
QCD - introduction
lagrangian, symmetries, running coupling, Coulomb 

gauge



Lagrangian



has approximate chiral symmetry

has approximate SU(3) flavour symmetry

accounts for the parton model

has colour

and colour confinement

is renormalizable

Quantum Chromodynamics
we require a theory which



QCD

gauge SU (3)c
local gauge invariance (QED):

impose local gauge symmetry:

ψ(x) → e−iΛ(x)ψ(x)

L =
∫
ψ̄γµ∂µψ →

∫
ψ̄γµ(∂µ + ieAµ)ψ Aµ → Aµ + ∂µΛ

and get an interacting field theory:

A → A + ∇Λ φ → φ − Λ̇



Quantum Chromodynamics
local gauge invariance (QCD):

impose local gauge symmetry: ψ(x)a → Uabψ(x)b

for invariance of L:

L =
∫
ψ̄aδ

abγµ∂µψb →
∫
ψ̄a

(
δabγµ∂µ + igγµ(Aµ)ab

)
ψb

Aµ → UAµU † +
i

g
U∂µU †

Fµν ∝ [Dµ, Dν ] = ig(∂µAν − ∂νAµ) − g2[Aµ, Aν ]

eight gluons



1

LQCD =
nf∑

f

q̄f [iγµ(∂µ + igAµ) − mf ]qf − 1
2
Tr(FµνFµν)

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

Aµ = Aa
µ
λa

2

[
λa

2
,
λb

2
] = ifabc λc

2
Tr(λaλb) = 2δab (1)

flavour, colour, Dirac indices

QCD

L� = �
g2

64�2
Fµ�F̃µ�









Symmetries



symmetries in (classical) field theory 

q � f(q) jµ �µjµ = 0

d

dt

�
d3x j0 �

d

dt
Q =

�
d3x� ·�j = 0



symmetries in QCD

U(1)V

q � e�i�q jµ = q̄�µq = ū�µu + d̄�µd Q =
�

d3x (u†u + d†d)

symmetry current charge

‘baryon number conservation’ p� e+�

[violated by EW anomaly] in full SM need 1-gamma_5, which 
intrduces anomaly, ’t Hooft efff L has a 
prefactor of exp(-2 pi/alpha_2) ~ 10^-70



symmetries in QCD

symmetry current charge

U(1)A mu = md = 0

q � e�i�5�q jµ5 = ū�µ�5u + d̄�µ�5d Q5 =
�

d3x (u†�5u + d†�5d)

�µjµ5 =
3�s

8�
FF̃

this symmetry does not exist in the quantum theory



symmetries in QCD

symmetry current

mu = md = 0

this symmetry does not exist in the quantum theory

scale invariance

x� �x
q � �3/2q(�x)
A� �A(�x) jµ = x��µ�

�µjµ = �µ
µ = 0

�µ
µ = mq̄q +

�s

12�
F 2



symmetries in QCD

symmetry current charge

ja
µ = ψ̄γµT a

Fψ Qa =
∫

d3xψ†T a
Fψ

H|π−⟩ = Eπ− |π−⟩; Q+H|π−⟩ = Eπ− |π0⟩; H|π0⟩ = Eπ− |π0⟩

Q+|π−⟩ = 1√
2

∫
d3x

(
b†(x)τ+b(x) − d†(x)τ−d(x)

)
|π−⟩ = |π0⟩

q → eiθT a
F q

SU(3)V

this symmetry is explicitly broken by 
quark mass and EW effects

mu = md isospin



q → e−iθT aγ5q ja
µ = ψ̄γµγ5T aψ

symmetry current charge

Q =
∫

d3xψ†γ5T aψa

SU(3)A

5

transform the vacuum:

eiθaQa
5 |0⟩ = |0⟩

Qa
5|0⟩ = 0

symmetries in QCD

mu = md = 0

This symmetry is realised in the Goldstone mode.

Wigner mode}



eiθaQa
5 |0⟩ = |θ⟩ ≠ |0⟩

H |θ⟩ = HeiθaQa
5 |0⟩ = eiθaQa

5 H |0⟩ = E0|θ⟩

so there is a continuum of states degenerate 
with the vacuum

Excitations of the vacuum may be interpreted as
a particle. In this case fluctuations in theta are
massless particles called Goldstone bosons.

SU(3)A

symmetries in QCD

Goldstone mode}

HFM: spin direction is signalled out 
(NOT by an external field) it could be 
any direction, so small fluctutatiopns (or 
large) do not cost energy -> gapless 
dispersion relationship, E ~ k or k^2.



symmetries in QCD

Goldstone boson quantum numbers:

|δθ⟩ = θaQa
5 |0⟩

∼ θa

∫
d3xb†(x)T a

F d†(x)|0⟩

spin singlet, spatial singlet, flavour octet   ⇒ the pion octet

SU(3)A



Chiral Symmetry Breaking

SUL(2) × SUR(2) × UA(1) × UV (1)



ψ → e
iθ·τψ

ja
V µ = ψ̄γµτaψ

Qa
V =

∫
d3xψ†τaψ

[H, Qa
V ] = 0

equal quark masses

Isospin Invariance



Qa
V =

∫

d3k

(2π)3

[

b
†
k
τabk − d

†
k
(τa)T dk

]

Isospin Invariance

H(Qa
V |M⟩) = EM (Qa

V |M⟩)

[H, Qa
V ] = 0

Q+
V
|ρ0⟩ = Q+

V

1√
2
(|uū⟩ − dd̄⟩)

Q+
V
|ρ0⟩ =

1√
2
(−|ud̄⟩ − |ud̄⟩)

Q+
V
|ρ0⟩ ∝ |ρ+⟩



Axial Symmetry

[H, Qa
A] = 0

ψ → e
iγ5θ·τψ

ja
Aµ = ψ̄γµγ5τ

aψ

Qa
A =

∫
d3xψ†γ5τ

aψ



Axial Symmetry

Qa
A1 =

∫
d3k

(2π)3
ck

[
b†kλ2λbkλ − d−kλ2λd†

−kλ

]

Qa
A1 (| + +⟩ + |−−⟩) = (| + +⟩ − |−−⟩)

Qa
A1 (| + −⟩ + |− +⟩) = 0

J (J)(J)
H = J (J+1)(J)



Axial Symmetry

Qa
A2 =

∫
d3k

(2π)3
sk

[
b†kτad†−k + d−kτabk

]

pion RPA creation operator!

Qa
A2|M⟩ = |Mπa⟩



Goldstone’s theorem says nothing about 
the excited pion spectrum.

π′(1300) ≈ ρ′(1450)



gluons



A three jet event at DESY. August, 1979

John Ellis, Mary Gaillard, Graham Ross

Quantum Chromodynamics
Q: are these peculiar gluons real? 

There was indirect evidence from deviation from 
DIS scalang. Direct evidence was achieved at 
DESY with three jet events.

REF:http://cerncourier.com/cws/article/cern/
39747

http://cerncourier.com/cws/article/cern/39747


Running Coupling



running coupling

µ
dg(µ)
dµ

= − β0

(4π)2
g3(µ)

12
3 Nc − 1

3Nc − 2
3Nf

Khriplovich Yad. F. 10, 409 (69)

1

αs(µ2) =
4π

(11 − 2
3nf ) ln µ2/Λ2

QCD

(1)





the running 
coupling ...
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In the infrared limit ; there is no scale dependence.�(µ)� ��

Thus the theory is conformal and chiral symmetry 
breaking and confinement are lost.

The Conformal Window
Walking Technicolour

For Nf < NAF

alpha* may be small enough for pert 
to be always valid!



 Banks -Zaks conformal window (of interest for walking TC 
models)

the theory flows to this conformal pt in the IR

For QCD this happens when 

16.5 > Nf > 8.05 

or more generally, since we really need the full form of beta.



Banks and  Zaks, NPB196, 189 (82)
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The Conformal Window
Walking Technicolour

For walking TC we want to sit just below the 
conformal window.



running coupling



QED & charge screening

-

running coupling

+

+
+

-

-
-

r � 0r ��



running coupling

r

QCD & charge antiscreening

r

gr

gb

r

r

b

r
r

r
r



Properties: Asymptotic Freedom

Frank Wilczek
(1951-)

QCD and anti-screening



Coulomb Gauge



Why Coulomb Gauge?

• Hamiltonian approach is similar to CQM 
• all degrees of freedom are physical, no constraints need be  
  imposed  
• [degree of freedom counting is important for T>0] 
• T>0 chooses a special frame anyway 
• no spurious retardation effects 
• is renormalizable (Zwanziger) 
• is ideal for the bound state problem 
• very good for examining gluodynamics



Derivation

minimal coupling:

gauge group:

gauge  (Faraday) tensor:



define the chromoelectric field:

define the chromomagnetic field:

Ei = F i0

Eia = �Ȧia ��A0a + gfabcA0bAic

Bi = �1
2
�ijkFjk

�Ba = �� �Aa +
1
2
gfabc �Ab � �Ac

Coulomb Gauge



Equations of motion:

Gauss’s Law ( ):

Introduce the adjoint covariant derivative

�� �L
�(��Aa�)

=
�L

�Aa�

��F a
�� = gja

� + gfabcF b
�µAcµ

� · �Ea + gfabc �Ab · �Ec = g�a
(q)

�Dab = �ab�� gfabc �Ac

�Dab · �Eb = g�a
(q)

Coulomb Gauge



resolve Gauss’s Law:

Use this in Gauss’s Law to get:

�E = �Etr ��� � · �Etr = 0 � · �A = 0 � · �B = 0

�( �Dab ·�)� = g�a

�a = �q
(q) + fabc �Eb

tr · �Ac

Coulomb Gauge

�Dab · �Eb = g�a
(q)

define the full colour charge density:



Solve for ϕ:

�( �Dab ·�)� = g�a

�a = � g

� · �D
�a

� · �Ea = �� · DabA0b = ��2�a

A0b =
1

� · �D
(��2)

1
� · �D

g�b

Coulomb Gauge

notice that this is a “formal” solution

We have two expressions for the divergence of E



H =
1
2
(E2 + B2) =

1
2
(E2

tr � ��2� + B2)

Hc =
1
2

�
d3xd3y �a(x)Kab(x, y;A)�b(y)

Kab(x, y;A) = �x, a| g

� · �D
(��2)

g

� · �D
|y, b�

Coulomb Gauge

{



A complication due to the curved gauge manifold

g = metric Faddeev-Popov determinant

Inner product:

Ĥ =
1

2m
g�1/4 p̂ig

ijg1/2p̂jg
�1/4

J = det(� · �D)

H =
1
2

�
d3x (J�1��J · �� + �B · �B)

��|�� =
�

DAJ��� H � J 1/2HJ�1/2

Coulomb Gauge



Schwinger, Kriplovich 
Christ and Lee

Hq =
�

d3x�†(x)(�i� ·�+ �m)�(x)

HY M = tr
�

d3x (J�1�� · J �� + �B · �B)

Hqg = �g

�
d3x�†(x)� · �A�(x)

HC =
1
2

�
d3xd3yJ�1�a(x)Kab(x, y;A)J �b(y)

�a(x) = �†(x)T a�(x) + fabc��b(x) · �Ac(x)

Kab(x, y;A) = �x, a| g

� · �D
(��2)

g

� · �D
|y, b�

Coulomb Gauge



does not uniquely specify the gauge field.

Zwanziger

• The absolute minimum of F[g] fixes one field configuration on the  
gauge orbit. The set of such minima is the Fundamental Modular Region. 

• The  Faddeev Popov operator is positive definite in the FMR

• � · �A = 0

FA[g] = tr
�

d3x ( �Ag)2

�Ag = g �Ag† � g�g†

The Gribov Ambiguity



Coulomb gauge and the Gribov problem

� · �Aa = 0

det(∇ · D) = 0

The Gribov Ambiguity

.A1



Coulomb gauge and the Gribov problem
det(∇ · D) = 0

Gribov region

Fundamental modular 
region

The Gribov Ambiguity

� · �Aa = 0



Fundamental modular region
Gribov region

FMR is convex
GR contains the FMR
FMR contains A=0

physics lies at the intersection 
of the FMR and GR

identify boundary 
configurations

Zwanziger; van Baal

det(∇ · D) = 0

Coulomb gauge and the Gribov problem

The Gribov Ambiguity



a

a i

Feynman Rules



i1
i2

in

a

b

k1

k2

kn+1

Feynman Rules



an instantaneous potential that depends on the gauge potential

K is renormalization group invariant

K is an upper limit to the Wilson loop potential

K(x − y;A)

H =
1
2

∫
dx

(
E2 + B2

)
−1

2

∫
dxdyfabcEb(x)Ac(x)⟨xa| g

∇ · D∇2 g

∇ · D |yd⟩fdefEe(y)Af (y)

K generates the beta function

K is infrared enhanced at the Gribov boundary 0.0 2.0 4.0 6.0 8.0 10.0
r/r0

-10.0

-5.0

0.0

5.0

10.0

15.0

r 0( 
V Q

Q
(r)

 - 
V Q

Q
(2

r 0) 
)

Szczepaniak & Swanson

Coulomb Gauge



µ
dg(µ)
dµ

= − β0

(4π)2
g3(µ)

12
3 Nc − 1

3Nc − 2
3Nf

Khriplovich Yad. F. 10, 409 (69)

1

αs(µ2) =
4π

(11 − 2
3nf ) ln µ2/Λ2

QCD

(1)

Coulomb Gauge

running coupling



QCD - lattice gauge 
theory

lattice intro, Monte Carlo, SU(2)-Higgs



Wegner (1971): gauged Z(2) spin model

Wilson (1974): lattice gauge theory

Creutz (1980): numerical lattice gauge theory

F. Wegner, J. Math. Phys. 12, 2259 (1971)

K. Wilson, PRD10, 2445 (1974)

M. Creutz, PRD21, 2308 (1980)

Lattice Gauge Theory — Review



Euclidean field theory with a spacetime regulator

Maps quantum field theory to a statistical mechanics problem 

x0 � �ix4

�
D� eiS[�] �

�
D�E e�SE [�E ]

S � iSE

�(xµ)� �(anµ)� �nµ D��
�

nµ

d�nµ

Lattice Gauge Theory — Review extra - in SE from d/dt^2 - D^2 -.> -(d/
dtau^2 + D^2)



Lattice Gauge Theory — Review

Complex scalar field:

�
d4x [(�µ�)†(�µ�) + m2

0�
†� + �0(�†�)2] �

�

n

�
�†

n�n + �(�†
n�n � 1)2 � �

�

µ

(�†
n�n+µ + �†

n+µ�n)

�

�̂ =
a�
�

� � = �2�0 � =
1� 2�

2d + a2m2
0

SE =

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ



lattice symmetries

discrete translation:  momentum conservation up to

umklapp (over turn) is when  the sum of 
two momneta in a BZ results in one 
outside of teh BZ (and then gets 
mapped back into it)

hypercubic symmetry: a subgroup of O(4).

�

µ

�†�4
µ�

Lattice Gauge Theory — Review

2�/a

 This is ok since the IR EFT only deals with p� 1/a

This is potentially a problem, but all hypercubic operators 
that are also not O(4) symmetric are irrelevant ➙  no 
problem for the IR EFT, i.e., O(4) symmetry is recovered 
as an accidental symmetry.

ex. hypercubic, not O(4), symmetric; dim 6:



Gauge Fields

Lattice Gauge Theory — Review

Consider the gauge covariant laplacian

�†D2
µ�� �†[�2�� iAµ

�n+µ � �n�µ

a
+ A2�n]

discrete derivative ruins the gauge transformation



Lattice Gauge Theory — Review

one could press ahead and obtain gauge invariance up to 

A2 AµAµAµAµbut terms like and

effective field theory — which is a disaster: the first is 
dimension 2; the second is not O(4) invariant; and tuning 
is required to eliminate these.

are induced in the IR

we should build in gauge invariance from the start!

Gauge Fields

O(a5)



Lattice Gauge Theory — Review

Gauge Fields

Think of the covariant derivative as a connection in an internal 
space. Then it is natural to regard the gauge field as a link 
variable.

U(x, µ) � P eig
R x+µ

x Aµ(z)dzµ



Lattice Gauge Theory — Review

Gauge Fields

Gauge transformation:

�(x)� �†(x)�(x)

U(x, µ)� �†(x)U(x, µ)�(x + µ)

Thus the gauge covariant derivative is

1
2
(Dµ�)2 � a2

2

�

x,µ

[2�†(x)�(x)��†(x) U(x, µ) �(x+µ)��†(x+µ) U†(x, µ) �(x)]



Lattice Gauge Theory — Review

Gauge Fields

Closed loops of link variables form gauge invariant objects

The most local pure gauge object is a plaquette

�µ�(x)
x

µ̂ �̂
�



S = �
�

x,µ>�

(1� 1
N

tr�µ�(x))

�µ�(x) = 1� ia2F a
µ�T a � a4

2
F a

µ�F b
µ�T aT b + . . .

� =
2N

g2
0

Lattice Gauge Theory — Review

Gauge Fields



Fermions

Lattice Gauge Theory — Review

Represented as Grassmann fields, which must be explicitly 
integrated

�
DU D�̄ D� e�SF =

�
DU det( /D[U ]) e�SE

(evaluating this determinant is extremely expensive!)

�
D�̄ D� DAµeiS[A]+i

R
d4x�̄(i/��m�g /A)�+i

R
�̄�+i

R
�̄�

=
�

DAµ det(i/� �m� g /A)eiS[A]�i
R

�̄(i/��m�g /A)�1�



Fermions

Lattice Gauge Theory — Review

Attempts to simulate directly lead to the fermion sign problem.
(cf. flipping rows or columns in the determinant)



Fermions

Lattice Gauge Theory — Review

S�1(p) = m + i
�

µ

�µ 1
a

sin(apµ)

fermion doubler problem

pµ = (0,�/a, 0, 0)

24

Zeros at pµ = (0, 0, 0, 0)

i.e., there are     ‘species’ of fermions.

…

these zeroes are IN the Brillouin zone!

�̄�µDµ� � a4
�

x,µ

�̄(x)�µ
�
U(x, µ)�(x + µ)� U†(x� µ, µ)�(x� µ)

�
/(2a)

NB WIlson fermionds break chiral 
symmetry (hence multiplicative mass 
renormalization) and recovering it in the 
IR requires careful tuning



Fermions

Lattice Gauge Theory — Review

chiral fermion problem

Weyl spinor => 8 LH + 8 RH Weyl spinors.

(chiral gauge theories cannot be placed on the lattice)

massless fermion problem
(removing the doublers necessarily breaks chiral symmetry)



dU =
1
�2

�(1� a2)d4a

Lattice Gauge Theory — Review

Z =
�

DUe�SE DU =
�

x,µ

dU(x, µ)

Gauge Fields — the measure

U(1) SU(2)

U(x, µ) = ei�(x,µ)

dU =
d�

�

U(x, µ) = ei�a·��/2 = a0 + i�� · �a

called the “Haar measure” — is gauge 
invariant and integrates over the gauge 
manifold



Lattice Gauge Theory — Review

Gauge Fields — the measure

dU = |detg|1/2 d��

g is the metric on the group manifold

gAB = tr[U† (�AU) U†(�BU)]



Lattice Gauge Theory — Review
Gauge Fields — the Wilson loop

�tr�(R, T )� � e�V (R)T

R

T

Work in axial gauge:

�tr�(R, T )� = Z�1

�
DU�†(R, T ) U(0 � R, T ) �(0, T ) · �†(R, 0) U(0 � R, 0) �(0, 0)e�SE

Make the spectral decomposition
�tr�(R, T )� =

�

n

|�M(0)|n�|2e�En(R)T

T � R

At̂(x) = 0, U(x, t̂) = 1



Lattice Gauge Theory — Review
Gauge Fields — the Wilson loop

�
dU U(x, µ) = 0

�
dU(x, µ) [U(x, µ)]ij [U†(y, �)]k� =

1
N

�xy�µ��i��jk

Evaluate in the strong 
coupling (small beta) limit

This is an area law — colour confinement!

�tr�(R, T )� =
�

2N

g2
0

�RT

= e� log(g2
0/2N)RT

R

T



Note that by the same argument (compact) QED is 
also confining, but it is separated from the continuum 
by a first order phase transition (to the massless 
photon phase).

There is a line of phase transitions in 4d SU(N), but it 
ends, and the strong coupling and weak coupling regimes 
are smoothly connected. Thus SU(N) gauge theory is 
confining.

Lattice Gauge Theory — Review



string tension U(1) 4d



�O� =
1
Z

�
DAµO[A,M�1] det(M [A])e�SE [A]

important shift to Euclidean space!

{A}� det(M [A])e�SE [A]

�
DAµ det(M [A]) e�SE [A]

warnings: autocorrelation, critical slowing down, determinant

Lattice Gauge Theory

Monte Carlo evaluation of the integral

�O� =
�

{A}

O[A,M�1]



C(t) = �0|S†(t)S(0)|0�

C(t) = �0|eiHtS†(0)e�iHtS(0)|0�

C(t) = �0|eiHtS†(0)e�iHt
�

n

|n��n|S(0)|0�

meff = log
C(t)

C(t + 1)

Lattice Gauge Theory
compute a hadron mass...

C(t) =
�

n

e�i(En�E0)t|�n|S(0)|0�|2

S = �̄�5�(x, 0)



Lattice Gauge Theory

meff

meff

t

t

one seeks ‘plateaus’
warnings: how are these 

defined?, close levels



• (for m=0) select the coupling, g
• work in units of the lattice spacing, a 
• compute a physical quantity, such as mN. 

Set a such that mN = 0.94 GeV. 

• This gives a(g) for one point. Repeat to 
trace out a(g), or g(a). Attempt to take 
limit a->0 and V->infinity.

Lattice Gauge Theory
renormalise



• signal/noise: good interpolators!

• finite density

• light cone correlations

• systems with many scales (Ds)

• statistics/operators/correlators

• highly excited states

• unstable states

Lattice Gauge Theory
more warnings:



warnings:
how is a plateau 
defined?
closely spaced 
levels?



continuum limit

umklapp (over turn) is when  the sum of 
two momneta in a BZ results in one 
outside of teh BZ (and then gets 
mapped back into it)

Lattice Gauge Theory — Review

The lattice spacing has been scaled out of the problem. It is
recovered upon renormalisation.

cf. �(a) [g0(a)]

Or can extract ratios as �(a)��

There should be no phase transition if one wants to obtain 
strong coupling continuum physics.

�/a� 1

The system correlation length should be large wrt the lattice 
spacing

�m̂(�) = a(�)mphys

amgap � 1
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Lattice Gauge Theory — Review
unquenching

(input: m�, mK , m�(2S) �m�(1S) � �, (mu + md)/2, ms)
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SU(2)-Higgs
Monte Carlo

the importance of importance sampling! 


V_n (R=1) is rapidly driven to zero!

importance sampling



SU(2)-Higgs
Monte Carlo

To “throw darts” one generates a Markov chain of field 
configurations:

{U(x, µ),�(x)}1 � {U(x, µ),�(x)}2 � . . .

(& memoryless stochastic  process)

�
DU � P(U � U �) = 1

P P

(a fixed point probability density exists)

ergodicity
C[U ] =

exp(�S[U ])�
DU � exp(�S[U �])

detailed balance guarantees the fiixed 
point exists:


P(U -> U’) C(U) = P(U’ -> U) C(U’)

C[U ] =
�

DU � P(U � � U) C[U �]



heat bath

B(x) = �
�

µ

[U(x, µ) �(x + µ) + U†(x� µ) �(x� µ)]

S� =
�

x

[(�(x)� b(x))2 + �(�(x)2 � 1)2 � b2(x)]

Metropolis

min(1, exp[V (�)� V (��)])

SU(2)-Higgs

Monte Carlo — scalar field

Form

Then

Seek a new configuration via

Propose a new configuration; accept it if the action is lowered; 
otherwise accept it conditionally with probability

b is the su(2) four-vector representing B

(actually, not normalized)

P � dP (�) � e�SE(�) d4�

thus local actions are important!



SU |xµ = ��

2
trU(x, µ)W †(x, µ)

SU(2)-Higgs

Monte Carlo — gauge field

Consider a single link

W (x, µ) =
2�

�
�(x)�†(x + µ)+

�

� �=µ

U(x �)U(x + �, µ), U†(x + µ, �)+

�

� �=µ

U†(x� �, �)U(x� �, µ), U†(x� � + µ, �)

heat bath



dP (U) � e
�
2 tr(UW †) dU

W = rŴ

Ŵ � SU(2)

dP (UŴ ) � e
�r
2 tr(U) dU

dP (aµ) �
�

1� a2
0e

�ra0 �(1� �a2) da0 d�a

SU(2)-Higgs

Monte Carlo — gauge field

And update:

U � U(a)Ŵ

heat bath



�(�) =
�

t O(t + �)O(t)�
t O2(t)

O = �̄(�x, 1/(2am))�̄(�x, 0)

(3d phi4 theory)

SU(2)-Higgs

Monte Carlo — autocorrelation

(t and ! are “algorithmic time”)



SU(2)-Higgs
Results
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need Higgs in the fundamental for no phase trans


