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O Backfed Input Cell
Input Cell
A Noisy Input Cell
. Hidden Cell
© rrobablistic Hidden Cell
@ spiking Hidden Cell
. Output Cell
. Match Input Output Cell
. Recurrent Cell
. Memory Cell

‘ Different Memory Cell

Kernel

O Convolution or Pool

Markov Chain (MC)

Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

A mostly complete chart of

Neural Networks
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A mostly complete chart of

Neural Networks

Deep Convolutional Network (DCN) Deconvolutional Network (DN)
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Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM)
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Echo State Network (ESN)

https://towardsdatascience.com/




BUILDING BLOCKS

NEURON
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1. LINEAR TRANSFORMATION 2 — W - U —|— b
FREE PARAMETERS

2. NON-LINEAR TRANSFORMATION ¢ (2)  FIXED
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BUILDING BLOCKS

NEURON

x —>©—> o(w -+ b)

2. NON-LINEAR TRANSFORMATION
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THE NETWORK
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MAXIMUM LIKELIHOOD

TO ESTIMATE THE UNKNOWN PARAMETERS @ MAXIMIZE THE PROBABILITY
L(0; x) THAT THEY DESCRIBE THE OBSERVED DATA T

) = arg max L(6; z)

CONSISTENT (CONVERGES IN PROBABILITY TO THE TRUE VALUE)
EFFICIENT (SATURATES THE CRAMER-RAO BOUND)

ASYMPTOTICALLY GAUSSIAN



MAXIMUM LIKELIHOOD
DICTIONARY

ELEMENTARY STATISTICS NEURAL NETWORK
PARAMETERS WEIGHTS AND BIASES
6 w, b
LIKELIHOOD LOSS FUNCTION
L(0; ) —L(w, b; )

DATA TRAINING SAMPLE



FITTING ALGORITHM
SUPERVISED
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A SIMPLE STRATEGY

BINNED HISTOGRAM >  SMOOTH APPROXIMANT

1. LEARN THE DATA DISTRIBUTION n(z|w) =~ n(z|T)
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A SIMPLE STRATEGY

|. LEARN THE DATA DISTRIBUTION n(z|w) ~ n(z|T)

2. CHECK IF IT IS DIFFERENT FROM THE REFERENCE
ONE

—N(W) o0
t(D) —= 2 lOg —N(R) H Pobs — / dt P(t|R)

LUED tobs

\4

STANDARD LIKELIHOOD RATIO
NEYMAN-PERSON TEST STATISTIC

\4
REFERENCE
DISTRIBUTED
TOYS



Events

Events

10%

INPUT
Data sample D

i

0.6 0.8

102 ? T
10;
15

-1 |
10 00

Reference sampl

5

_]:
10 0.0

10%

10°H
10%E

10"

I

X

o—

—e

f(z;w)

é&in D vs. R

X

—e

f(z;w)

.

SUMMARY |

OUTPUT
Dist. log ratio

3

~
<
N—
G

SR

AN ]
data /reference
—1..

0.0 02 0.4 06 0.8 10

flas) =log | )

Test statistic ¢
computed on the
data sample D

N (D) = —2 Min Z{f




THE LOSS FUNCTION

n(z|w) = n(z|R) > NEURAL NETWORK

—N(W)
t(D) = 2 log N H

:I:ED

N(R) |
— —92 Min of(@iw) 1) 7 W)
twh | Nr ;67:3( m;)f

THE NETWORK IS DOING A MAXIMUM LIKELIHOOD FIT TO THE DATA
AND COMPUTING THE "OPTIMAL" TEST STATISTIC AT THE SAME TIME



SUMMARY I

1. TRAIN THE NETWORK ON THE DATA

*INPUT: ONE DATA SAMPLE AND ONE REFERENCE SAMPLE

*OUTPUT: TEST STATISTIC ON THE DATA SAMPLE AND
DISTRIBUTION LOG-RATIO

2. GENERATE TOY DATA SAMPLES THAT FOLLOW THE REFERENCE
DISTRIBUTION AND TRAIN THE NETWORK AGAIN USING THEM
AS DATA

*INPUT: TOY DATA AND SAME REFERENCE SAMPLE AS ABOVE

*OUTPUT: DISTRIBUTION OF THE TEST STATISTIC IN THE
REFERENCE HYPOTHESIS



SUMMARY I
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SENSITIVE TO NEW PHYSICS
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SENSITIVE TO NEW PHYSICS
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INSENSITIVE TO CUTS
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INSENSITIVE TO CUTS
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MODEL-INDEPENDENT
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CONCLUSION AND OUTLOOK

- TODAY IN FUNDAMENTAL PHYSICS WE HAVE LARGE, MULTIVARIATE, SM-LIKE

DATASETS AND STRONG REASONS TO BELIEVE THAT THEY SHOULD NOT BE SM-
LIKE

- OUR BEST GUESSES FOR NEW PHYSICS ARE NOT BEING DETECTED AND
ANYTHING THAT HELPS US TO SEARCH WITHOUT ANY BIAS CAN BE USEFUL

- NEURAL NETWORKS ARE WIDELY USED TO APPROXIMATE PROBABILITY
DISTRIBUTIONS AND ARE IDEAL CANDIDATES FOR THIS TYPE OF PROBLEM

- TODAY | HAVE DESCRIBED AN APPLICATION OF NEURAL NETWORKS,
FOUNDED ON SOLID STATISTICAL PRINCIPLES, WHICH GOES IN THIS DIRECTION

* ITS VIRTUES (SENSITIVITY TO NP, MODEL-INDEPENDENCE, INSENSITIVITY TO
CUTS) HAVE BEEN TESTED ON SIMPLE 1D AND 2D EXAMPLES

* MORE WORK IS NEEDED IN THE 2D AND HIGHER-DIMENSIONAL CASE
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TWO DIMENSIONS

NP: x~EXPONENTIAL+PEAK y~UNIFORM
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AN INCOMPLETE NN CHART

Perceptron (P)

9

fa-aen fo={, 220

Radial Basis Network (RBF)




AN INCOMPLETE NN CHART

Recurrent Neural Network (RNN)

T/
a8

TS OUTPUT AT TIME t DEPENDS
ON ITS PAST OUTPUT (t-1, t-2, ...)

DESIGNED FOR APPLICATIONS

THAT NEED CONTEXT
(TEXT, SPEECH, SOUND RECOGNITION)




AN INCOMPLETE NN CHART

fo = 0g(Wyae +Ughi—1 + by)
it = 0g(Wizy + Ushy—1 + b;)
0r = 04(Woxy + Ughi—1 + by)
Long / Short Term Memory (LSTM) ¢t = froci_1+igoo.(Wexy +Uchi—1 + b.)

ht — 0¢ O O'h(Ct)

TN/
'g‘h;’?“;'g f; = forget gate
QLA T
1+ = 1nput gate

0 = output gate
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AN INCOMPLETE NN CHART

fo = 0g(Wyae +Ughi—1 + by)
it = 0g(Wizy + Ushy—1 + b;)
0r = 04(Woxy + Ughi—1 + by)
Long / Short Term Memory (LSTM) ¢t = froci_1+igoo.(Wexy +Uchi—1 + b.)

ht — 0¢ O O'h(Ct)

oY
ey
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‘('..';‘i'..';‘( SIMPLE RECURRENT

Ot — ]-7it — 17ft =0
(IT DOESN'T FORGET)




AN INCOMPLETE NN CHART

Gated Recurrent Unit (GRU) hy = (1 — Zt) o hy_1
()

9
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V)

‘X‘.;‘X’..’;‘{ ry = 1nput vector

z; = update gate
r+ = reset gate

h: = output



Weak(er) Supervision
Knowns and Unknowns in Learning from Data

Marat Freytsis

U. of Oregon — Tel Aviv/IAS
Beyond SM: Where do we go from here? — GGI, September 19, 2018

Tim Cohen, MF, Bryan Ostdiek
JHEP 1802, 034 [arXiv:1706.09451] + ongoing work




Traditional feed-forward NN classification
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Learnable weights H

Input Layer Hidden Layer Output Layer

teee({ye}, (p}) = =D eilogyp + (1 —y2:)log(l — yp.))

1

requires event-by-event labels for (simulated) training sample — can we relax this?
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Why bother?

In theory there’s no difference be-
tween theory and practice. In prac-
tice there is. — Yogi Berra
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Why bother?

In theory there’s no difference be-
tween theory and practice. In prac-

tice there is. — Yogi-Berra

the data is reality
we can only produce approximations
not always good ones —

ubiquitous situation in jet physics

ideally
e avoid spurious features
e exploit correlations where present
e learn features we haven’t thought of
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https://cds.cern.ch/record/1704268

Plan

e Simulation and its discontents
o Letting data drive with weak supervision

e Other features and approaches
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Supervising with data

real data: can’t assign truth labels, can’t create pure samples
what to do? use mixed training events directly!

OeeeG | OGGCGO®
OO | | ®GCGG®G
©eeee | | ©CCG®G
OO0 | | ®©GGO®
®eeee | | 6CCGO

[arXiv:1708.02949]

only thing known is fractional composition
requires more care than fully curated training data:

e all training sets sample identical distributions
e multiple training sets with different mixtures fs required

fractional labels in physics are observables: integrated cross sections

3/13


https://arxiv.org/abs/1708.02949

Loss functions

how to identify signal events?

1. direct attack (learning with label proportions):

i ({fe} yp}) = (i) — Op.a)

Dery, Nachman, Rubbo, Schwartzman [arXiv:1702.00414]
requires new loss function and training algorithm

2. clever trick (classification without labels):

lowora({fi}: {yp}) = Z \fei = Y.l
Metodiev, Nachman, Thaler [arXiv:1708.02949]
or your fully-supervised loss function of choice

Both of these have antecedents in the ML literature

4/ 13
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Classification without labels

why does the second version work at all? [arXiv:1708.02949]

Theorem

Given mixed samples M, and M» defined in terms of pure samples S and B with signal fractions
f1 > f2, an optimal classifier trained to distinguish M, from M5 is also optimal for
distinguishing S from B.

Proof.

The optimal classifier to distinguish examples drawn from py;, and py, is the likelihood ratio
Ly, jmy (X) = puy (X) /P, (X). Similarly, the optimal classifier to distinguish examples drawn
from pg and pp is the likelihood ratio Lg,/g(x) = ps(x)/pr(x). Where pp has support, we can
relate these two likelihood ratios algebraically:

by _ fips+ (A —fi)pg _ fils/p + (1 = f1)
puy, feps+ (1 —f2)pe feLsp + (1 —f2)’

Loty my =

which is a monotonically increasing rescaling of the likelihood Lg,p as long as fi > f», since
8LS/BLM1 /My = (fi —f2)/(f2Ls/ — f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed
classifier. Therefore, Ls,p and Ly, ym, define the same classifier. O

still need to know f; » if you need to know efficiency/rate

5/ 13
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Performance in simulation

LLP
0.6 T T T T T
—— Fully supervised NN, AUC=0.79 4
—— Weakly supervised NN, AUC=0.79 Ve
051 -~ n, AUC=0.76 2/
- -~ w, AUC=0.78 '
--- 0, AUC=0.77

=
=

Gluon Jet efficiency
o o
[SV) [

=
=

|
0.5 0.6 0.7 0.8 0.9
Quark Jet efficiency

=
==
w '
S
=

[arXiv:1702.00414]

/N full and weak NNs have different architectures here
interpret with caution!
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Performance in simulation

CWoLa

Gluon Background Rejection

1.0

I
%
T

o
=
T

Dense Net
041 =+« w CWoLa 1
— Multiplicity Fisfar = 0.8,0.2
Width pp = H = qd/g9
027 — Mass Pythia 8.183
— rr V5 =13 TeV
LHA my = 500 GeV
0.0 . ! . .
0.0 0.2 0.4 0.6 0.8 1.0
Quark Signal Efficiency

[arXiv:1708.02949]
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Performance in simulation

Jet images

0.87
0.86
0.85

0.84

AUC

0.83

0.82

0.81

0.80

0.79

i —— “4* CWoLa
-e- @ IIP

f1=00
fi=01
fi=02
=03
fi=04

T T T T T T T T T T
100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Number of Training Samples

[arXiv:1801.10158]

also works directly with sparsely populated event-by-event features
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Plan

e Simulation and its discontents
o Letting data drive with weak supervision

e Other features and approaches

8/ 13



Label insensitivity

easier to understand effect of wrong fractions with LLP
ho = fahg—fgha

ha = fah1 + (1 —fa)ho _ fa—Ts
hp = fsh1 + (1 —fB)ho hy = (A—fp)ha—(1—fa)hp
fa—13

optimal classifier z = }ﬁ mis-reconstructed as z’ if f4 — fa + 6
know analytic form of 2’
2/
A Rcut

S
N L4
<—— more signal more background —

9/ 13 Cohen, MF, Ostdiek [arXiv:1706.09451]


https://arxiv.org/abs/1706.09451

A BSM example

Technical details

pp — 88 vs. (Z — vv) +nj, mg=2TeV

simulate in MADGrAPHS + PyTHIAG + DELPHES3
train on p7 of jets
Keras with TensorFLow backend

Loss function BCE
Ninput 11
Hidden Nodes 30
Activation Sigmoid
Initialization Normal
Learning algorithm SGD
Learning rate 0.01
Batch size 64
Epochs 20

10/ 13



A BSM example

Network performance

Network

AUC

Signal efficiency

Full 0.99992393(31)
Weak 0.9998978(35)

0.999373(17)
0.999286(30)

do/dNNyu

do /dNNous

10° 10°
101 Fully supervised . = 10t Fully supervised

§ Background: | S o2f 1

2 2
10 0.019 fb 1 2 U
10 . ! B100E

Signal: | Z 1.
10 0.123 fb 4 o 107 E .
10° Spsf -
2 | N

10° 1000 T

7 S e t
10 glﬂ Sl e
10 s 10°% Lo el
10 107 oo

00 02 04 06 08 10 0 500 1000 1500 2000 2500 3000

NNout Episs [GeV]
10" 10°
10 Weakly supervised 10t Weakly supervised
4 I.'I

10?2 :B reround 102F '

3 ackground; SEa
10 51 5
10 1071 [
107 10°F ) o

-6 2 -6 1 s
10° EL00F T
107 H107k Taa, e
10 i T 10 =
107 : = 100

050 055 0.60 0.65 070 0.75 0.80 0 500 1000 1500 2000 2500 3000

NNout

11/ 13

B [GeV]



A BSM example

Impact of mismodelling

-
o
—
o

o
©
I
©

o
0
e
0

— Fully supervised (original)

o
=
4
=

—  Weakly supervised (original)

True positive rate
=3
~

True positive rate
(=3
~

0.5 05} — - Fully supervised (mis-modeled)
1 — - Weakly supervised (mis-modeled)
0.4 . s ‘ ‘ 0.4 . . . .
10—5 10—4 10—3 1072 1071 10(! 10~5 104 10-3 10-2 10-1 100
False positve rate False positve rate
randomly swap 15% of each class swap the 10% (15%) most signal-like

(background-like)
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Open questions, concrete & speculative

performance for multi-component classification?
» does CWoLa even have a multi-component generalization?

how do the optimality arguments change at finite statistics?
can we propagate input uncertainties through the network?
> would this be useful?

can we invert any of this to see what our models get wrong

can we go even weaker?
> e.g., Hopfield networks, Boltzmann machines, etc.

» can solve certain classification tasks unsupervised
> some use in astrophysics, nearly no collider proposals to date

> unsupervised anomaly detection already demonstrated

» CWoLa [arXiv:1805.02664]
> auto-encoders (coming up next...)
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Searching for New Physics with
Deep Autoencoders

Yuichiro Nakai (Rutgers)

Based on M. Farina, YN and D. Shih, arXiv:1808.08992 [hep-ph].



Supervised or Unsupervised

Machine learning algorithms can be classified into:

—— Supervised learning

Learn from labeled data

Known Data

Knowr
Response

Its an
— apple!

These are

apples 6 ?

Now Data Anirudh Sharma

Applications)

Classification Regression
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Unsupervised learning ——

Learn from unlabeled data
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Model
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The system looks for patterns
and extracts features in data.

Applications)  Clustering
Anomaly detection
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Machine learning algorithms can be classified into:

—— Supervised learning

Learn from labeled data

Its an

< apple!
®=
e

el
Response

These are

apples
®?
) wa

Applications)

Anirudh Sharma

Classification Regression

ot c @
\\ ...,.‘
ot E
\s\ + ‘ ,‘.’
%% . 0 -
o® o, 00 ©
.G‘. : /..
e % >

Unsupervised learning ——

Learn from unlabeled data

= 00

)

(e

The system looks for patterns
and extracts features in data.

Applications)  Clustering
Anomaly detection




Anomaly Detection

We have considered many possibilities of BSM physics with top-down
theory prejudice (supersymmetry, extra dimension, ...)

SUPERSTRIN G

M—theovry hetevotic)
Ga ﬂolono-;, EgxEgp
Type-EXEA Type-XI

SGrond s'ues) o
- Cd ni€Eccalion Ry

Anti-vmoatter [
Ay —em e e

Aoy
YET

THOUGAMT o

T HOUOUOGHAT o~

Hitoshi Murayama

We need more ways to discover the unexpected at the LHC, and here is
where unsupervised machine learning comes into play.




Autoencoder

Autoencoder is an unsupervised learning algorithm that maps
an input to a latent compressed representation and then back to itself.

Latent space

l
—> Encoder —>i—> Decoder —>

Original
input

Reconstructed
input

Compressed

representation The Keras Blog

Anomaly detection with autoencoder

e Autoencoder learns to map background events back to themselves.

e |t fails to reconstruct anomalous events that it has never encountered.

= Signal the existence of anomaly !




Sample Generation

The idea is general, but concentrate on detection of anomalous jets.

Generate jet samples by using PYTHIA for hadronization and Delphes for
detector simulation.

Background : QCD jets  p, €[800, 900] GeV |1 <1

Signal jets: top jets, RPV gluino jets m, =400 GeV

(decay to 3 light quark jets)

Match requirement : heavy resonance is within the fat jet, AR<0.6

Merge requirement : the partonic daughters of heavy resonance
is within the fat jet, AR <0.6

We use sample sizes of 100k events for training and testing.
(The performance seems to saturate.)



Jet Images

Concentrate on jet images ( 2D of eta and phi ) whose pixel intensities
correspond to total pT.

Image pre-processing

1. Shift an image so that the centroid is at the origin
2. Rotate the image so that the major principal axis is vertical

3. Flip the image so that the maximum intensity is in the upper right region

4. Normalize the image to unit total intensity

5. Pixelate the image ( 37 x 37 pixels)

Average images

Left : top jets
Right : QCD jets

Macaluso, Shih (2018)



Autoencoder Architectures

Reconstruction error : a measure for how well autoencoder performs.

A I « A 12 X :inputs
L(x,x)= —2 X.—X. n

. output
n-“- X :outputs

Train autoencoder to minimize the reconstruction error on
background events.

Architectures we consider :

v Principal Component Analysis (PCA)

v Simple (dense) autoencoder

v Convolutional (CNN) autoencoder '




Principal Component Analysis

PCA is a technique to drop the least important variables
by focusing on variance of data.

. ) Original data First PC Reconstruction
Find the axis

and project
data to the axis

Eigenvectors of covariance matrix of X, —€, (€, = Zn x |/ N) give desired axes.

= [ = (31 €, .. ed) d : the number of principal components (d <D )

“PCA autoencoder”

“Encoder”: x =(x, —c,)I “Decoder”: x' =% T" +¢,




Simple Autoencoder

Autoencoder with a single dense (fully-connected) layer
as encoder and as decoder.

Encoder Decoder

v Encoder and decoder are symmetric.

v The number of neurons in a hidden layer = 32.

v Flatten a jet image into a single column vector. Input

v We use Keras with Tensorflow backend for implementation.

Training details

4+ The default Adam algorithm for optimizer.

. , The number of images fed into the network at one time
4+ Minibatch size of 1024 ~——

~100 iterations of optimization in one epoch

4+ Early stopping : threshold = 0 and patience =5 «— To avoid overtraining
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Convolutional Autoencoder

Convolutional Neural Network (CNN)

v Show high performance for image recognitions

v Maintain the spacial information of images

4X1+9%x0+2x(-1)
+5X1+6XxX0+2X%(-1)
+2X1+4Xx0+5%x(-1)=2

Input

Convolutional layer

Weights
<

Filter 1

=

I
8

B (5200
h

&7

T -

[

|

<
i

3

2

8

1

4

(43} (&)} (6]

N (&)} £
(o] ~ (=] B (o)} ©

($,} ~ (5] (33} N N
w © L= e

(o] N ~ ($3]

6x6x3

3x3x3

Filter 2

convolution

pooling

18>0 (Cat, 0.67)

xf‘) (Dog, 0.21)
) (Pig, 0.06)

\

Jojele)

fully-connect 2

Feature maps

4x4

4x4

N\

Output

4x4x2

Max pooling

arXiv:1712.01670

Reduce the image size

Single depth slice

1

1

2

4

max pool with 2x2 filters
and stride 2 6| 8

5
3
1

6
2
2

7
1
3

8
0
4

y

Up sampling (pooling)
also exists in autoencoder.
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Convolutional Autoencoder

Autoencoder architecture :

Convolution step (convolution + pooling) Fully connected encoding step Deconvolution step (deconvolution + unpooling)

]
|

M. Ke, C. Lin, Q. Huang (2017)

Encoder Latent space Decoder

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with MP2 : max pooling with
a 3x3 kernel a 2x2 reduction factor

32N : a fully-connected layer US2 : up sampling with
with 32 neurons a 2x2 expansion factor



Convolutional autoencoder

1.0

0.8

0.6

0.4

0.2

0.0

Autoencoder learns to reconstruct the QCD background.

Weakly-supervised mode

12

Weakly-supervised case with pure background events for training.

QCD
t

G (400 GeV)

/

10-7 /

107>

Reconstruction Error

N\

Average images

N\

Inputs

Outputs

Pixel-wise
squared error

QCD

Top

Gluino

More error

Autoencoder fails to reconstruct the signals.

Reconstruction error is used as an anomaly threshold.



Autoencoder Performance

Performance measure :

_ (Correctly classified into signals)

S

(Total number of signal jets)

(Misclassified into signals)

B

104§

1000}

1/EB

100}

10¢

CNN
Dense

Mass

CNN outperforms

Jet mass as

anomaly
threshold

B (Total number of backgrounds)

the others.

Qco .
t | |
1o § (400 GeV) -
0.8 :
]
os| Larger £ ; ) Smaller £
oa| Larger &, - Smaller £,
0.2 :
0.0 106 10=5 10
Recons truction Errqg

1000+

1045—

vvvvvvvvvvvvvvvvvvvv

CNN
Dense

Gluino jets

Mass

For gluino jets, PCA ROC curve approaches jet mass ROC curve,

13

suggesting PCA reconstruction error is highly correlated with jet mass.



Choosing the Latent Dimension k

Too smallk = Autoencoder cannot capture all the features.

Too large k -} Autoencoder approaches trivial representation.

Optimizing the latent dimension using various signals is NOT a good idea.

Instead, we use the nhumber of principal components in PCA and

reconstruction error.

Amount of variance (“scree plot”) :

orfte

06 Choose k close to
05! the “elbow”
0.4/ or

Eigenvalue

©
w
————

o
)

: % of total variance
We choose i

k=6_ 0-02

Consider cumulative

4 6 8 10

Component Number

Loss x 10°

N
o
—

Reconstruction error :

25—

20}

N
a
—

()]
—

CNN

Similar behavior
as scree plot.

Encoding Dimensions

14



Choosing the Latent Dimension k

Let’s examine our choice by looking at the top signal.

0.75F

E1o

0.40}

0.70!
0.65!
0.60
0.55!
0.50]

0.45F

10, 100
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
—O— —
—0
Dense
CNN
“““““““““““““““““““““
5 10 15 20 25 30

Encoding Dimensions

Each dot corresponds to the average of 5 independent training runs.

Autoencoder performance plateaus around k = 6.

0.20}

0.05

0.00}

: the signal efficiency at 90% and 99% background rejection

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Dense
CNN

Encoding Dimensions
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Robustness with Other Monte Carlo

Autoencoder really does not learn artifacts special to a Monte Carlo?

One possible check :

Evaluate autoencoder (trained on PYTHIA samples) on jet samples
produced with HERWIG.

1.2

Comparison of QCD Pythia
- QCD Herwig

reconstruction error 1.0 ¢ Pythia

(top jets, CNN) 1 t Herwig

0.8

The differences are small. ~—_08
\

Separation between 0.4
background and anomaly
is preserved.

0.2

0.0

-7.0 —-6.5 -6.0 -5.5 -5.0 —-4.5 -4.0
Reconstruction Error

Autoencoder probably learns fundamental jet features.



17
Unsupervised mode

A much more exciting possibility is to train autoencoder on actual data
(which may contain some amount of signals).

Train autoencoder on a sample of backgrounds contaminated by
a small fraction of signal events.

S Autoencoder performance is remarkably stable
against signal contamination.

Reduction is not dramatic !
Top jets for anomalous events

F—— . -~ _r - T T T T T T T T T T T T T T 7 ] Fr T T > - T T T T~ { T T T T T T T T T T 7
0.75F 1 / ]
F Dense 1 0 L Dense |
I CNN / CNN ]
0.70 > I 1
[ v

0.65]

0 i j N : :

0.55 0.05

. ey ] 000* ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ]

Contamination ratio Contamination ratio



Correlation with Jet Mass

In actual new physics searches, we look for subtle signals ...

It’s more powerful to combine autoencoder with another variable
such as jet mass.

Cut hard on reconstruction error to clean out the QCD background
and look for a bump in jet mass distribution.

= =

Reconstruction error should not be correlated with jet mass.

vvvvvvvvvvvvvvvvvvvvvvv

w
o
o

Mean jet mass in bins of reco error |
for the QCD background 5 / |

For PCA and dense, reco error
Is correlated with jet mass.

Mean Jet Mass [GeV]
o
2N

100+

Jet mass distribution is stable | N

against cutting on CNN loss. I T B T S

Reconstruction Error x 108

18
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Correlation with Jet Mass

Jet mass distributions after cuts on CNN loss

0.0045

oo Ctiooo a factor of 10, 100 and 1000.

0.0030

L5110 ‘ Reduce the QCD background by

0.0025

0.0020

Convolutional autoencoder is useful for
a bump hunt in jet mass above 300 GeV.

0.0005

0.0000

0 100 200 300 400 500 600 700
Jet mass [GeV]

Jet mass histograms normalized to LO gluino and QCD cross sections

o1rs aco 0.00008 QCD
g 0.00007 g
0.0150
0.00006
00125 Before the cut After the cut
0.00005
0.0100 S / B = 4% 0.00004 S / B = 25%
0.0075 *
0.00003
0.0050 0.00002
0.0025 0.00001
0-0000 3050 350 400 450 500 550 T 350 400 450 200 >30

Jet mass [GeV] Jet mass [GeV]



Comments on “QCD or What?”

T. Heimel, G. Kasieczka, T. Plehn, J. Thompson, arXiv:1808.08979 [hep-ph].

They also consider anomaly detection through autoencoder.

Signal jets : top jets, scalar decay to jets, dark showers

Performance is comparable.

Background rejection 1/gg

10° .

[

o
¥

Al

)

o
—
A

109

0.0

0.2

0.4 0.6
Signal efficiency &<

0.8

1.0

pp — (@ — aa — cc cc)+ jets
m,=4 GeV  m,=m, =175 GeV

2
Q 104 -
—
— Non-Adversana
= Bottleneck 32
g AUC 0.90
2
=
5 10?
e
2
(.
=
Adversarial
Bottleneck 32
AUC 0.60
109

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency &«
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Comments on “QCD or What?”

Correlation with jet mass

They take an alternative approach using adversarial networks.

Additional adversary tries to extract ‘ ' Autoencoder wants the adversary
jet mass from autoencoder output. to be as unsuccessful as possible.

Autoencoder will avoid all information on jet mass.

Non-adversarial Adversarial

least QCD-like . 3 100%

70%
40%
10%

5% Flatten

least QCD-like /

normalized distribution
(=
o
=
o

, T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
jet mass [GeV] jet mass [GeV]




Summary

v Autoencoder learns to map background events back to themselves
but fails to reconstruct signals that it has never encountered before.

v Reconstruction error is used as an anomaly threshold.

v Autoencoder performance is stable against signal contamination
which enables us to train autoencoder on actual data.

v Jet mass distribution is stable against cutting on CNN loss and
convolutional autoencoder is useful for a bump hunt in jet mass.

v Thresholding on reco error gives a significant improvement of S/B.

22



Future directions

v Testing out autoencoder on other signals.
( Other numbers of subjets, non-resonant particles, ... )

v Training autoencoder to flag entire events as anomalous,
instead of just individual fat jets.

v Trying other autoencoder architectures on the market to improve
the performance.

v Understanding what the latent space actually learns.
( Jet mass? N-subjettiness? )

Autoencoder is a powerful new method to search for
any signal of new physics without prejudice !

Thank you.

23



Backup Material



A1
What is Machine Learning?

Machine learning : technique to give computer systems the ability
to learn with data without being explicitly programmed.

D

Machine can learn the feature of data which human has not realized !

Neural Networks

Input Hidden Output
v Powerful machine learning-based techniques layer layer layer

used to solve many real-world problems

Weights

Output

v Modeled loosely after the human brain

v Containing weights between neurons
that are tuned by learning from data

Networks contain multiple hidden layers -} Deep Iearning



What is Machine Learning?

The goal of training is to minimize loss function :

L= f(p(®.x).y)

Mean squared error (MSE) :

Cross entropy :

Loss function

A

/ Initial weights

Minimum

p(0,x;) : Prediction @ : Weights

X, :Input Y, : Target value of example [

f(p.y)=(p-y)

f(p,y)=—(ylogp+1-y)log(l-p))

Weights are updated according to
derivative of loss function :

AO=-nVL

?
|

Learning rate

» Weights 0

A2



Keras Codes

» Simple autoencoder

© 00 J O T = W N =

—_—
_ O

input_img = Input (shape=(37*37,))

layer = Dense (32, activation=’relu’) (input_img)
encoded = Dense (6, activation=’relu’) (layer)
layer = Dense (32, activation=’relu’) (encoded)
layer = Dense (37*37, activation=’relu’) (layer)

decoded=Activation(’softmax’) (layer)

autoencoder=Model (input_img ,decoded)
autoencoder .compile(loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.Adam())

A3



Keras Codes

e Convolutional autoencoder

© 00 J O O = W N =

N N T NG I NG T NG T N T N T N T e G S G e SO e Gy S G S et
NN O O = W N = O © 00 O O i WO N = O

input_img=Input (shape= (40, 40, 1))

layer=input_img

layer=Conv2D (128, kernel_size=(3, 3),
activation=’relu’,padding=’same’) (layer)

layer=MaxPooling2D (pool_size=(2, 2),padding=’same’) (layer)

layer=Conv2D (128, kernel_size=(3, 3),
activation=’relu’,padding=’same’) (layer)

layer=MaxPooling2D (pool_size=(2, 2),padding=’same’) (layer)

layer=Conv2D (128, kernel_size=(3, 3),
activation=’relu’,padding=’same’) (layer)

layer=Flatten () (layer)

layer=Dense (32, activation=’relu’) (layer)

layer=Dense (6) (layer)

encoded=layer

layer=Dense (32, activation=’relu’) (encoded)

layer=Dense (12800, activation=’relu’) (layer)

layer=Reshape ((10,10,128)) (layer)

layer=Conv2D (128, kernel_size=(3, 3),
activation=’relu’,padding=’same’) (layer)

layer=UpSampling2D ((2,2)) (layer)

layer=Conv2D (128, kernel_size=(3, 3),
activation=’relu’,padding=’same’) (layer)

layer=UpSampling2D ((2,2)) (layer)

layer=Conv2D (1, kernel_size=(3, 3),padding=’same’)(layer)

layer=Reshape ((1,1600)) (layer)

Ad



CWolLa Hunting

J. Collins, K. Howe, B. Nachman, arXiv:1805.02664 [hep-ph].

Another approach to anomaly detection to extend bump hunt
with machine learning.

Mass distribution target
[ |

I e I
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CWola labels

sideband

Classification without labels (CWolLa)

A classifier is trained to distinguish
statistical mixtures of classes.

— Toy model

Y =(x,y)

Background :

Signal :

—05<x<0.5

—05<y<0.5

—w/2<x<w/2
—w/2<y<w/2

A5

Mixed Sample 1

Mixed Sample 2
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Classifier

Metodiev, Nachman, Thaler



