

The high-multiplicity frontier for two-loop QCD

Mao Zeng 29 October 2018

Institute for Theoretical Physics, ETH Zurich

• Background

- Background
- Numerical unitarity for 2-loop amplitudes

- Background
- Numerical unitarity for 2-loop amplitudes
- Differential equations at high multiplicity

- Background
- Numerical unitarity for 2-loop amplitudes
- Differential equations at high multiplicity
- Future outlook

Phys. Rev. Lett. 119, 142001, arXiv:1703.05273, S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page, MZ

Phys. Rev. D. 97, 116014, arXiv:1712.03946, S. Abreu, F. Febres Cordero, H. Ita, B. Page, MZ

arXiv:1807.11522, Samuel Abreu, Ben Page, MZ

Background

- $\cdot~\sim\!\!$ 140 fb^{-1} of data from LHC Run 2.
 - \implies Precision measurements and BSM searches.

- $\cdot~\sim\!\!$ 140 fb^{-1} of data from LHC Run 2.
 - \implies Precision measurements and BSM searches.
- Perturbative QCD essential for predictions (PDFs, fixed-order, resummation / parton showers)

 $\cdot~\sim\!\!$ 140 fb^{-1} of data from LHC Run 2.

 \implies Precision measurements and BSM searches.

- Perturbative QCD essential for predictions (PDFs, fixed-order, resummation / parton showers)
- NNLO needed for percent-level accuracy. \rightarrow explosion of 2 \rightarrow 2 calculations. (amplitudes + subtractions)

 $\cdot~\sim\!\!$ 140 fb^{-1} of data from LHC Run 2.

 \implies Precision measurements and BSM searches.

- Perturbative QCD essential for predictions (PDFs, fixed-order, resummation / parton showers)
- NNLO needed for percent-level accuracy. \rightarrow explosion of 2 \rightarrow 2 calculations. (amplitudes + subtractions)
- Beginning to break the 2 \rightarrow 3 barrier!

NNLO $2 \rightarrow 3$ processes

- $pp \rightarrow 3j$: constrains strong coupling constant α_s .
- $pp \rightarrow H + 2j$: gluon-fusion background for VBF Higgs production.

• Many more: V + 2j, V + V' + j, $t\bar{t} + j$...

• Loop integrand: too many Feynman diagrams

Challenges for $2 \rightarrow 3$ at two loops

- Loop integrand: too many Feynman diagrams
- Integral reduction / IBP: explosion of analytic complexity, \geq 5 kinematic scales

Degree-*d* polynomial in *n* variables:

$$\begin{pmatrix} d+n\\n \end{pmatrix}$$
 terms.

Challenges for $2 \rightarrow 3$ at two loops

- Loop integrand: too many Feynman diagrams
- Integral reduction / IBP: explosion of analytic complexity, \geq 5 kinematic scales

Degree-*d* polynomial in *n* variables: $\binom{d+n}{n}$ terms.

· Master integrals: analytic / numerical evaluation

Challenges for $2 \rightarrow 3$ at two loops

- Loop integrand: too many Feynman diagrams
- Integral reduction / IBP: explosion of analytic complexity, \geq 5 kinematic scales

Degree-*d* polynomial in *n* variables: $\binom{d+n}{n}$ terms.

- Master integrals: analytic / numerical evaluation
- Phenomenology: need sophisticated IR subtraction.

Numerical unitarity for 2-loop amplitudes

Numerical unitarity: one loop

Hugely successful at one loop, "NLO revolution".

Figure 1: arXiv:0803.4180

Ossola, Papadopoulos, Pittau, 2006 Ellis, Giele, Kunszt, 2007 Giele, Kunszt, Melnikov, 2008 Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre, 2008 ...

BlackHat, GoSam, HELAC-1Loop/CutTools, Madgraph, NJet, OpenLoops, Recola ...

Numerical unitarity: one loop

Hugely successful at one loop, "NLO revolution".

Figure 1: arXiv:0803.4180

Ossola, Papadopoulos, Pittau, 2006 Ellis, Giele, Kunszt, 2007 Giele, Kunszt, Melnikov, 2008 Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre, 2008 ...

BlackHat, GoSam, HELAC-1Loop/CutTools, Madgraph, NJet, OpenLoops, Recola ...

Example: NLO $pp \rightarrow W + 5j \rightarrow l\bar{\nu} + 5j$ (BlackHat & Sherpa). [Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren, 2013]

Polynomial complexity, faster than analytic results in high-multiplicity limit!

Overview of one-loop numerical unitarity

 Integrand decomposition (ansatz): Ossola-Papadopoulos-Pittau. Integrand = scalar masters + surface / spurious terms

Overview of one-loop numerical unitarity

- Integrand decomposition (ansatz): Ossola-Papadopoulos-Pittau. Integrand = scalar masters + surface / spurious terms
- Fixing coefficients in decomposition: On cut surface, integrand factorizes into tree amplitudes (Berends-Giele recursion)

Overview of one-loop numerical unitarity

- Integrand decomposition (ansatz): Ossola-Papadopoulos-Pittau. Integrand = scalar masters + surface / spurious terms
- Fixing coefficients in decomposition: On cut surface, integrand factorizes into tree amplitudes (Berends-Giele recursion)

Fix *n* coefficients from *n* sample points. Inversion of linear system from discrete Fourier transform

1. OPP-like minimal ansatz: Masters + surface terms.

- 1. OPP-like minimal ansatz: Masters + surface terms.
 - Produce master coefficients w/o external IBP reduction

1. OPP-like minimal ansatz: Masters + surface terms.

- Produce master coefficients w/o external IBP reduction
- No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017]

- 1. OPP-like minimal ansatz: Masters + surface terms.
 - Produce master coefficients w/o external IBP reduction
 - No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017]
- 2. Versatility: Berends-Giele recursion allows any vertices

- 1. OPP-like minimal ansatz: Masters + surface terms.
 - Produce master coefficients w/o external IBP reduction
 - No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017]
- 2. Versatility: Berends-Giele recursion allows any vertices
- 3. Efficient and stable numerical fitting of integral coefficients (top to bottom) & regulator dependence

- 1. OPP-like minimal ansatz: Masters + surface terms.
 - Produce master coefficients w/o external IBP reduction
 - No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017]
- 2. Versatility: Berends-Giele recursion allows any vertices
- 3. Efficient and stable numerical fitting of integral coefficients (top to bottom) & regulator dependence
 - High-precision floating point for direct calculation

- 1. OPP-like minimal ansatz: Masters + surface terms.
 - Produce master coefficients w/o external IBP reduction
 - No doubled propagators except in a few topologies subleading poles: [Abreu, Frebres Cordero, Ita, Jaquier, Page, 2017]
- 2. Versatility: Berends-Giele recursion allows any vertices
- 3. Efficient and stable numerical fitting of integral coefficients (top to bottom) & regulator dependence
 - High-precision floating point for direct calculation
 - · Finite-field arithmetic for functional reconstruction

Two-loop integrand decomposition

Mastrolia, Ossola, 2011; Badger, Frelllesvig, Zhang, 2012; Zhang, 2012; Mastrolia, Mirabella, Ossola, Peraro, 2012; Mastrolia, Peraro, Primo, 2016

Milestone I: non-redundant parametrization of integrand

- In *d* dimensions, ISPs or Baikov representation
- In 4 dimensions, Groebner basis and polynomial division

Two-loop integrand decomposition

Mastrolia, Ossola, 2011; Badger, Frellesvig, Zhang, 2012; Zhang, 2012; Mastrolia, Mirabella, Ossola, Peraro, 2012; Mastrolia, Peraro, Primo, 2016

Milestone I: non-redundant parametrization of integrand

- In *d* dimensions, ISPs or Baikov representation
- In 4 dimensions, Groebner basis and polynomial division

Milestone II: isolate spurious terms from transverse space

• E.g. numerator $(l_1 \cdot n)$ with $n \perp p_i$.

Two-loop integrand decomposition (cont.)

Milestone III: unitarity-compatible IBP relations as surface terms, no need for extra IBP reduction Gluza, Kajda, Kosower, 2010; Ita, 2015; Larsen, Zhang, 2015

$$0 = \int d^d l \frac{\partial}{\partial \ell^{\mu}} \frac{V^{\mu}}{\prod_j D_j}$$

Chetyrkin, Tkachov, 1981

Milestone III: unitarity-compatible IBP relations as surface terms, no need for extra IBP reduction Gluza, Kajda, Kosower, 2010; Ita, 2015; Larsen, Zhang, 2015

$$0 = \int d^d l \frac{\partial}{\partial \ell^{\mu}} \frac{v^{\mu}}{\prod_j D_j} \quad \text{Chetyrkin, Tkachov, 1981}$$

No doubled propagators if *IBP-generating vector* v^{μ} satisfies

$$\mathcal{V}^{\mu}\frac{\partial}{\partial\ell_{\mu}}\mathsf{D}_{j}=f_{j}\,\mathsf{D}_{j}$$

with polynomials f_j . "Syzygy equations".

Proof of principle: 2-loop 4-gluon amplitudes

[Abreu, Febres Cordero, Ita, Jacquier, Page, MZ, 2017]

- SINGULAR finds IBP-generating vectors.
- Random sampling & numerical solution of linear systems of size ~ 100 (LAPACK).

Results: 2-loop 4-gluon amplitudes

- Double precision + quad precision rescue. Agrees With Glover, Oleari, Tejeda-Yeomans, 2001; Bern, De Freitas, Dixon, 2002
- Quad-double precision for reconstructing analytic result.

All-plus gluon integrand (planar & nonplanar)

Badger, Frellesvig, Zhang, 2013 Badger, Mogull, Ochirov, O'Connell, 2015, Dunbar, Perkins, 2016

All-plus gluon integrand (planar & nonplanar)

Badger, Frellesvig, Zhang, 2013 Badger, Mogull, Ochirov, O'Connell, 2015, Dunbar, Perkins, 2016

Arbitrary helicities (planar) - see next slides!

Badger, Brønnum-Hansen, Hartanto, Peraro, 2017 Abreu, Febres Cordero, Ita, Page, MZ, 2017 Boels, Jin, Luo, 2018

All-plus gluon integrand (planar & nonplanar)

Badger, Frellesvig, Zhang, 2013 Badger, Mogull, Ochirov, O'Connell, 2015, Dunbar, Perkins, 2016

Arbitrary helicities (planar) - see next slides!

Badger, Brønnum-Hansen, Hartanto, Peraro, 2017 Abreu, Febres Cordero, Ita, Page, MZ, 2017 Boels, Jin, Luo, 2018

Extension to quarks

(proceeding) Badger, Brønnum-Hansen, Gehrmann, Hartanto, Henn, Lo Presti, 2018 Abreu, Febres Cordero, Ita, Page, Sotnikov, 2018

All-plus gluon integrand (planar & nonplanar)

Badger, Frellesvig, Zhang, 2013 Badger, Mogull, Ochirov, O'Connell, 2015, Dunbar, Perkins, 2016

Arbitrary helicities (planar) - see next slides!

Badger, Brønnum-Hansen, Hartanto, Peraro, 2017 Abreu, Febres Cordero, Ita, Page, MZ, 2017 Boels, Jin, Luo, 2018

Extension to quarks

(proceeding) Badger, Brønnum-Hansen, Gehrmann, Hartanto, Henn, Lo Presti, 2018 Abreu, Febres Cordero, Ita, Page, Sotnikov, 2018

Master integrals in dimensional regularization

Gehrmann, Henn, Lo Presti, 2015 Tommasini, Papadopoulos, Wever, 2015 Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, 2018 (Talk) Papadopoulos, Wever, 2018

Topology hierarchy for 2-loop 5-gluon amplitudes

[Abreu, Febres Cordero, Ita, Page, MZ, 2017]

Master integrals for 2-loop 5-gluon amplitudes

1 master

• Improved algorithm finds IBP-generating vectors in under 1 second for every sector

See also: Boehm, Georgoudis, Larsen, Schnemann, Zhang, 2018

- Improved algorithm finds IBP-generating vectors in under 1 second for every sector See also: Boehm, Georgoudis, Larsen, Schnemann, Zhang, 2018
- Integrand construction and IBP reduction accomplished simultaneously. ~2.5 mins per point per finite field

- Improved algorithm finds IBP-generating vectors in under 1 second for every sector See also: Boehm, Georgoudis, Larsen, Schnemann, Zhang, 2018
- Integrand construction and IBP reduction accomplished simultaneously. ~2.5 mins per point per finite field
- Arbitrary precision from **exact finite field** computation [von Manteuffel, Schabinger, 2014; Peraro, 2016]

- Improved algorithm finds IBP-generating vectors in under 1 second for every sector See also: Boehm, Georgoudis, Larsen, Schnemann, Zhang, 2018
- Integrand construction and IBP reduction accomplished simultaneously. ~2.5 mins per point per finite field
- Arbitrary precision from **exact finite field** computation [von Manteuffel, Schabinger, 2014; Peraro, 2016]
- **Quad precision floating point** also under testing Preliminary: uniform performance across phase space

Results: 2-loop 5-gluon amplitudes

Euclidean point

$$p_{1} = \left(\frac{1}{2}, \frac{1}{16}, \frac{i}{16}, \frac{1}{2}\right), \quad p_{2} = \left(-\frac{1}{2}, 0, 0, \frac{1}{2}\right), \quad p_{3} = \left(\frac{9}{2}, -\frac{9}{2}, \frac{7i}{2}, \frac{7}{2}\right),$$
$$p_{4} = \left(-\frac{23}{4}, \frac{61}{16}, -\frac{131i}{16}, -\frac{37}{4}\right), \quad p_{5} = \left(\frac{5}{4}, \frac{5}{8}, \frac{37i}{8}, \frac{19}{4}\right).$$

$\mathcal{A}^{(2)}/\mathcal{A}^{norm}$	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
(1 ⁺ , 2 ⁺ , 3 ⁺ , 4 ⁺ , 5 ⁺)			-5.0000000	-3.89317903	5.98108858
$(1^-, 2^+, 3^+, 4^+, 5^+)$			-5.0000000	-16.3220021	-10.3838132
$(1^-, 2^-, 3^+, 4^+, 5^+)$	12.50000	25.462469	-1152.8431	-4072.9383	-3637.2496
$(1^-, 2^+, 3^-, 4^+, 5^+)$	12.50000	25.462469	-6.1216296	-90.221842	-115.78367

Table 1: $\mathcal{A}^{\text{norm}}$ is $\mathcal{A}^{\text{tree}}$ if amplitude exists at tree level, otherwise $\mathcal{A}^{1-\text{loop}}$.

Perfect agreement with universal IR poles [Catani, 1998] and results in [Badger, Brønnum-Hansen, Hartanto, Peraro, 2017]

Connection with dual conformal symmetry

Dual coordinates: cut propagator mapped to null-seperated points.

Conformal transformation preserves null separation, and generates unitarity-compatible IBP & differential equations.

This connection also motivated **nonplanar generalization** of DCS

- Z. Bern, M. Enciso, H. Ita, MZ, 2017
- Z. Bern, C. Shen, M. Enciso, MZ, 2018
- D. Chicherin, J. Henn, E. Sokatchev, 2018

Differential equations at high multiplicity

Master integrals from differential equations

- Many methods for evaluating master integrals Schwinger / Feynman α parameters, Mellin-Barnes representation, Differential equations ...
- Differential equations method: [Kotikov, 1991; Bern, Dixon, Kosower, 1993; Remiddi, 1997; Gehrmann, Remiddi, 1999; Argeri, Mastrolia, 2007]

$$\frac{\partial}{\partial x}I_{i}\stackrel{\mathrm{IBP}}{=}(M_{x})_{ij}I_{j}$$

• A breakthrough: canonical form of DEs: [J. Henn, 2013, 2014]

$$\frac{\partial}{\partial X}I_{i} = \left[\epsilon \sum_{\alpha} \frac{\partial \log r_{\alpha}}{\partial X} \underbrace{(M_{\alpha})_{ij}}_{\text{rational numbers!}}\right]I_{i}$$

Numerical construction of DEs

Pure integrals $I = (I_1, I_2, ..., I_n)$, with *m* symbol letters r_{α} .

$$d\mathbf{I} = \mathbf{M} \cdot \mathbf{I} = \epsilon \sum_{\alpha=1}^{m} \left(d \log r_{\alpha} \right) \mathbf{M}_{\alpha} \cdot \mathbf{I},$$

Pure integrals $I = (I_1, I_2, ..., I_n)$, with *m* symbol letters r_{α} .

$$d\mathbf{I} = \mathbf{M} \cdot \mathbf{I} = \epsilon \sum_{\alpha=1}^{m} (d \log r_{\alpha}) \mathbf{M}_{\alpha} \cdot \mathbf{I},$$

Inspired by numerical unitarity: exploit canonical form to simplify *construction* of DEs [Samuel Abreu, Ben Page, MZ, 2018] See also: construction in generic basis: [Tiziano Peraro talk, 2018]

Pure integrals $I = (I_1, I_2, ..., I_n)$, with *m* symbol letters r_{α} .

$$d\mathbf{I} = \mathbf{M} \cdot \mathbf{I} = \epsilon \sum_{\alpha=1}^{m} (d \log r_{\alpha}) \mathbf{M}_{\alpha} \cdot \mathbf{I},$$

Inspired by numerical unitarity: exploit canonical form to simplify *construction* of DEs [Samuel Abreu, Ben Page, MZ, 2018] See also: construction in generic basis: [Tiziano Peraro talk, 2018]

Fit $(m \times n \times n)$ matrix entries: computing the $(n \times n)$ matrix \mathbb{M} at m points in phase space. Use finite fields to speed up calculation

DEs for nonplanar hexabox

Five kinematic scales. Extremely difficult using conventional IBP techniques!

Very recent progress on IBPs:

- Max.-cut IBPs / DEs: MZ, 1702.02355; Chawdhry, Lim, Mitov, 1805.09182
- Rank-4 w/o dot: Boehm, Georgoudis, Larsen, Schoenemann, Zhang, 1805.01873
- Rank 3 + 1 dot ⇒ Canonical DEs: Abreu, Page, MZ, 1807.11522
 Canonical DEs + solutions: Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, 1809.06240

Nonplanar hexabox: pure basis

Evidence for nonplanar amplituhedron, 1512.08591 Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz, J. Trnka

$$\mathcal{N}_{1} = [13] \left(\ell_{1} + \frac{P_{45} \cdot \tilde{\lambda}_{3} \tilde{\lambda}_{1}}{[13]} \right)^{2} \langle 15 \rangle [54] \langle 43 \rangle$$
$$\times (\ell_{1} + k_{4})^{2}, \quad \mathcal{N}_{2} = \mathcal{N}_{1} |_{4 \leftrightarrow 5}$$

A 3rd pure numerator \mathcal{N}_3 found by leading singularities, with poles at ∞ .

Two loop master integrals for $\gamma^* \to 3$ jets: The nonplanar topologies, hep-ph/0101124, T. Gehrmann, E. Remiddi

for 4-point one-mass pure integrals in sub-topologies

Pure integrals: 4 versus *D* dimensions

$$\begin{aligned} \mathcal{N}_3 &= S_{12} S_{23} \langle 4 \ell_1 5] \langle 5 \ell_1 4] \\ &= S_{12} S_{23} \left(\frac{4 (\ell_1 \cdot p_4) (\ell_1 \cdot p_5)}{S_{45}} - (\ell_1^2)_{4D} \right) \end{aligned}$$

fails ϵ factorization of DEs! simple fix: $(\ell_1^2)_{4D} \rightarrow \ell_1^2$

$$\mathcal{N}_1 = \text{nonvanishing in 4D}$$
$$\mathcal{N}_2 = [\mu_{12}] s_{ij} \sqrt{\det G}$$
$$\mathcal{N}_3 = [\mu_{12}^2 - \mu_{11}\mu_{22}] \frac{d-3}{d-5} \sqrt{\det G}$$

Results: DEs for nonplanar hexabox

- Pure integrals from 4D leading singularities and " μ -terms". Symbol alphabet with 31 letters, from permuting planar ones, conjectured by [Chicherin, Henn, Mitev, 2017]
- Only 30 phase space points used to reconstruct analytic DEs.

Results: DEs for nonplanar hexabox

- Pure integrals from 4D leading singularities and "µ-terms".
 Symbol alphabet with 31 letters, from permuting planar ones, conjectured by [Chicherin, Henn, Mitev, 2017]
- Only 30 phase space points used to reconstruct analytic DEs. Sample result of matrix for $r_{31} = tr_5 = \sqrt{\det G}$:

$$\begin{array}{ll} (M)_{1,1}=2, & (M)_{1,16}=2, & (M)_{2,2}=2, & (M)_{2,16}=-2, \\ (M)_{5,5}=2, & (M)_{5,16}=-4, & (M)_{12,12}=2, & (M)_{12,16}=-4, \\ (M)_{16,16}=-4, & (M)_{17,17}=2, & (M)_{19,19}=2, & (M)_{24,24}=2, \\ (M)_{26,26}=2, & (M)_{28,28}=2, & (M)_{30,30}=2\,. \end{array}$$

Results: DEs for nonplanar hexabox

- Pure integrals from 4D leading singularities and "µ-terms".
 Symbol alphabet with 31 letters, from permuting planar ones, conjectured by [Chicherin, Henn, Mitev, 2017]
- Only 30 phase space points used to reconstruct analytic DEs. Sample result of matrix for $r_{31} = tr_5 = \sqrt{\det G}$:

$$\begin{array}{ll} (M)_{1,1}=2, & (M)_{1,16}=2, & (M)_{2,2}=2, & (M)_{2,16}=-2, \\ (M)_{5,5}=2, & (M)_{5,16}=-4, & (M)_{12,12}=2, & (M)_{12,16}=-4, \\ (M)_{16,16}=-4, & (M)_{17,17}=2, & (M)_{19,19}=2, & (M)_{24,24}=2, \\ (M)_{26,26}=2, & (M)_{28,28}=2, & (M)_{30,30}=2\,. \end{array}$$

• **Ongoing**: DEs + **first-entry condition** fixes symbols for all pure integrals.

Confirmed conjectured 2nd entry condition [Chicherin, Henn, Mitev,

2017; Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, 2018]

Future outlook

- Numerical unitarity for high-multiplicity QCD processes: "NLO revolution" being upgraded to NNLO!
 - **Open question**: better control over stability of linear systems. Analog of discrete Fourier transform?
- Contact with phenomenology in coming years. Physics opportunity for amplitudes, IR subtraction, resummation.
- Differential equations constructed by similar methods. Avoids IBP obstables at higher multiplicity.
 - **Open question**: better understanding of pure integrals outside 4 dimensions.