_{L} - \frac{2}{3} \frac{g_{1}}{g_{4}} \overline{\ell}'_{L} \gamma^{\mu} \ell'_{L} \right) Z'_{\mu}$$

requires the phenomenological limit $g_4 \gg g_3 \simeq g_s \gg g_1 \simeq g_Y$

- I. Large quark-lepton transitions in 3-2 sector
- 2. Tree-level FCNC involving down quarks and leptons are absent
- 3. Tree-level FCNC involving up quarks are U(2) protected
- 4. FCNC @ I-loop under control
- 5. Suppressed Z' and g' couplings to light generations
- 6. B and L accidental global symmetries as in the SM ($m_{\nu} = 0$)

$$\mathcal{O}_5 = \frac{1}{\Lambda_{\not\!L}} \ell' \ell' H H \qquad \qquad \Lambda_{\not\!L} \gg \iota$$

High-p_T searches

- LQ pair production via QCD
- 3rd generation final states (fixed by anomaly and $SU(2)_{L}$ invariance)

[CMS search for spin-0, 1703.03995 recast for spin-1 1706.01868 (see also 1706.05033) + Moriond EW update]

 $m_U \gtrsim 1.5 \text{ TeV}$ \downarrow LQ mass sets the overall scale: $M_{g'} \simeq \sqrt{2} M_U \quad M_{Z'} \simeq \frac{1}{\sqrt{2}} M_U$

High-p_T searches

- LQ pair production via QCD
- Z' Drell-Yan production naturally suppressed

$$\sin \theta_{Z'} = \sqrt{\frac{3}{2}} \frac{g_Y}{g_4} \simeq 0.09 \qquad \text{requires} \quad g_4 \gtrsim 3$$

• g' resonant di-jet searches [ATLAS, 1703.09127]

 $\sin \theta_{g'} = \frac{g_s}{g_4} \simeq 0.3$ 2 TeV coloron naively excluded

$$\begin{array}{c} q \\ g' \\ \overline{q} \end{array}$$

High-p_T searches

[LDL, Fuentes-Martin, Greljo, Nardecchia, Renner 1808.00942]

Conclusions

- I. We will know much more by \sim 2020 (LHCb + Belle II)
- 2. Early <u>speculations</u> point to TeV-scale vector leptoquark (R(D)+R(K) explanation)
 - who ordered that ?
- 3. In the meantime, lesson from UV complete models

<u>unexpected</u> experimental signatures (coloron, vector-like leptons, ...) + playground to compute correlations

				\frown			
Anomaly	\mathcal{O}	FS_Q	FS_L ($\Lambda_A[\text{TeV}]$	$ \Lambda_{\mathcal{O}} $ [TeV]	$\Lambda_U[\text{TeV}]$	$M_{\star}[\text{TeV}]$
$b \to c \tau \overline{\nu}$	$Q_{23}L_{33}$	1	1	3.4	3.4	9.2	43
$b \to c \tau \overline{\nu}$	$Q_{33}L_{33}$	$ V_{cb} $	1	3.4	0.7	1.9	8.7
$b \to s\mu\overline{\mu}$	$Q_{23}L_{22}$	1	1	31	31	84	390
$b \to s\mu\overline{\mu}$	$Q_{33}L_{22}$	$ V_{ts} $	1	31	6.2	17	78
$b \to s\mu\overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$^{\ddagger}m_{\mu}/m_{ au}$	31	1.5	4.1	19
$b \to s\mu\overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$ (m_{\mu}/m_{\tau})^2$	31	0.4	1.0	4.7

[LDL, Nardecchia 1706.01868]

• "Fermi constant" of the process $[SU(3)_C \times U(1)_{EM}$ invariant EFT]

$$\mathcal{L}_{\text{eff}} \supset -\frac{1}{\Lambda_{R_D}^2} 2\,\overline{c}_L \gamma_\mu b_L \overline{\tau}_L \gamma^\mu \nu_L + \frac{1}{\Lambda_{R_K}^2} \overline{s}_L \gamma_\mu b_L \overline{\mu}_L \gamma^\mu \mu_L$$

- fixed by anomaly

	-	-					
Anomaly	0	FS_Q	FS_L	$\Lambda_A[\text{TeV}]$	$ \Lambda_{\mathcal{O}} $ [TeV]	$\Lambda_U[\text{TeV}]$	$M_{\star}[\text{TeV}]$
$b \to c \tau \overline{\nu}$	$Q_{23}L_{33}$	1	1	3.4	3.4	9.2	43
$b \to c \tau \overline{\nu}$	$Q_{33}L_{33}$	$ V_{cb} $	1	3.4	0.7	1.9	8.7
$b \to s\mu\overline{\mu}$	$Q_{23}L_{22}$	1	1	31	31	84	390
$b \to s\mu\overline{\mu}$	$Q_{33}L_{22}$	$ V_{ts} $	1	31	6.2	17	78
$b \to s\mu\overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$^{\ddagger}m_{\mu}/m_{ au}$	31	1.5	4.1	19
$b \to s \mu \overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$(m_{\mu}/m_{\tau})^2$	31	0.4	1.0	4.7

[LDL, Nardecchia 1706.01868]

• Scale of the SMEFT operator [SU(3)_C \times SU(2)_L \times U(1)_{EM} invariant EFT]

$$\mathcal{L}_{\text{SMEFT}} \supset \frac{1}{\Lambda_{Q_{ij}L_{kl}}^2} \left(\overline{Q}_i \gamma^{\mu} \sigma^A Q_j \right) \left(\overline{L}_k \gamma_{\mu} \sigma^A L_l \right)$$

- can be effectively reduced by flavour structure, e.g.

$$Q^{i} = \begin{pmatrix} (V_{\rm CKM}^{\dagger} u_{L})^{i} \\ d_{L}^{i} \end{pmatrix} \qquad \overline{Q}_{3} Q_{3} \longrightarrow V_{cb} \,\overline{c}_{L} b_{L} \qquad \qquad \Lambda_{Q_{33}L_{33}} / \sqrt{|V_{cb}|} = \Lambda_{R_{D^{(*)}}}$$

Anomaly	\mathcal{O}	FS_Q	FS_L	$\Lambda_A[\text{TeV}]$	$ \Lambda_{\mathcal{O}} $ [TeV]	$\Lambda_U[\text{TeV}]$	$M_{\star}[\text{TeV}]$
$b \to c \tau \overline{\nu}$	$Q_{23}L_{33}$	1	1	3.4	3.4	9.2	43
$b \to c \tau \overline{\nu}$	$Q_{33}L_{33}$	$ V_{cb} $	1	3.4	0.7	1.9	8.7
$b \to s\mu\overline{\mu}$	$Q_{23}L_{22}$	1	1	31	31	84	390
$b \to s\mu\overline{\mu}$	$Q_{33}L_{22}$	$ V_{ts} $	1	31	6.2	17	78
$b \to s\mu\overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$^{\ddagger}m_{\mu}/m_{ au}$	31	1.5	4.1	19
$b \to s \mu \overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$(m_{\mu}/m_{ au})^2$	31	0.4	1.0	4.7

[LDL, Nardecchia 1706.01868]

• Scale of unitarity violation ($\sqrt{s} = \Lambda_U$ saturates pert. unitarity criterium)

$$\Lambda_U = \sqrt{\frac{4\pi}{\sqrt{3}}} \left| \Lambda_{Q_{ij}L_{kl}} \right|$$

- strongest bound from leading op. (effectively rescale by $\sqrt{FS_Q \times FS_L}$)

- correlation of the partial wave in SM-group space strengthens the bound by ~ 2

							\frown
Anomaly	\mathcal{O}	FS_Q	FS_L	$\Lambda_A[\text{TeV}]$	$ \Lambda_{\mathcal{O}} $ [TeV]	$\Lambda_U[\text{TeV}]$ ($M_{\star}[\text{TeV}]$
$b \to c \tau \overline{\nu}$	$Q_{23}L_{33}$	1	1	3.4	3.4	9.2	43
$b \to c \tau \overline{\nu}$	$Q_{33}L_{33}$	$ V_{cb} $	1	3.4	0.7	1.9	8.7
$b \to s \mu \overline{\mu}$	$Q_{23}L_{22}$	1	1	31	31	84	390
$b \to s \mu \overline{\mu}$	$Q_{33}L_{22}$	$ V_{ts} $	1	31	6.2	17	78
$b \to s \mu \overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$^{\ddagger}m_{\mu}/m_{ au}$	31	1.5	4.1	19
$b \to s \mu \overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$(m_\mu/m_ au)^2$	31	0.4	1.0	4.7

[LDL, Nardecchia 1706.01868]

• NDA mass scale in the strongly-coupled regime $|g_{\star}| = 4\pi$

[Manohar, Georgi NPB234 (1984)]

$$\frac{1}{|\Lambda_{\mathcal{O}}|} = \frac{4\pi}{M_{\star}}$$

- unitarity bound sets in earlier !

 $[\mathcal{L}] = [\hbar]/L^4$

$$\mathcal{L}_{\rm EFT} = \frac{M_{\star}^4}{g_{\star}^2} \hat{\mathcal{L}}_{\rm tree} \left[\frac{\partial}{M_{\star}}, \frac{g_{\star} \Phi}{M_{\star}}, \frac{g_{\star} \Psi}{M_{\star}^{3/2}} \right] + \frac{g_{\star}^2 \hbar}{16\pi^2} \frac{M_{\star}^4}{g_{\star}^2} \hat{\mathcal{L}}_{\rm 1-loop} \left[\frac{\partial}{M_{\star}}, \frac{g_{\star} \Phi}{M_{\star}}, \frac{g_{\star} \Psi}{M_{\star}^{3/2}} \right] + \dots \qquad [g_{\star}] = [\hbar^{-1}]$$

Anomaly	\mathcal{O}	FS_Q	FS_L	$\Lambda_A[\text{TeV}]$	$ \Lambda_{\mathcal{O}} $ [TeV]	$\Lambda_U[\text{TeV}]$	$M_{\star}[\text{TeV}]$
$b \to c \tau \overline{\nu}$	$Q_{23}L_{33}$	1	1	3.4	3.4	9.2	43
$b \to c \tau \overline{\nu}$	$Q_{33}L_{33}$	$ V_{cb} $	1	3.4	0.7	1.9	8.7
$b \to s \mu \overline{\mu}$	$Q_{23}L_{22}$	1	1	31	31	84	390
$b \to s\mu\overline{\mu}$	$Q_{33}L_{22}$	$ V_{ts} $	1	31	6.2	17	78
$b \to s\mu\overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$^{\ddagger}m_{\mu}/m_{ au}$	31	1.5	4.1	19
$b \to s\mu\overline{\mu}$	$Q_{33}L_{33}$	$ V_{ts} $	$(m_{\mu}/m_{\tau})^2$	31	0.4	1.0	4.7

[LDL, Nardecchia 1706.01868]

• Most conservative unitarity bounds (no flavour enhancement)

 $\sqrt{s}_{R_D} < 9.2 \text{ TeV} \qquad \qquad \sqrt{s}_{R_K} < 84 \text{ TeV}$

no-loose theorem for HL/HE-LHC ?

EFT [details fit]

- 4 parameters fit: $C_S, C_T, \lambda_{bs}^q, \lambda_{\mu\mu}^\ell \quad (\lambda_{bb}^q = \lambda_{\tau\tau}^\ell = 1)$ [Zürich's guide for combined explanations, 1706.07808]

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T \; (\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \; (\bar{Q}_L^i \gamma_\mu Q_L^j) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right]$$

	Observable	Experimental bound	Linearised expression
	$R_{D^{(*)}}^{\tau\ell}$	1.237 ± 0.053	$1 + 2C_T (1 - \lambda_{sb}^q V_{tb}^* / V_{ts}^*) (1 - \lambda_{\mu\mu}^{\ell} / 2)$
	$\Delta C_9^\mu = -\Delta C_{10}^\mu$	-0.61 ± 0.12 [36]	$-rac{\pi}{lpha_{ m em}V_{tb}V_{ts}^*}\lambda_{\mu\mu}^\ell\lambda_{sb}^q(C_T+C_S)$
	$R^{\mu e}_{b ightarrow c} - 1$	0.00 ± 0.02	$2C_T(1-\lambda_{sb}^q V_{tb}^*/V_{ts}^*)\lambda_{\mu\mu}^\ell$
	$B_{K^{(*)} u ar{ u}}$	0.0 ± 2.6	$1 + \frac{2}{3} \frac{\pi}{\alpha_{\rm em} V_{tb} V_{ts}^* C_{\nu}^{\rm SM}} (C_T - C_S) \lambda_{sb}^q (1 + \lambda_{\mu\mu}^\ell)$
LH Z- T-T coupling	$\delta g^Z_{ au_L}$	-0.0002 ± 0.0006	$0.033C_T - 0.043C_S$
LH Z- ν - ν coupling	$\delta g^Z_{ u_ au}$	-0.0040 ± 0.0021	$-0.033C_T - 0.043C_S$
LFUV in ${f au}$ decays	$ g^W_ au/g^W_\ell $	1.00097 ± 0.00098	$1 - 0.084C_T$
LFV in $ extsf{ au}$ decays	$\mathcal{B}(\tau \to 3\mu)$	$(0.0 \pm 0.6) \times 10^{-8}$	$2.5 \times 10^{-4} (C_S - C_T)^2 (\lambda_{\tau\mu}^\ell)^2$
			1

EFT [details fit]

- 4 parameters fit: $C_S, C_T, \lambda_{bs}^q, \lambda_{\mu\mu}^\ell$ $(\lambda_{bb}^q = \lambda_{\tau\tau}^\ell = 1)$ [Zürich's guide for combined explanations, 1706.07808]

