Discussion on Future Colliders

Marie-Helene Genest, Howard E. Haber, and James Olsen
26 September 2018

The Galileo Galilei Institute
For Theoretical Physics

Centro Nazionale di Studi Avanzati dell’Istituto Nazionale di Fisica Nucleare

Arcetri, Firenze
Lessons from the Past

- Last of the no-lose theorems
- Make the best physics case possible
- Ignore political realities at your peril
- A bird in the hand is worth two in the bush
The current status of particle physics

With the discovery of the Higgs boson, we have entered a new era of particle physics

- There is no longer a no-lose theorem to guarantee future discoveries
- We are in a data-driven era—i.e., we depend on new data to guide future directions in BSM physics
- The principle of naturalness, although not dead, is under tension.
- So how do we motivate the next generation of colliders?
Do we really know the particle content of the TeV-scale effective theory?

- The scalar sector of the SM has a single Higgs boson. Why not multiple families of Higgs scalars?
- What about vector-like quarks and leptons?
- Flavor anomalies have revived interest in leptoquarks.
- Are there new gauge bosons lurking in the region of 1—10 TeV?
- Dark matter may be the tip of the iceberg. The structure of the dark sector could be highly non-minimal. Future colliders may provide opportunities to access the dark sector (e.g., via the Higgs portal).
So, where do we go from here?

- Explore the Higgs sector as thoroughly as possible (since, you have never seen anything like it before).
 - Experimental studies at present and future colliders
 - Implications for early universe cosmology

- Precision, precision, precision.

- Exploit the LHC to its maximum.

- Provide a roadmap for future energy-frontier facilities.
Of course any significant deviation seen in other sectors could have the same impact – there is a lot of data left to analyse!

Dec 2018: ILC?
- Explore the Higgs with high precision (eventually going to top threshold?) -> May start program towards the end of HL-LHC

2019-2020: LHCb, Belle II could confirm anomalies: pointing to a scale?* (g-2) : 1st new measurement

2025-2035(9?): HL-LHC running
- Transition to HE-LHC - as soon as magnets ready to change the data taking slope? (price vs gain?)
- e (60 GeV) - p in HL-LHC (PDFs?)? Price vs gain?

FCC-hh?: scan for NP at high energy
- Motivation if no sign of NP?
- No no-lose theorem...

FCC-ee? Longer timescale?

CLIC? Much longer timescale?

CEPC? Longer timescale?
Funding possibly ok but # international experts an issue for parallelization?

Magnet development needed!

SppC? A stepping stone?
<table>
<thead>
<tr>
<th>The 5 P’s</th>
<th>ILC (250)</th>
<th>CLICino</th>
<th>FCC-ee</th>
<th>CEPC</th>
<th>FCC-hh</th>
<th>SppC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics case</td>
<td></td>
<td>Precision exploration of Higgs Can probe BSM indirectly -> point to a scale?</td>
<td></td>
<td></td>
<td></td>
<td>Triple-Higgs coupling at 5%... Possible direct access to BSM No no-lose theorem, but broader exploration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Top threshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beam E measurement -> better precision Z program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress needed</td>
<td>shovel ready ?</td>
<td>Design report by the end of the year?</td>
<td>No CDR yet</td>
<td>No TDR yet</td>
<td>Magnet development needed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HE-LHC as a first step?</td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>40% cost reduction => descope 1st energy goal</td>
<td>~FCC-ee</td>
<td>Tunnel = cost of HE-LHC</td>
<td>Smaller need of international funding?</td>
<td>x 2-3 FCC-ee/CEPC [1]?</td>
<td></td>
</tr>
<tr>
<td>Politics</td>
<td>Needs Japanese ok by the end of 2018</td>
<td>CERN: existing center / maintain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multiple international centers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e^+e^- easier to ‘sell’ ? / stepping stone while waiting for magnet development?</td>
<td></td>
</tr>
<tr>
<td>Possibilities for the future</td>
<td>Increase to 500 GeV; or new acc. techniques?</td>
<td>-> 1.5 TeV -> 3 TeV</td>
<td>Stepping stone for future hadronic collider</td>
<td></td>
<td>Far future...</td>
<td></td>
</tr>
</tbody>
</table>

[1] https://arxiv.org/abs/1509.08369 by the director of APC Fermilab
Future scenarios

How would CERN respond to:
• Japan willing to host the ILC
• China going forward with CEPC (possibly followed by SppC)

Possible combinations?
• ILC + HE-LHC
• ILC + FCC-hh(+ee?)
• ILC + CEPC (#experts?)
• FCC-ee + FCC-hh / CEPC + SppC
• CLIC + CEPC (#experts?)
• CLIC

Thinking outside the box
• muon colliders [2]: proton on target (and then cool) vs positron on target at production threshold; energies from Higgs threshold up to 30 TeV
• high gradient, high power e⁺e⁻ linear collider in the TeV class [3]

[2] see e.g. https://indico.cern.ch/event/719240/