Light Quarks

models, pions, quasiparticles,

apply HQ model to light quarks ... how do we do?

isoscalar uu+dd+ss

isovector

isovector

FIG. 19. A graphic illustration of the universality of meson dynamics from the π to the Υ , showing the splittings of ${}^{3}P_{2}$ and ${}^{1}S_{0}$ from ${}^{3}S_{1}$ in the $b\overline{b}$, $c\overline{c}$, $s\overline{s}$, $u\overline{s}$, and $u\overline{d}$ families.

"Isgur plot" — not very convincing!

an example:

Szczepaniak & Swanson, PRL87,072001 (01)

$$\mathcal{L} = \int d^4 x \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi - \frac{\lambda}{2\Lambda^2} \int^{\Lambda} d^4 x \, \psi^{\dagger}(x) T^a \psi(x) \psi^{\dagger}(x) T^a \psi(x)$$

$$H = p\dot{q} - L$$

$$\gamma^{\mu}\partial_{\mu} = \gamma^{0}\partial_{t} - \gamma^{i}\partial_{i}$$

$$= \beta\partial_{t} + \vec{\gamma} \cdot \nabla$$

$$= \beta\partial_{t} + \beta\vec{\alpha} \cdot \nabla$$

$$H = \int d^3x \psi^{\dagger} \left(-i\alpha \cdot \nabla + \beta m \right) \psi + \frac{\lambda}{2\Lambda^2} \int^{\Lambda} d^3x \, \psi^{\dagger}(x) T^a \psi(x) \psi^{\dagger}(x) T^a \psi(x)$$

Quark Field Expansion

$$\psi_{a,\alpha,f}(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} [u(\mathbf{k},s)_{\alpha} b_{a,s,f}(\mathbf{k}) + v(\mathbf{k},s)_{\alpha} d_{a,s,f}(-\mathbf{k})^{\dagger}] \mathrm{e}^{-\mathbf{k}\cdot\mathbf{x}}$$

where $a = 1 \dots 8$, $f = u, d, c, s, t, b, \alpha = 0 \dots 3$, and s = +1/2, -1/2. It is convenient to normalize the spinors as

$$C = k/E$$

$$u(\mathbf{k}, s) = \sqrt{\frac{1 + s(k)}{2}} \begin{pmatrix} \chi_s \\ \frac{c(k)}{1 + s(k)} \sigma \cdot \hat{k} \chi_s \end{pmatrix}$$

$$S = M/E$$

$$v(\mathbf{k}, s) = \sqrt{\frac{1 + s(k)}{2}} \begin{pmatrix} -\frac{c(k)}{1 + s(k)} \sigma \cdot \hat{k} \tilde{\chi}_s \\ \tilde{\chi}_s \end{pmatrix}$$

 $s(k) = \sin \phi(k)$

$$\frac{\delta}{\delta\phi}\langle H\rangle=0$$

$$M(p) = m(\Lambda) + \frac{C_F \lambda}{4\pi^2 \Lambda^2} \int^{\Lambda} q^2 dq \, \frac{M(q)}{\sqrt{M(q) + q^2}}$$

 $M(p) = \frac{ps(p)}{c(p)}$

constituent vs. bare quark mass in units of Lambda

$\langle M|[H,Q_M^{\dagger}]|BCS\rangle = (E_M - E_{BCS})\langle M|Q_M^{\dagger}|BCS\rangle$

 $Q_{M}^{\dagger} = \sum_{\alpha\beta} (\psi_{\alpha\beta}^{\dagger} B_{\alpha}^{\dagger} D_{\beta}^{\dagger} - \psi_{\alpha\beta}^{-} D_{\beta} B_{\alpha})$

chiral symmetry breaking generates Goldstone bosons *and* constituent quarks

and underpins applicability of the NCQM to light hadrons

$$\begin{split} (E_{\pi} - E_{BCS})\psi^{+}(k) &= 2[ms_{k} + kc_{k} + \Sigma(k)]\psi^{+}(k) \\ &- \frac{C_{F}}{2} \int \frac{p^{2}dp}{(2\pi)^{3}} [V_{0}(k,p)(1 + s_{k}s_{p}) \\ &+ V_{1}(k,p)c_{k}c_{p}]\psi^{+}(p) \\ &- \frac{C_{F}}{2} \int \frac{p^{2}dp}{(2\pi)^{3}} [V_{0}(k,p)(1 - s_{k}s_{p}) \\ &- V_{1}(k,p)c_{k}c_{p}]\psi^{-}(p) \,. \end{split}$$

$$u_{s}(k) = \sqrt{\frac{1+s_{k}}{2}} \begin{pmatrix} \chi_{s} \\ \frac{c_{k}}{1+s_{k}} \boldsymbol{\sigma} \cdot \hat{k} \chi_{s} \end{pmatrix}$$

 $\langle M | [H, Q_M^{\dagger}] | RPA \rangle = (E_M - E_{BCS}) \langle M | Q^{\dagger} | RPA \rangle$ $Q_M^{\dagger} = \sum_{\alpha\beta} (\psi_{\alpha\beta}^{\dagger} B_{\alpha}^{\dagger} D_{\beta}^{\dagger} - \psi_{\alpha\beta}^{-} D_{\beta} B_{\alpha}^{-})$

$$E\psi_{PC}(k) = 2[ms_k + kc_k + \Sigma(k)]\psi_{PC}(k)$$
$$-\frac{C_F}{2}\int \frac{p^2dp}{(2\pi)^3}K_J^{PC}(k,p)\psi_{PC}(p)$$

$$\Sigma(k) = \frac{C_F}{2} \int \frac{p^2 dp}{(2\pi)^3} (V_0 s_k s_p + V_1 c_k c_p)$$

(kinetic + self-energy) = $2[E(k) + \Gamma(k)]$,

$$\Gamma(k) = \frac{C_F}{2} \int \frac{p^2 dp}{(2\pi)^3} V_1 \frac{c_p}{c_k}$$

$$E(k) = \sqrt{k^2 + \mu(k)^2}.$$

Nonrelativistic models

$$\langle p \rangle << m$$

L and S separately conserved

different parity corresponds to different waves

$$0^{-+} = {}^{1}S_0 \qquad 0^{++} = {}^{3}P_0$$

Relativistic models

$$\langle p \rangle >> m$$

L and S are not separately conserved

$$V(0^{++}) = V_0 c_p c_k + V_0 (1 + s_p s_k)$$

wave

$$V(0^{-+}) = V_0(1 + s_p s_k) + V_1 c_p c_k$$

$$V(0^{++}) = V_0 c_p c_k + V_1 (1 + s_p s_k)$$

$$V(0^{-+}) = V_0(1 + s_p s_k) + V_1 c_p c_k$$

NonRel

$$c_p = \frac{p}{E(p)} \to \frac{p}{m}$$
 $s_p = \frac{\mu(p)}{E(p)} \to 1$

$$V(0^{++}) \rightarrow 2V_1 + \mathcal{O}(\frac{1}{m^2})$$
 P-wave $V(0^{-+}) \rightarrow 2V_0 + \mathcal{O}(\frac{1}{m^2})$ S-wave

$$V(0^{++}) = V_0 c_p c_k + V_1 (1 + s_p s_k)$$

$$V(0^{-+}) = V_0(1 + s_p s_k) + V_1 c_p c_k$$

Isgur-Karl Model

$$H_{IK} = \sum_{i=1}^{3} \left(m_i + \frac{p_i^2}{2m_i} \right) + \sum_{i < j} \frac{1}{2} k r_{ij}^2$$

$$H_{IK} = M_{tot} + \frac{P^2}{2M_{tot}} + \frac{p_{\rho}^2}{2m_{\rho}} + \frac{p_{\lambda}^2}{2m_{\lambda}} + \frac{3}{2}k\rho^2 + \frac{3}{2}k\lambda^2$$

$$m_{\rho} = m_1 = m_2 \qquad m_{\lambda} = 3 \frac{m_1 m_3}{M_{tot}}$$

Isgur-Karl Model

$$E = (N_{\rho} + \frac{3}{2})\omega_{\rho} + (N_{\lambda} + \frac{3}{2})\omega_{\lambda}$$

$$\omega_{\rho} = \sqrt{\frac{3k}{m_{\rho}}} \qquad \omega_{\lambda} = \sqrt{\frac{3k}{m_{\lambda}}}$$

proton:

$$\Psi = C_A u u d \left(\frac{\alpha_\rho \alpha_\lambda}{\pi}\right)^{3/2} e^{-\frac{1}{2}(\alpha_\rho^2 \rho^2 + \alpha_\lambda^2 \lambda^2)} \chi$$

$$C_A = \frac{1}{\sqrt{6}} \left(rbg - brg + bgr - gbr + grb - rgb \right)$$

$$\chi = -\frac{1}{\sqrt{6}} \left(|\uparrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\rangle - 2|\uparrow\uparrow\downarrow\rangle \right)$$

baryon flavour wavefunctions

State	++	+	0	-
Ν		uud	ddu	
Δ	uuu	uud	ddu	ddd
Λ			$\frac{1}{\sqrt{2}}$ (ud -du)s	
Σ		uus	$\frac{1}{\sqrt{2}}$ (ud+du)s	
Ξ			ssu	ssd
Ω				SSS
Λ_c		$\frac{1}{\sqrt{2}}$ (ud-du)c		
Σ_c	uuc	$\frac{1}{\sqrt{2}}$ (ud+du)c	ddc	
Λ_b			$\frac{1}{\sqrt{2}}$ (ud-du)b	
Σ_b		uub	$\frac{1}{\sqrt{2}}(ud+du)b$	ddb

(magnetic moments)

$$\mu_{p} = \langle \chi_{1/21/2}^{\lambda} | \sum_{i} \frac{e_{i}}{2m_{i}} \sigma_{i}^{z} | \chi_{1/21/2}^{\lambda} \rangle$$
$$= \frac{4}{3} \mu_{u} - \frac{1}{3} \mu_{d}.$$

$$\mu_n = 4/3\mu_d - 1/3\mu_u$$

$$\mu_u = -2\mu_d$$

$$\frac{\mu_n}{\mu_p} = -\frac{2}{3}$$

expt: -0.6849

(hyperfine splitting)

 $K = 0.0066 \text{ GeV}^3$

$$\Delta m = \frac{4\pi\alpha_s}{9}|\psi(0)|^2 \sum_{i< j} \frac{\langle \vec{\sigma}_i \cdot \vec{\sigma}_j \rangle}{m_i m_j}.$$

$$\begin{split} \Delta N &= \frac{4\pi\alpha_s}{9m_u^2}(-3)|\psi(0)|^2 \equiv \frac{-3}{m_u^2}K\\ \Delta \Delta &= \frac{3}{m_u^2}K\\ \Delta \Sigma &= (\frac{1}{m_u^2} - \frac{4}{m_u m_s})K. \end{split}$$

$\langle \chi^{\lambda} \vec{\sigma}_1 \cdot \vec{\sigma}_2 \chi^{\lambda} \rangle$	=	1
$\langle \chi^{\lambda} \vec{\sigma}_1 \cdot \vec{\sigma}_3 \chi^{\lambda} \rangle$	=	-2
$\langle \chi^{\lambda} \vec{\sigma}_2 \cdot \vec{\sigma}_3 \chi^{\lambda} \rangle$	=	-2

baryon(mass)	$\operatorname{composition}$	$\Delta E/K$	predicted mass
N(939)	nnn	$-3/m_{n}^{2}$	939
$\Lambda(1116)$	nns	$-3/m_{n}^{2}$	1114
$\Sigma(1193)$	nns	$1/m_n^2 - 4/(m_n m_s)$	1179
$\Xi(1318$	nss	$1/m_s^2 - 4/(m_n m_s)$	1327
$\Delta(1232)$	nnn	$3/m_n^2$	1239
$\Sigma(1384)$	nns	$1/m_n^2 + 2/(m_n m_s)$	1381
$\Xi(1533)$	nss	$1/m_s^2 + 2/(m_n m_s)$	1529
$\Omega(1672)$	SSS	$3/m_s^2$	1682

Hyperfine Splitting in P-wave Baryons

S-wave P-wave contact in λ , tensor in ρ

$$m_{\Delta} - m_{N} = A \frac{8\pi}{3} \langle \psi_{00} | \delta(\vec{\rho}) | \psi_{00} \rangle \left[\langle \chi_{3/2}^{S} | \vec{S}_{1} \cdot \vec{S}_{2} | \chi_{3/2}^{S} - \langle \chi_{1/2}^{\lambda} | \vec{S}_{1} \cdot \vec{S}_{2} | \chi_{1/2}^{\lambda} \right] \\ = A \frac{8\pi}{3} \frac{\beta^{3}}{\pi^{3/2}} \left[\frac{3}{4} - \frac{-3}{4} \right] \\ = 4A \frac{\beta^{3}}{\sqrt{\pi}} \\ = 300 \text{MeV}.$$

notation

 $|\Xi SLJ^P\rangle$

$$\begin{split} |N 1/2 P 3/2^{-}\rangle &= C_{A} \frac{1}{2} \left[\chi_{1/21/2}^{\rho} \phi_{N}^{\rho} \psi_{11}^{\lambda} + \chi_{1/21/2}^{\rho} \phi_{N}^{\lambda} \psi_{11}^{\rho} + \chi_{1/21/2}^{\lambda} \phi_{N}^{\rho} \psi_{11}^{\rho} - \chi_{1/21/2}^{\lambda} \phi_{N}^{\lambda} \psi_{11}^{\lambda} \right] \\ |N 3/2 P 5/2^{-}\rangle &= C_{A} \chi_{3/2}^{S} \frac{1}{\sqrt{2}} \left[\phi_{N}^{\rho} \psi_{11}^{\rho} + \phi_{N}^{\lambda} \psi_{11}^{\lambda} \right] \\ |\Delta 1/2 P 3/2^{-}\rangle &= C_{A} \phi_{\Delta}^{S} \frac{1}{\sqrt{2}} \left[\chi_{1/21/2}^{\rho} \psi_{11}^{\rho} + \chi_{1/21/2}^{\lambda} \psi_{11}^{\lambda} \right]. \end{split}$$

$$\langle \Delta 1 1/2 3/2 | V_{hyp} | \Delta 1 1/2 3/2 \rangle = 1 \langle \Delta 1 1/2 1/2 | V_{hyp} | \Delta 1 1/2 1/2 \rangle = 1 \langle N 1 3/2 5/2 | V_{hyp} | N 1 3/2 5/2 \rangle = \frac{4}{5}$$

$$V_{hyp} \begin{pmatrix} |N13/23/2\rangle \\ |N11/23/2\rangle \end{pmatrix} = \begin{pmatrix} \frac{9}{5} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & -1 \end{pmatrix} \begin{pmatrix} |N13/23/2\rangle \\ |N11/23/2\rangle \end{pmatrix} \Rightarrow \theta = 6.3^{\circ} \quad \text{(expt)} \quad \theta = 10^{\circ}$$
$$V_{hyp} \begin{pmatrix} |N13/21/2\rangle \\ |N11/21/2\rangle \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} |N13/21/2\rangle \\ |N11/21/2\rangle \end{pmatrix} \Rightarrow \theta = -31.7^{\circ} \quad \text{(expt)} \quad \theta = -32^{\circ}$$

Traditional constituent quark models (CQM) adopted one-gluon exchange (OGE) [1] as the interaction between constituent quarks (Q). Over the years it has become evident that CQM relying solely on OGE Q-Q interactions face some intriguing problems in light-baryon spectroscopy [2,3]. Most severe are:

(i) the wrong level orderings of positive- and negative-parity excitations in the N, Δ, Λ, and Σ spectra;

(ii) the missing flavour dependence of the Q-Q interaction necessary, e.g., for a simultaneous description of the correct level orderings in the N and Λ spectra; and
(iii) the strong spin-orbit splittings that are produced by the OGE interaction but not found in the empirical spectra.

Feynman Rules

Feynman Rules

consider interactions of the type:

$$H_{int} = \int d^3 x \psi^{\dagger}(\mathbf{x}) \Gamma(\mathbf{x}) \psi(\mathbf{x})$$
$$H_{int} = \frac{1}{2} \int d^3 x d^3 y \, \psi^{\dagger}(\mathbf{x}) \Gamma \psi(\mathbf{x}) V(\mathbf{x} - \mathbf{y}) \psi^{\dagger}(\mathbf{y}) \Gamma \psi(\mathbf{y})$$

Feynman Rules

(i) label all lines and wavefunctions with momenta flowing in the time direction

(ii) conserve momenta at each vertex, extract a factor of

- $\delta (P_{f} P_{i})$
- (iii) allow for $(x \leftrightarrow y)$ interchange

(iv) fermion loops get a minus sign(v) through going interacting antifermion lines get a minus sign

(vi) order spinors against charge flow using u(k), v(-k).

colour

$$\frac{\delta_{a\bar{a}}}{\sqrt{3}} \frac{\delta_{b\bar{b}}}{\sqrt{3}} \frac{\delta_{c\bar{c}}}{\sqrt{3}} \cdot \Gamma^C_{d,\bar{d}} \delta_{ab} \,\delta_{\bar{a}\bar{c}} \,\delta_{\bar{b}\bar{d}} \,\delta_{dc}$$

$$\Rightarrow \quad \frac{1}{3\sqrt{3}}\Gamma^C_{dd} \qquad (=\frac{1}{\sqrt{3}})$$

spin

$\chi^A_{a\bar{a}}\,\chi^{B*}_{b\bar{b}}\,\chi^{C*}_{c\bar{c}}\,\Gamma^S_{d,\bar{d}}\,\delta_{ab}\,\delta_{\bar{a}\bar{c}}\,\delta_{\bar{b}\bar{d}}\,\delta_{dc}$

 $\Gamma^S_{d\bar{d}} \propto (\sigma)_{d\bar{d}}$

momentum flow

momentum flow

Hadronic Decays -k+P momentum flow P -k ∨(-P) k-P $\mathcal{A} = \int \frac{d^3k}{(2\pi)^3} \phi_A(k) \phi_B^*(k - P/2) \phi_C^*(k - P/2) u^{\dagger}(k - P) \Gamma v(k - P)$

$$u(q)^{\dagger}\gamma_{0}v(q) \propto \chi_{s}(\sigma \cdot \mathbf{q} + \sigma \cdot \mathbf{q})\tilde{\chi}_{s'}$$

 $u(q)^{\dagger}v(q) \propto \chi_s(\sigma \cdot \mathbf{q} - \sigma \cdot \mathbf{q})\tilde{\chi}_{s'}$

general case w/ meson wavefunctions

 $P = k + \bar{k}$

FEYNMAN RULES

example: baryon decay

 $\mathcal{A} = tr(\phi_A V \phi_B \phi_C)$

flavour:

$$\Xi^{A}(f_1, f_2, f_3)\Xi^{B}(f_1, f)\Xi^{C}(f, f_2, f_3)$$

colour:

$$\mathcal{C}^{A}(a_{1}, a_{2}, a_{3})T^{A}_{b_{1}, a_{1}}T^{A}_{c_{1}, b_{2}}\mathcal{C}^{B*}(b_{1}, b_{2})\mathcal{C}^{C*}(c_{1}, c_{2}, c_{3})\delta_{a_{2}, c_{2}}\delta_{a_{3}, c_{3}}$$

spin:

$$\chi^{A}(a_{1}, a_{2}, a_{3})\chi^{B*}(b_{1}, b_{2})\chi^{C*}(c_{1}, c_{2}, c_{3})\delta_{a_{2}, c_{2}}\delta_{a_{3}, c_{3}} \cdot u^{\dagger}(k_{1} - q)_{b_{1}}\Gamma u(k_{1})_{a_{1}} \cdot u^{\dagger}(k_{1} - P_{B})_{c_{1}}\Gamma v(k_{1} - q - P_{B})_{b_{2}}$$

momentum:

$$\int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \frac{d^3k_3}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} \phi^A(k_1, k_2, k_3) \phi^{B*}(k_1 - q, P_B - k_1 - q) \phi^{C*}(k_1 - P_B, k_2, k_3)$$

 $\cdot V(q) \cdot \operatorname{spin} \cdot \delta(P_A - k_1 - k_2 - k_3) \delta(P_A - P_B - P_C)$

FEYNMAN RULES

mesons:

$$X_{c,s,f;\bar{c},\bar{s},\bar{f}} = \frac{\delta_{c,\bar{c}}}{\sqrt{3}} \Xi_{f,\bar{f}}^{I,I_z} \left\langle \frac{1}{2}s, \frac{1}{2}\bar{s}|SM_S\right\rangle \left\langle SM_S, LM_L|JM\right\rangle$$

$$|\mathbf{P}; nJM[LS]; II_z\rangle = \int \frac{d^3k}{(2\pi)^3} \frac{d^3\bar{k}}{(2\pi)^3} (2\pi)^3 \delta(\mathbf{k} + \bar{\mathbf{k}} - \mathbf{P}) \phi_{nLM}(\mathbf{k}, \bar{\mathbf{k}}) X_{c,s,f;\bar{c},\bar{s},\bar{f}} b^{\dagger}_{c,s,f}(\mathbf{k}) d^{\dagger}_{\bar{c},\bar{s},\bar{f}}(\bar{\mathbf{k}}) |0\rangle$$

$$\phi_{nLM}(\mathbf{k},\bar{\mathbf{k}}) = \phi_{nLM}\left(\frac{m_{\bar{q}}\mathbf{k} - m_{q}\bar{\mathbf{k}}}{m_{q} + m_{\bar{q}}}\right) \qquad \phi_{nLM}(\mathbf{q}) = \phi_{nL}(q)Y_{LM}(\hat{q})$$

 $\langle \mathbf{P}'; n'J'M'[l'S']|\mathbf{P}; nJM[LS] \rangle = (2\pi)^3 \delta(\mathbf{P}' - \mathbf{P}) \delta_{nn'} \delta_{JJ'} \delta_{MM'} \delta_{SS'} \delta_{LL'}$

 $\int \frac{k^2 dk}{(2\pi)^3} |\phi_{nL}(k)|^2 = 1$

FEYNMAN RULES

baryons:

 $P = p_1 + p_2 + p_3$

$$p_{\lambda} = \frac{\sqrt{6}}{2M} \left(m_3 p_1 + m_3 p_2 - (m_1 + m_2) p_3 \right)$$

$$p_{\rho} = \frac{1}{2M} \left((m_3 + 2m_2)p_1 - (m_3 + 2m_1)p_2 + (m_2 - m_1)p_3 \right)$$

$$\psi(p_{\rho}, p_{\lambda}) = \int d^{3}\rho d^{3}\lambda \,\mathrm{e}^{-ip_{\rho}\cdot\rho} \,\mathrm{e}^{-ip_{\lambda}\cdot\lambda}\psi(\rho, \lambda)$$

$$(2\pi)^{3}\delta(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}-\mathbf{P})\,\phi(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3})\,b_{c_{1},s_{1},f_{1}}^{\dagger}(\mathbf{k}_{1})b_{c_{2},s_{2},f_{2}}^{\dagger}(\mathbf{k}_{2})b_{c_{3},s_{3},f_{3}}^{\dagger}(\mathbf{k}_{3})|0\rangle$$

RADIATIVE TRANSITIONS

$$H_{em} = -\frac{e\epsilon_{\mathbf{q}\lambda}^*}{\sqrt{2q}} \left(Q_q \, u_{s_2}^\dagger(\mathbf{k}_2) \vec{\alpha} u_{s_1}(\mathbf{k}_1) + Q_{\bar{q}} \, v_{\bar{s}_1}^\dagger(\bar{\mathbf{k}}_1) \vec{\alpha} v_{\bar{s}_2}(\bar{\mathbf{k}}_2) \right)$$

$$egin{aligned} H_{em}^{(q)} &= rac{1}{2m_q}\,\chi^\dagger_{s_2}\left(\left(2\mathbf{k}-\mathbf{q}
ight)+\imath\mathbf{q} imes\sigma
ight)\chi_{s_1} \ H_{em}^{(ar{q})} &= -rac{1}{2m_{ar{q}}}\, ilde{\chi}^\dagger_{ar{s}_1}\left(\left(2\mathbf{k}+\mathbf{q}
ight)+\imath\mathbf{q} imes\sigma
ight) ilde{\chi}_{ar{s}_2} \ H_{em} &= rac{e\epsilon^*_{\mathbf{q}\lambda}}{\sqrt{2q}}\left(Q_qH_{em}^{(q)}+Q_{ar{q}}H_{em}^{(ar{q})}
ight) \end{aligned}$$

$$H_{e}^{(q)} = \frac{1}{2m_{q}} \chi_{s_{2}}^{\dagger} (2\mathbf{k} - \mathbf{q}) \chi_{s_{1}} = \frac{2\mathbf{k} - \mathbf{q}}{2m_{q}} \delta_{s_{1}s_{2}} \qquad (\qquad \text{E1}$$
$$H_{m}^{(q)} = \frac{1}{2m_{q}} \chi_{s_{2}}^{\dagger} (\imath \mathbf{q} \times \sigma) \chi_{s_{1}} = \frac{\imath \mathbf{q}}{2m_{q}} \times (\chi_{s_{2}}^{\dagger} \sigma \chi_{s_{1}}) (\qquad \text{M1}$$

$$\begin{aligned} A^{(q)} &= \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \Phi_2^* \left(\mathbf{k} - \frac{\mathbf{q}}{2} \right) \Phi_1(\mathbf{k}) H_{em}^{(q)}(\mathbf{k}, \mathbf{q}) \\ A^{(\bar{q})} &= -\int \frac{d^3 \mathbf{k}}{(2\pi)^3} \Phi_2^* \left(\mathbf{k} + \frac{\mathbf{q}}{2} \right) \Phi_1(\mathbf{k}) H_{em}^{(\bar{q})}(\mathbf{k}, \mathbf{q}) \\ A &= \frac{e \epsilon_{\mathbf{q}\lambda}^*}{\sqrt{2q}} \left(Q_q A^{(q)} + Q_{\bar{q}} A^{(\bar{q})} \right) \end{aligned}$$

$$\Gamma = \frac{q^2 E_2}{4\pi^2 m_1} \int \sum_{\lambda} |A|^2 d\Omega$$
$$= \frac{q^2 E_2}{\pi m_1} \frac{1}{2J_1 + 1} \sum_{\lambda} |A|^2$$

For the decay ${}^{3}S_{1} \rightarrow {}^{1}S_{1}\gamma$ it could be shown that the electric part of the operator does not give any contribution to the amplitude because of the cancellations between quark and antiquark interaction amplitudes $(A_{e}^{(q)} = -A_{e}^{(\bar{q})})$. The transition is pure magnetic and called M1 if we only consider the first term in the

		Analitical	Gaus	sian	Coulomb+linear		Experiment
	$\gamma ({ m MeV})$		nonrel	\mathbf{rel}	nonrel	\mathbf{rel}	
							2
$J/\psi ightarrow \gamma \eta_c$	115	2.84	2.85	2.52	2.82	2.11	1.18 ± 0.09
$X_{C0} ightarrow \gamma J/\psi$	303	193	194	167	349	276	119 ± 25
$X_{C1} ightarrow \gamma J/\psi$	389	221	221	193	422	325	288 ± 75
$X_{C2} ightarrow \gamma J/\psi$	430	135	137	114	352	260	426 ± 71
$\Psi(2S) o \gamma \eta_c$	639		5.95	3.21	8.15	1.41	0.79 ± 0.23
$\Psi(2S) ightarrow \gamma X_{C0}$	261		29.1	22.1	19.8	11.5	24.2 ± 3.5
$\Psi(2S) o \gamma X_{C1}$	171		60.8	45.3	39.6	22.6	23.6 ± 3.8
$\Psi(2S) ightarrow \gamma X_{C2}$	127		76.0	57.4	49.6	29.1	18.0 ± 2.9
$h_c o \gamma \eta_c$	496		189	162	497	363	

M1

			E1				
Multiplets	Initial meson	Final meson	E_{γ} (E_{γ} (MeV)		(keV)	$\Gamma_{\rm expt}$ (keV)
			NR	GI	NR	GI	
$2S \to 1P$	$\psi^\prime(2^3{ m S}_1)$	$\chi_2(1^3\mathrm{P}_2)$	128.	128.	38.	24.	27. \pm 4.
		$\chi_1(1^3\mathrm{P}_1)$	171.	171.	54.	29.	$27.~\pm~3.$
		$\chi_0(1^3\mathrm{P}_0)$	261.	261.	63.	26.	$27.~\pm~3.$
	$\eta_c'(2^1\mathrm{S}_0)$	$h_c(1^1\mathrm{P}_1)$	111.	119.	49.	36.	
$1\mathrm{P} \to 1\mathrm{S}$	$\chi_2(1^3\mathrm{P}_2)$	$J/\psi(1^3{ m S}_1)$	429.	429.	424.	313.	426. \pm 51.
	$\chi_1(1^3\mathrm{P}_1)$		390.	389.	314.	239.	291. \pm 48.
	$\chi_0(1^3\mathrm{P}_0)$		303.	303.	152.	114.	$119. \pm 19.$
	$h_c(1^1\mathrm{P}_1)$	$\eta_c(1^1\mathrm{S}_0)$	504.	496.	498.	352.	

JLAB LATTICE RESULTS

Dudek, Edwards, Thomas, 0902.2241

sink level	suggested transition	$a_t \hat{E}_1(0)$	$_{\lambda/{\rm GeV^{-2}}}^{\beta/{\rm MeV}}$	$\Gamma_{\rm lat}/{ m keV}$	$\Gamma_{\rm expt}/{\rm keV}$
0	$\chi_{c0} \rightarrow J/\psi \gamma$	0.127(2)	409(12) 1.14(5)	199(6)	131(14)
1	$\psi' \to \chi_{c0} \gamma$	0.092(19)	164(55) 0[fixed]	26(11)	30(2)
3	$\psi^{\prime\prime} \rightarrow \chi_{c0} \gamma$	0.265(33)	324(77) 0.58(56)	265(66)	199(26)
5	$Y_{ m hyb.} ightarrow \chi_{c0} \gamma$	0.00(3)	linear fit	$\lesssim 20$	-

 $J/\psi \rightarrow \eta_c \gamma$

3

Q²/GeV

sink level	suggested transition	$\hat{V}(0)$	$eta/{ m MeV} \ \lambda/{ m GeV^{-2}}$	$\Gamma_{\rm lat}/{\rm keV}$	$\Gamma_{\rm expt}/{ m ke}$
0	$J/\psi \to \eta_c \gamma$	1.89(3)	513(7) 0[fixed]	2.51(8)	1.85(29)
1	$\psi' \to \eta_c \gamma$	0.062(64)	$530(110) \\ 4(6)$	0.4(8)	0.95(16) 1.37(20)
3	$\psi^{\prime\prime} \rightarrow \eta_c \gamma$	0.27(15)	367(55) -1.25(30)	10(11)	-
5	$Y_{ m hyb.} ightarrow \eta_c \gamma$	0.28(6)	250(200) 0[fixed]	42(18)	-

JLab lattice results

Dudek, Edwards, Thomas, 0902.2241

sink level	suggested transition	$a_t \hat{E}_1(0)$	$eta/{ m MeV} \ \lambda/{ m GeV^{-2}}$	$\Gamma_{\rm lat}/{ m keV}$	$\Gamma_{\rm expt}/{\rm keV}$
0	$\chi_{c0} \rightarrow J/\psi \gamma$	0.127(2)	409(12) 1.14(5)	199(6)	131(14)
1	$\psi' \to \chi_{c0} \gamma$	0.092(19)	164(55) 0[fixed]	26(11)	30(2)
3	$\psi^{\prime\prime} ightarrow \chi_{c0} \gamma$	0.265(33)	324(77) 0.58(56)	265(66)	199(26)
5	$Y_{ m hyb.} ightarrow \chi_{c0} \gamma$	0.00(3)	linear fit	$\lesssim 20$	-

sink level	suggested transition	$\hat{V}(0)$	$_{\lambda/{\rm GeV}^{-2}}^{\beta/{\rm MeV}}$	$\Gamma_{\rm lat}/{ m keV}$	$\Gamma_{\rm expt}/{\rm keV}$
0	$J/\psi \to \eta_c \gamma$	1.89(3)	513(7) 0[fixed]	2.51(8)	1.85(29)
1	$\psi' \to \eta_c \gamma$	0.062(64)	$530(110) \\ 4(6)$	0.4(8)	0.95(16) 1.37(20)
3	$\psi^{\prime\prime} \rightarrow \eta_c \gamma$	0.27(15)	367(55) -1.25(30)	10(11)	-
5	$Y_{ m hyb.} ightarrow \eta_c \gamma$	0.28(6)	250(200) 0[fixed]	42(18)	-

		Analitical	Gaussian		Coulomb+linear		Experiment	
	$\gamma ({ m MeV})$		nonrel	\mathbf{rel}	nonrel	\mathbf{rel}		
				ĺ	[
$ ho^0 ightarrow \gamma \pi^0$	376	50.1	51.1	20.9	41.6	13.1	90.2 ± 19.8	
$ vert ho^{\pm} ightarrow \gamma \pi^{\pm}$	375	50.0	50.9	20.9	41.5	13.1	67.6 ± 8.3	
$ ho ightarrow \gamma\eta$	195	53.4	55.9	26.1	41.7	14.9	45.1 ± 6.6	
$w ightarrow \gamma \pi^0$	380	468.	470.	192.	384.	121.	757. \pm 31.	
$w ightarrow \gamma \eta$	200	6.65	6.64	3.09	4.97	1.78	4.16 ± 0.47	
$\eta' ightarrow \gamma ho^0$	165		114.	54.2	84.5	31.2	59.6 ± 6.9	
$\eta' ightarrow \gamma w$	159		11.5	5.51	8.55	3.16	6.12 ± 1.16	
$f_0(980) o \gamma ho^0$	183		518.	233.	591.	256.		
$f_0(980) ightarrow \gamma w$	178		55.8	25.1	63.8	27.6		
$a_0(980) o \gamma ho$	187		59.3	26.6	67.4	29.2		
$h_1 ightarrow \gamma a_0(980)$	171		28.3	10.5	28.4	10.4		
$h_1 ightarrow \gamma f_0(980)$	175		3.35	1.24	3.36	1.22		
$h_1 o \gamma \eta'$	193		24.2	10.3	42.8	13.0		
$h_1 o \gamma\eta$	457		30.5	11.1	63.9	17.0		
$h_1 o \gamma \pi^0$	577		459.	152.	1097.	266.		
$\phi ightarrow \gamma\eta$	363	45.5	43.0	27.1	44.5	21.4	55.2 ± 1.7	
$b_1 ightarrow \gamma \pi^{\pm}$	607		50.5	16.2	124.5	29.5	$227.\pm75.$	
$f_1(1285) o \gamma ho^0$	406		1066.	459.	1216.	489.	1326 ± 388	
$a_2 ightarrow \gamma \pi^{\pm}$	652		324.	144.	93.4	64.4	287.	

$$\begin{split} \Gamma_{\rm E1}({\rm n}\,^{2{\rm S}+1}{\rm L}_{\rm J} &\to {\rm n}'\,^{2{\rm S}'+1}{\rm L}'_{\rm J'}+\gamma) = \frac{4}{3}\,C_{fi}\,\delta_{{\rm SS}'}\,e_c^2\,\alpha\,|\,\langle\psi_f|\,r\,|\,\psi_i\rangle\,|^2\,{\rm E}_{\gamma}^3\,\frac{{\rm E}_{\rm f}^{(c\bar{c})}}{{\rm M}_{\rm i}^{(c\bar{c})}}\\ C_{fi} &= \max({\rm L},\,\,{\rm L}')\,(2{\rm J}'+1)\,\left\{ {{\rm L}'\,{\rm J}'\,{\rm S}\atop {\rm J}\,{\rm L}\,1} \right\}^2. \end{split}$$

$$\Gamma_{\rm M1}({
m n}^{\,2{
m S}+1}{
m L}_{
m J} o {
m n}'^{\,2{
m S}'+1}{
m L}'_{
m J'}+\gamma) = rac{4}{3} \,rac{2J'+1}{2L+1} \,\delta_{{
m LL}'} \,\delta_{{
m S},{
m S}'\pm 1} \,e_c^2 \,rac{lpha}{m_c^2} \,|\,\langle\psi_f|\,\psi_i\rangle\,|^2 \,{
m E}_{\gamma}^3 \,rac{{
m E}_{
m f}^{(car c)}}{{
m M}_{
m i}^{(car c)}}$$

.

tricks/ problems with these formulae

DECAY CONSTANTS

$$m_V f_V \epsilon^{\mu} = \langle 0 | \bar{\Psi} \gamma^{\mu} \Psi | V \rangle$$

 $\Gamma_{V \to e^+ e^-} = \frac{e^4 Q^2 f_V^2}{12\pi m_V} = \frac{4\pi \alpha^2}{3} \frac{Q^2 f_V^2}{m_V}.$

,

$$f_V = \sqrt{\frac{3}{m_V}} \int \frac{d^3k}{(2\pi)^3} \Phi(\vec{k}) \sqrt{1 + \frac{m_q}{E_k}} \sqrt{1 + \frac{m_{\bar{q}}}{E_{\bar{k}}}} \left(1 + \frac{k^2}{3(E_k + m_q)(E_{\bar{k}} + m_{\bar{q}})}\right)$$

$$f_V = 2\sqrt{\frac{3}{m_V}} \int \frac{d^3k}{(2\pi)^3} \Phi(\vec{k}) = 2\sqrt{\frac{3}{m_V}} \tilde{\Phi}(r=0).$$
 nonrel

van Royen Weisskopf (1967!)

Meson	BGS NonRel	BGS Rel	BGS log	BGS log	lattice	experiment
			$\Lambda=0.4~{\rm GeV}$	$\Lambda=0.25~{\rm GeV}$		
η_c	795	493	424	402	$429\pm4\pm25$	335 ± 75
η_c'	477	260	243	240	$56\pm21\pm3$	
η_c''	400	205	194	193		
J/ψ	615	545	423	393	399 ± 4	411 ± 7
ψ'	431	371	306	293	143 ± 81	279 ± 8
ψ''	375	318	267	258		174 ± 18
χ_{c1}	145	103	97	93		
χ'_{c1}	196	132	125	120		
χ_{c1}''	223	142	134	130		

TABLE II: Charmonium Decay Constants (MeV).

S/Ps-> GAMMA GAMMA

$$A \rightarrow \gamma \gamma$$

$$A_q = \sum_{B\gamma} \langle A | H_{EM} | B\gamma(q_1) \rangle \frac{1}{E_A - E_{B\gamma}} \langle B\gamma | H_{EM} | \gamma \gamma \rangle$$

general structure

$$\mathcal{A}(\lambda_1 p_1; \lambda_2 p_2) = \epsilon^*_\mu(\lambda_1, p_1) \epsilon^*_
u(\lambda_2, p_2) \mathcal{M}^{\mu
u}$$

$$\mathcal{M}^{\mu
u}_{Ps}=iM_{Ps}(p_1^2,p_2^2,p_1\cdot p_2)\,\epsilon^{\mu
ulphaeta}\,p_{1lpha}p_{2eta}$$

$${\cal M}^{\mu
u}_S = M_S(p_1^2,p_2^2,p_1\cdot p_2)\,g^{\mu
u}$$

 $\Gamma(Ps \to \gamma\gamma) = \frac{m_{Ps}^3}{64\pi} |M_{Ps}(0,0)|^2 \text{ or } \Gamma(S \to \gamma\gamma) = |M_S(0,0)|^2 / (8\pi m)^2$

quark model. Other time ordering is higher order, so ignored.

$$\mathcal{A} = \sum_{\gamma, V} \frac{\langle \gamma(\lambda_1, p_1) \gamma(\lambda_2, p_2) | H | \gamma, V \rangle \langle \gamma, V | H | Ps \rangle}{(m_{Ps} - E_{\gamma V})}$$

$$M_{Ps} = \sum_{V} Q^2 \sqrt{\frac{m_V}{E_V}} f_V \frac{F^{(V)}(q)}{m_{Ps} - E_{\gamma V}(q)}$$

$$M_{S} = \sum_{V} Q^{2} \sqrt{\frac{m_{V}}{E_{V}}} f_{V} \frac{E_{1}^{(V)}(q)}{m_{S} - E_{\gamma V}(q)}.$$

					-	-		,		
process	BGS	BGS log ($\Lambda = 0.25 \text{ GeV}$	G&I[4]	HQ[30]	A&B[31]	EFG[32]	Munz[33]	Chao[34]	CWV[35]	PDG^{a}
$\eta_c \to \gamma \gamma$	14.2	7.18	6.76	7.46	4.8	5.5	3.5(4)	6-7	6.18	7.44 ± 2.8
$\eta_c' \to \gamma \gamma$	2.59	1.71	4.84	4.1	3.7	1.8	1.4(3)	2	1.95	1.3 ± 0.6
$\eta_c'' o \gamma \gamma$	1.78	1.21	-	_	-	_	0.94(23)	_	-	-
$\chi_{c0} ightarrow \gamma \gamma$	5.77	3.28	-	-	_	2.9	1.39(16)	-	3.34	2.63 ± 0.5

JLab lattice results

Dudek & Edwards, hep-ph/0607140

FORM FACTORS

$$\langle P_2(p_2)|\bar{\Psi}\gamma^{\mu}\Psi|P_1(p_1)\rangle = f(Q^2)(p_2+p_1)^{\mu} + g(Q^2)(p_2-p_1)^{\mu}$$

$$g(Q^2) = f(Q^2) \frac{M_2^2 - M_1^2}{Q^2}.$$

conserved current

$$f(Q^2) = \frac{\sqrt{M_1 E_2}}{(E_2 + M_1) - \frac{M_2^2 - M_1^2}{q^2}(E_2 - M_1)}$$

$$\times \int \frac{d^3 k}{(2\pi)^3} \Phi(\vec{k}) \Phi^*\left(\vec{k} + \frac{\vec{q}}{2}\right) \sqrt{1 + \frac{m_q}{E_k}} \sqrt{1 + \frac{m_q}{E_{k+q}}} \left(1 + \frac{(\vec{k} + \vec{q}) \cdot \vec{k}}{(E_k + m_q)(E_{k+q} + m_q)}\right)$$

$$\begin{split} f(Q^2) &= \frac{2\sqrt{M_1 E_2}}{E_2 + M_1} \int \frac{d^3 k}{(2\pi)^3} \Phi(\vec{k}) \Phi^*\left(\vec{k} + \frac{\vec{q}}{2}\right) & \text{nonrel} \\ \text{FT:} &\propto \int d^3 x \, |\phi(x)|^2 e^{-iqx/2} \end{split}$$

 η_c "single quark" FF

testing covariance BF=Breit frame, IRF = initial rest frame

LGT psi : etac gamma

ELECTROWEAK TRANSITIONS

$$iM = \frac{1}{N_c} \frac{G_F}{\sqrt{2}} V_{bc} V_{cs}^* m_{\psi} f_{\psi} \epsilon_{\mu}^* (p_{\psi}, \lambda) \left[f^{(+)} (p_B + p_K)^{\mu} + f^{(-)} \cdot (p_B - p_K)^{\mu} \right] \frac{1}{p_{\psi}} p_{\psi}$$

$$\xi(w) = (\frac{2}{1+w})^2$$
$$w = \frac{m_B^2 + m_K^2 - m_{\psi}^2}{m_B m_K}$$

$$\Gamma = \frac{q}{32\pi^2 m_B^2} \int d\Omega |M|^2$$

average initial; sum final

rarest B decay ever observed, PRL 118, 081801 (17)
add nonfact Lambda decay...

STRONG DECAYS

Decay Models

why we need them:

they give coupled channels (FSIs, mass shifts)

they provide diagnostic information on the parent states

they probe nonperturbative gluodynamics in a new regime

³S₁ Model

Cornell Model

$$V = \frac{1}{2} \int d^3x d^3y \,\psi^{\dagger}(\mathbf{x})\psi(\mathbf{x})V(\mathbf{x}-\mathbf{y})\psi^{\dagger}(\mathbf{y})\psi(\mathbf{y})$$

$$H_{int} = g \int d^3x \, \bar{\psi}(\mathbf{x}) \psi(\mathbf{x}) \quad \text{or} \, \int d^3x \, b^{\dagger}(\mathbf{x}) \alpha \cdot \nabla d^{\dagger}(\mathbf{x})$$

IKP Flux Tube Decay Model

quark creation operator

Kokoski & Isgur, PRD35, 907 (87)

Isgur, Kokoski, & Paton, PRL54, 869 (85)

IKP Flux Tube Decay Model

meson decay

 $<\{0...0\}bd; \{0...0\}bd | O | \{0...0\}bd^{\dagger} \sim <bd; bd | {}^{3}P_{0} | bd^{\dagger} > .$ $<\{0...0\}; \{0...0\} | \{0...0\} > .$

hybrid decay

 $<\{0...0\}bd; \{0...0\}bd | O | \{1,0...0\}bd - \langle bd; bd | {}^{3}P_{0} | bd > \cdot$ $y_{\perp} e^{-fby_{\perp}^{2}} < \{0...0\}; \{0...0\} | \{1,0...0\} >$

FIG. 3. $D_s^{*\prime}$ partial widths vs mass. The arrow shows the nominal mass of the $D_s^{*\prime}$.

The decay modes of Fig. 7 are as follows: [1] $b_1 \rightarrow \omega \pi$, [2] $\pi_2 \rightarrow f_2 \pi$, [3] $K_0 \rightarrow K \pi$, [4] $\rho \rightarrow \pi \pi$, [5] $\phi \rightarrow K \bar{K}$, [6] $\pi_2 \rightarrow \rho \pi$, [7] $\pi_2 \rightarrow K^* \bar{K} + cc$, [8] $\pi_2 \rightarrow \omega \rho$, [9] $\phi(1680) \rightarrow K^* \bar{K} + cc$, [10] $K^* \rightarrow K \pi$, [11] $K^{*\prime} \rightarrow K \pi$, [12] $K^{*\prime} \rightarrow \rho K$, [13] $K^{*\prime} \rightarrow K^* \pi$, [14] $D^{*+} \rightarrow D^0 \pi^+$, [15] $\psi(3770) \rightarrow D\bar{D}$, [16] $f_2 \rightarrow \pi \pi$, [17] $f_2 \rightarrow K \bar{K}$, [18] $a_2 \rightarrow \rho \pi$, [19] $a_2 \rightarrow \eta \pi$, [20] $a_2 \rightarrow K \bar{K}$, [21] $f'_2 \rightarrow K \bar{K}$, [18] $a_2 \rightarrow \rho \pi$, [19] $a_2 \rightarrow \eta \pi$, [20] $a_2 \rightarrow K \bar{K}$, [21] $f'_2 \rightarrow K \bar{K}$, [22] $D_{s2} \rightarrow DK + D^*K + D_s \eta$, [23] $K_2 \rightarrow K \pi$, [24] $K_2 \rightarrow K^* \pi$, [25] $K_2 \rightarrow \rho K$, [26] $K_2 \rightarrow \omega K$, [27] $\rho_3 \rightarrow \pi \pi$, [28] $\rho_3 \rightarrow \omega \pi$, [29] $\rho_3 \rightarrow K \bar{K}$, [30] $K_3 \rightarrow \rho K$, [31] $K_3 \rightarrow K^* \pi$, [32] $K_3 \rightarrow K \pi$.

Hybrid Photocoupling

JLab, PRD79, 094504 (09)

$$\Gamma(H(1^{--}) \to \eta_c \gamma) = 42 \pm 18 \text{ keV}$$
$$\Gamma(H(1^{-+}) \to J/\psi \gamma) \approx 100 \text{ keV}$$

model comparison $b_1 \rightarrow \omega \pi$

same for

1 + -> 1 - 0 - = 1 + (S), 3, 2, 1 + (D)

mesons

baryons

 $N\pi$ decay widths Γ [MeV]

 $\Delta \pi$ decay widths Γ [MeV]

Decay	Calc	$^{3}P_{0}$	PDG	Decay	Calc	$^{3}P_{0}$	PDG
$S_{11}(1535) \rightarrow N\pi$	33	216	$(68 \pm 15) {}^{+45}_{-23}$	$\rightarrow \Delta \pi$	1	2	< 2
$S_{11}(1650) \rightarrow N\pi$	3	149	$(109\pm26)^{+29}_{-4}$	$\rightarrow \Delta \pi$	5	13	$(6 \pm 5) {}^{+2}_{0}$
$D_{13}(1520) \rightarrow N\pi$	38	74	$(66 \pm 6) \ {}^{+8}_{-5}$	$\rightarrow \Delta \pi$	35	35	$(24 \pm 6) \ {}^{+3}_{-2}$
$D_{13}(1700) \rightarrow N\pi$	0.1	34	$(10 \pm 5) \ {}^{+5}_{-5}$	$\rightarrow \Delta \pi$	88	778	seen
$D_{15}(1675) \rightarrow N\pi$	4	28	$(68 \pm 7) \ ^{+14}_{-5}$	$\rightarrow \Delta \pi$	30	32	$(83 \pm 7) \begin{array}{c} +17 \\ -6 \end{array}$
$P_{11}(1440) \rightarrow N\pi$	38	412	$(228 \pm 18)^{+65}_{-65}$	$\rightarrow \Delta \pi$	35	11	$(88 \pm 18) {+25 \atop -25}$
$P_{33}(1232) \rightarrow N\pi$	62	108	$(119 \pm 0) \stackrel{+5}{_{-5}}$				
$S_{31}(1620) \rightarrow N\pi$	4	26	$(38 \pm 7) \ {}^{+8}_{-8}$	$\rightarrow \Delta \pi$	72	18	$(68 \pm 23) {+14 \atop -14}$
$D_{33}(1700) \rightarrow N\pi$	2	24	$(45 \pm 15) {}^{+15}_{-15}$	$\rightarrow \Delta \pi$	52	262	$(135 \pm 45)^{+45}_{-45}$

 ${}^{3}P_{0}$: S. Capstick, W. Roberts, Phys.Rev. D49 (1994) 4570-4586 Calc: Bonn group BS computation

aside on 'missing resonances'

COULOMB VERTEX

$$K^{(0)}\psi^{\dagger}\psi \rightarrow \frac{b}{q^4}\frac{1}{m}\boldsymbol{\sigma}\cdot\mathbf{q}\,b_k^{\dagger}d_{k-q}^{\dagger}$$

$$K^{(0)}\bar{\psi}\psi \to \frac{b}{q^4}\frac{1}{m}\boldsymbol{\sigma}\cdot (2\mathbf{k}-\mathbf{q})\,b_k^{\dagger}d_{k-q}^{\dagger}$$

confinement severely damps the integral over q

Decay Mechanism Hierarchy

Ackleh, Barnes, & ES, PR**D54,** 6811 (96)

Hybrid Decays

Γ	πho	ωho	$\rho(1465)\pi$	$f_0(1300)\pi$	$f_2\pi$	$K^*\bar{K}$	total
$\pi_{3S}(1800)$	30	74	56	6	29	36	231
$\pi_{H}(1800)$	30	0	30	170	6	5	241

Glueball Decays

	$\pi\pi$	$K\bar{K}$	$\eta\eta$	$\eta'\eta$	$\eta'\eta'$	$\sigma\sigma$
\mathcal{A}	1	ho	$\frac{1+\rho^2}{2}$	$\frac{1- ho^2}{2}$	$\frac{1+\rho^2}{2}$	large
$\Gamma(\rho=1, PS=1)$	3	4	1	0	1	
$\Gamma(\rho = 1, M_G = 1.5 \mathrm{GeV})$	4.3	4.4	1	—	_	—
$\Gamma(\rho = \frac{m_u}{m_s}, M_G = 1.5 \text{GeV})$	9.4	3.4	1	—	—	—
$\Gamma(f'_0; \text{mixed})$	4.4	10	1	2		_
$\Gamma(f_0'(s\bar{s}); {}^3P_0 \text{model})$	_	3.0	1	1.5		_
$\Gamma(f_0(1500); \operatorname{expt})$	4.39(16)	1.1(4)	1	1.42(96)	—	14.9(32)

MIXING

 $a_{\chi} = \sqrt{2} Z_{00}^{1/2} \int d^3k \, \psi_X(k) \mathcal{A}(-k)$

state	$E_B (MeV)$	$a \ (fm)$	Z_{00}	$a_{\chi} \ ({\rm MeV})$	prob
χ_{c1}	0.1	14.4	93%	94	5%
	0.5	6.4	83%	120	10%
χ_{c1}'	0.1	14.4	93%	60	100%
	0.5	6.4	83%	80	> 100%

Coupled Channels

unquenching, cusps

"Oakes-Yang Problem"

R.J. Oakes and C.N. Yang, PRL 11, 174 (63)

Why does the Gell-Mann--Okubo mass formula work? Thresholds affect the decuplet states differently!

$$M = a_0 + a_1 S + a_2 \left[I \left(I + 1
ight) - rac{1}{4} S^2
ight]$$

how does one include 'loop effects' in the quark model?

what does it mean?

Thresholds in D

Thresholds in D_S

Screened Potentials

Screened Potentials

Screened Potentials

A Simple Model

E.S. Swanson, JPG31, 845 (2005)

A Non-relativistic Quantum Field Theory

$$\hat{H} = -\int d^3x \hat{\psi}_f^{\dagger} \tau_3 \left(m_f - \frac{\nabla^2}{2m_f} \right) \hat{\psi}_f + g \int d^3x \hat{\psi}_f^{\dagger} \tau_1 \hat{\psi}_f + \frac{1}{2} \int d^3x d^3y \hat{\psi}_{f'}^{\dagger}(x) \hat{\psi}_{f'}(x) V(x-y) \hat{\psi}_f^{\dagger}(y) \hat{\psi}_f(y).$$

Non-relativistic Quantum Field Theory

$$\hat{H} = -\int d^3x \hat{\psi}_f^{\dagger} \tau_3 \left(m_f - \frac{\nabla^2}{2m_f} \right) \hat{\psi}_f + g \int d^3x \hat{\psi}_f^{\dagger} \tau_1 \hat{\psi}_f + \frac{1}{2} \int d^3x d^3y \hat{\psi}_{f'}^{\dagger}(x) \hat{\psi}_{f'}(x) V(x-y) \hat{\psi}_f^{\dagger}(y) \hat{\psi}_f(y).$$

$$|\Psi\rangle = \phi_{QQ} |Q\bar{Q}\rangle + \psi |Q\bar{q}q\bar{Q}\rangle$$

$$H_0\phi_{QQ}(r) + \Omega(r)\psi(\frac{M}{m+M}r) = E\phi_{QQ}(r)$$
$$H_1\psi(\rho) + (\frac{M}{m+M})^{-3}\Omega(\frac{m+M}{M}\rho)\phi_{QQ}(\frac{m+M}{M}\rho) = E\psi(\rho)$$

Non-relativistic Quantum Field Theory

$$H_0\phi_{QQ}(r) + \Omega(r)\psi(\frac{M}{m+M}r) = E\phi_{QQ}(r)$$
$$H_1\psi(\rho) + (\frac{M}{m+M})^{-3}\Omega(\frac{m+M}{M}\rho)\phi_{QQ}(\frac{m+M}{M}\rho) = E\psi(\rho)$$

$$\Omega(r) = g \int d^3x \,\phi_{Qq}(r/2 - x) \phi_{Qq}(r/2 + x)$$

an 'unquenched' quark model

$$\frac{\hat{H}}{\hat{H}} = \int dx \left(-\frac{\nabla^2}{2m_q} b_x^{\dagger} b_x - \frac{\nabla^2}{2m_{\bar{q}}} d_x^{\dagger} d_x \right) + \gamma \int dx \left(b_x^{\dagger} \sigma \cdot \overleftrightarrow{\nabla} d_x^{\dagger} + \text{H.c.} \right) \\
+ \frac{1}{2} \int dx \, dy \left(b_x^{\dagger} b_y^{\dagger} + d_x^{\dagger} d_y^{\dagger} \right) V(x-y) (b_y b_x + d_y d_x).$$

$$|\Psi\rangle = \int \varphi_A(r_1 - r_2) b_1^{\dagger} d_2^{\dagger} |0\rangle$$

+
$$\int \sum_{BC} \Psi_{BC}(\frac{r_2 + r_4 - r_1 - r_3}{2}) \varphi_B(r_1 - r_3) \varphi_C(r_2 - r_4) b_1^{\dagger} d_3^{\dagger} b_2^{\dagger} d_4^{\dagger} |0\rangle$$

$$E\varphi_{A}(r) = H_{q\bar{q}}(r)\varphi_{A}(r)$$

$$-\gamma \int \vec{\Sigma} \cdot (\nabla_{B} + \nabla_{C} + \nabla_{BC})\varphi_{0B}(r/2 - x)\varphi_{0C}(r/2 + x)\Psi_{BC}(-r/2), \quad (1)$$

$$\frac{-1}{2\mu_{13,24}}\nabla_{R}^{2} + \int \int K_{E}(x, y, R)\Psi_{BC}(R') + \int \int V_{E}(x, y, R)\Psi_{BC}(R')$$

$$- 8\gamma \int \vec{\Sigma} \cdot (\nabla_{B} + \nabla_{C} + \nabla_{BC})\varphi_{0B}\varphi_{0C}\varphi_{A}(-2R)$$

$$= E\Psi_{BC}(R) + E \int N_{E}(x, y, R)\Psi_{BC}(R')$$
Adiabatic Potentials

Coupled Channel Bethe-Heitler Equation

$$T(k,k') = V_{eff}(k,k') + \int d^3q \, V_{eff}(k,q) G_E(q) T(q,k')$$

$$\langle k | V_{eff} | k' \rangle = 2\pi^2 \sum_{i} \frac{\omega_i^*(k)\omega_i(k')}{E - E_i}$$
$$\omega_i(k) = \langle \phi_{QQ}^{(i)} | \hat{\Omega} | k \rangle$$

 $\pi\pi$ I=1 L=1 scattering

Couple to a Probe Channel

Argand Diagram

Full Spectrum

Screened Spectrum

Renormalised Spectrum

screened potential is not sensible using a potential fit to the data (renormalised) is

Some Loop Theorems

T. Barnes and E.S. Swanson, PRC77, 055206, (2008)

$$-iG(s) = \frac{1}{(s - M^2 - \Sigma(s))}$$

/

$$\sqrt{s}\Gamma(s) = -\text{Im}(\Sigma(s))$$
$$2\sqrt{s}\delta M(s) = \text{Re}(\Sigma(s))$$

for a general class of decay models mixing via degenerate multiplets of states...

- Loop mass shifts are identical for all states in an N,L multiplet
- these states have the same open flavour decay widths
- loop-induced valence configuration mixing vanishes if $L_i <> L_f$ or $S_i <> S_f$

 $\langle J_{\mathrm{A}}[Lj_{\mathrm{BC}}]; j_{\mathrm{BC}}[j_{\mathrm{B}}j_{\mathrm{C}}]; j_{\mathrm{B}}[s_{\mathrm{B}}\ell_{B}] j_{\mathrm{C}}[s_{\mathrm{C}}\ell_{\mathrm{C}}] |\sigma\psi| J_{\mathrm{A}}[s_{\mathrm{A}}\ell_{\mathrm{A}}] \rangle =$ $\sum (-)^{\eta} \hat{1} \hat{L}_f \hat{s}_{BC} \hat{\ell}_{BC} \hat{j}_B \hat{j}_C \hat{j}_{BC} \hat{s}_A \hat{s}_B \hat{s}_C \hat{s}_{BC} \cdot mber$ $s_{\rm BC}\ell_{\rm BC}L_f$ $\langle L_f[L\ell_{BC}]; \ell_{BC}[\ell_B\ell_C]||\underline{m}\psi||\ell_A\rangle$ $\left\{\begin{array}{cccc} s_{\rm B} & \ell_{\rm B} & j_{\rm B} \\ s_{\rm C} & \ell_{\rm C} & j_{\rm C} \\ s_{\rm BC} & \ell_{\rm BC} & j_{\rm BC} \end{array}\right\} \left\{\begin{array}{cccc} 1/2 & 1/2 & s_{\rm B} \\ 1/2 & 1/2 & s_{\rm C} \\ s_{A} & 1 & s_{\rm BC} \end{array}\right\}.$ $\left\{\begin{array}{ccc}s_{\rm BC} & \ell_{\rm BC} & j_{\rm BC}\\ I_{\perp} & i_{\Lambda} & L_{f}\end{array}\right\} \left\{\begin{array}{ccc}s_{\rm BC} & s_{\rm A} & 1\\ \ell_{\Lambda} & L_{f} & \ell_{\Lambda} & L_{f}\end{array}\right\}$

- deviations from the symmetry limit will either be driven by δH or will reflect δH
- there is thus some hope that the constituent quark model is robust (thereby resolving the Oakes-Yang problem)

Issues

of course the 'bare' quark model must have its parameters refit to yield the experimental spectrum

summing the continuum

$$q^2 < \Lambda^2 \approx 1 \text{GeV}^2$$

 $1 \text{GeV}^2 < q^2 < \Lambda^2 \approx 4 \text{GeV}^2$

 $4 \text{GeV}^2 < q^2 < \Lambda^2 \to \infty$

how does one bridge the renormalisation gap between QCD and a model of QCD?

 $J/\psi \to \eta_c \gamma$

 $A^{(HO)} = A^{(0)}(1 + 0.334 + 0.036) = 0.197 \text{ GeV}$

$$A^{imp} = |\vec{q}| \sqrt{M_{\psi} E_{\eta}} \frac{eQ_q + eQ_{\bar{q}}}{m_q} e^{-q^2/16\beta^2} \approx 0.095 \text{ GeV}$$

$Z_{q\bar{q}} < 1 \qquad \Gamma_{ee} = Z_{q\bar{q}}\Gamma_0$

 \Rightarrow a disaster for the quark model

what is the quark model?

 $m_q = m_N/3$

the defining characteristic of the quark model

- the quark model should be treated as a standard model ... there are no 'external parameters'
- an unquenched quark model is a field theory and needs to be properly renormalised

$$e \rightarrow e_R = \frac{e}{\sqrt{Z}}$$
 $\frac{e_R^2}{4\pi} = \frac{1}{137}$

and while we're at it...

- nonperturbative gluodynamics
- multipion intermediate states
- chiral restoration
- emergence of the string regime

Cusps

$$\Pi(s) = \int \frac{d^3q}{(2\pi)^3} \frac{q^{\ell_i + \ell_f} e^{-2q^2/\beta_{AB}^2}}{\sqrt{s} - m_A - m_B - \frac{q^2}{2\mu_{AB}} + i\epsilon}$$

$$\Pi(s) = -\frac{\mu_{AB}\beta_{AB}}{\sqrt{2}\pi^2} \cdot I(Z)$$

relate to rel formula...

$$Z = \frac{4\mu_{AB}}{\beta_{AB}^2} (m_A + m_B - \sqrt{s})$$

$$I(\ell_i + \ell_f = 0) = \frac{1}{2}\sqrt{\pi}[1 - \sqrt{\pi Z} e^Z \operatorname{erfc}(\sqrt{Z})],$$

$$I(\ell_i + \ell_f = 1) = \frac{1}{2} - \frac{Z}{2} e^Z \Gamma(0, Z),$$

Z_b and Z_c as Threshold Cusps

bubble has Argand phase motion and is difficult to distinguish from a Breit-Wigner

$\Upsilon(5S) \to \Upsilon(nS)\pi\pi$

fix couplings and scales with Y(3S) – relatively little pipi dynamics. Get Y(2S) with same couplings! Y(1S) requires 70% smaller coupling BB*:piY(1S)

$\Upsilon(5S) \to h_b(nP)\pi\pi$

Cusp Diagnostics

- lie just above thresholds
- S-wave quantum numbers
- partner states of similar width widths will depend on channel
- the reaction $\Upsilon(5S) \to K\bar{K}\Upsilon(nS)$ should reveal "states" at 10695 $(B\bar{B}_s^* + B^*\bar{B}_s)$ and 10745 $(B^*\bar{B}_s^*)$

Zc(3900)

$$e^+e^- \to \pi D\bar{D}^* \qquad \sqrt{s} = 4.26$$

 $M = 3883.9 \pm 1.5 \pm 4.2$ $\Gamma = 24.8 \pm 3.3 \pm 11.0$

MM(π), GeV/c²