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Intro

* Feynman integrals are crucial ingredients of scattering
amplitudes, which 1n turn enter cross sections

* They evaluate to “special functions” which contain the
physics 1n their analytic structure

* Most well studied case: Multiple Polylogarithms (MPLs)

(all 1-loop examples and most 2-loop examples without internal masses)

s
G(al,...,an;z):/ e a;< C
0

t—a1

e = G(O,...,O;z):i'log”z
N —_ e’ .
n times



Lots of nice properties:

Shuftle algebra: G(ai,...,a4;2) Glars1,.. .. a2 = ) Haony, - 1 8o 2)
oeX(k,l)

n

Total differential: dGlai,...,an;2) =) Glay,...,d;...,an;2) dlog

T

A;—1 — G4

A;+1 — Uy



MPLs: Weight = number of integrations

e
G(al,...,an;z):/ o = a; € C
0

t—a1

Weight 1

Weight 1
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What do you mean “Pure™?

o Definition based on total differential — Henn'13 —

/' # of integrations

A pure function of weight n is a function whose
total derivative can be expressed in terms of pure

functions of weight n-1 (times algebraic one-forms) :
algebraic

/

ai—1 — 0y

deEss ZG(al,...,di,...,an;z)dlog
T

\ : \ A;4+1 — Qg

weight n weight n — 1



What do you mean “Pure™?

= . — Arkani-Hamed, Bourjail
 Definition based on residues Ca Cizlz . e = e

An integral is pure if all of its non-vanishing
residues are the same up to a sign

“Integrals with unit leading singularity”

e FEx:4-mass box

210t e

3

€

(weight of € 1s-1: ¢ = ¢€° log(g)

— == - + log(—s) log(—t) — — o EEREE -




What do you mean “Pure™?

== : — Arkani-Hamed, Bourjail
* Definition based on residues Cz Cii; . ?FTer = ﬁur_]aly

An integral is pure if all of its non-vanishing
residues are the same up to a sign

“Integrals with unit leading singularity”
* Pure Feynman Integrals, when properly normalised

* Are expressible in terms of pure functions

e Satisty a differential equation system in canonical form



Pure integrals evaluate to pure functions

Differential equations in canonical form  — Henn'13 —

Matrix of “dlog” forms

dF = edA F

/L

Vector of master integrals

For MPLs:
Natural solution in terms of F = Pexp

pure functions G as an expansion in €

What to do when the integral cannot
be evaluated in terms of MPL.s?




Ex: 2-100p massive sunrise 1in d=2 —

=
=

Two of the master integrals satisfy a coupled system

First master integral satisfies a 2nd order DE:

d=—d p
D B O—=—=
(ala27 da) S i) :

Homogeneous SOlUtiOIlZ

K(z) = : at (complete elliptic integral
= of the st kind)

=

Sqrt of quartic polynomial



By now we know lots of examples that don’t fit into the
MPL framework: =

= /‘\ J
P1
k1
ko
P2

3

3

S

P1

3

D2

Goal: Develop a class of functions which 1s applicable 1n
general for FI of the elliptic kind (next-to-simplest):

* Elhptic generalisations of MPLs to functions on

=
E the elliptic curve w/ log singularities
=

=

* Well defined notion of weight / purity



Purity: Why bother?

* Meaning not entirely understood even in the MPL case

* Nevertheless, shows underlying structure

Eg. N=4 SYM:

anomalous dimensions, amplitudes,
certain form factors, etc

f L'IOOPS <> Weight 21. functions ;'

“Uniform transcendentality”

*  Organisational principle:
functional 1dentities among functions of fixed weight

e “Maximal transcendentality principle”
— Kotikov, Lipatov, Onishchenko, Velizhanin '04 —



Purity: Why bother?

a;—1 — Q4

A;+1 — Gy

Fotal dilferentials 960, 0.7 ) G0, G 00 l0¢
=1

A;—1 — A4

Aj+1 — A4

Symbol: S(G(al, o ,an;z)) — ZS(G(al, S ,CALf,;, S ,an;z)) &)

— Goncharov, Spradhin, Vergu, Volovich 10 —
Length n —— n -fold tensor product

* Taming analytical expressions, functional identities

*  Symbol bootstrap with MPL ansatz in N=4 SYM

— Caron-Huot, Dixon, Drummond, Duhr, Harrington, Henn,

McLeod, Papathanaseou, Pennington, Spradlin, von Hippel —



Purity: Why bother?

Differential equations in canonical form

Matrix of “dlog” forms

dF = edA F

z

Vector of master integrals

For MPLs: natural solution in terms of pure functions G

To-do: develop a general framework also for elliptic integrals

— Adams, Weinzierl / Adams, Chaubey, Weinzierl ‘18 —



The real world: N=4 Super Yang-Mills

Conjecturally of uniform (maximal) weight

Elliptic integrals (and beyond) are known to appear:

— Caron-Huot, Larsen '12 / Nandan, Paulos, Spradlin, Volovich 14 /
Bourjaily, MclLeod, Spradlin, von Hippel, Wilhelm 17 —

The elliptic double box,

and more generally traintracks

— Bourjaily, He, Mcl.eod, von Hippel, Wilhelm 18 —

We'd like to give an elliptic meaning to these statements!



Dehne pure eliptic MPLs (e MPLs)

* We seek to generalise the following to the elliptic case:

A function is called pure if it is unipotent and its
total differential involves only pure functions and
one-forms with at most logarithmic singularities.

(Unipotent: total ditf has no homogeneous term)

Log singularities

=

A;—1 — Gy

n

dee a0 :ZG(al,...,&i,...,an;z)dlog

= \ \ a’i‘|‘1 — 4y

Pure Unipotent




Elliptic Polylogarithms on the torus

— Brown, Levin ‘11, Broedel, Mafra, Matthes, Schlotterer '14 —

torus: C/A Modular group: SL(2,7Z)
e Zwl == ZCUQ wé e b W2
e —=te o
W9 at + b

\
/4

‘ 07 : s = -




Elliptic Polylogarithms on the torus

— Brown, Levin ‘11, Broedel, Mafra, Matthes, Schlotterer '14 —

z n; € N
EELEE :/0 d' g " — W= Teey — e

Kernels defined through generating function:

/
Zg(n) 2. 7_ 9 (O,T)Hl(Z‘l‘OZ,T)
01(z,7)01(c, 7)

—

Odd Jacobi theta function

ZO&T
n>0

Kernels have at most simple poles at lattice points

B — = e



Elliptic Polylogarithms on the torus

— Brown, Levin ‘11, Broedel, Mafra, Matthes, Schlotterer '14 —

z n; € N
EELEE =/ d' g " — W= Teey — e
0

Kernels defined through generating function:

9’ (0,7)01(z + o, T)
() 119, ’
EZro.7) nz>og (2,7) 01(2,7)01(c, 7)
1 I
AR (2, 7) = %f(n)(zm)&n = exp {QWO&%I F(z,a,7)

holomorphic, :
doub riodic ho% L
double periodic



Like MPLs, T satisty nice properties

Total differential without homogeneous term (= unipotent)
— Broedel, Duhr, Dulat, Penante, Tancredi, 2018 —

fo—l
df (Al o Ap Z,T) — Z(_l)np—i—l f (Al — Ap—l 8 Ap+2 - Ap 2, 7_) w(np+np+1)

p,p+1
p=1
1 = == rl o2 Np—r
== [( pnp_l = ) = (Al s Ao —ap Z’T) Wp,p—1 one-forms w/
p=1 r=0 log singularities
n e p =\ 1 r Np—T
-
p

e =t i

adr

(n+1) (
271

w(n) — (de == CZZZ) g(n) (Zj STy 7') =+

Important: g(n) (Z, 7') have at most simple poles for z=m+nr,m,ne’



Like MPLs, T satisty nice properties

Total differential without homogeneous term (= unipotent)
— Broedel, Duhr, Dulat, Penante, Tancredi, 2018 —

k—1
df (Al - Aps 2, ) == Z(_l)"p—H f (Al - Ap—l 8 Ap_|_2 o A 2, ’7') wz(;zjjlnp—i_l)

p,p—1 one-forms w/

Pt
k np+l == = (np_r)\
£y F(Al---A_ A Ap+1---Ak;Z,T)w

log singularities

= (np+1 +r— 1) 7 (Al — Ap Alr) (1

ks (np—T)
= k,Z,T) w ]

A function is called pure if it is unipotent and it
has at most logarithmic singularities.

I' are pure!




So, we can use as guiding principle

An elliptic Feynman integral is pure if it is pure
when expressed in terms of I’

Linear combination of I' with coefficients being
rational numbers

Why bother defining another version of eMPLs?




Elliptic curves

T (x —a1)(x —a2)(x —a3)(x — ag) = Py(x)
Vector of branch pointsof y: @ = (a1,a2,a3,0a4)

Periods:

as a2d
w1:2c4/ %ZQK()\) w2:2c4/ 522”&}((1—)\)

Gt oy B VORI TR

=



Elliptic Curves and Torn

VS. relr—ajk-—wiz—oir—u =P
=
W1
Kappa function e e
(car'(2))” = (K(2) — a1)(K(2) — az)(K(2) — a3)(k(2) — a4)
=
e
(z,y) = (k(2), car’(2))
Abel’s map
e e
(fv,y)wzzw—1 = mod A




Desired properties for e MPLs:

1. Pure eMPLs on the elliptic curve

Feynman integrals are more naturally studied on the elliptic curve
(sitmpler functions of kinematic dof)

2. Dehinite Parity

Integrands are rational functions, result should not depend on
choice of branch tor the square root 32 = Py(2)

(2, y) = (2, —y) <> =

~

Basis of 1' does not have definite parity

~

BEli = Teeay =/ gk ¢ (=2, 1) = (=1)"¢"(z, 1)
0



To summarise:

We define a basis of eMPLs on the elliptic curve such that

I. They form a basis for all e MPLs

2. They are pure
3. They have dehnite parity

4. They manifestly contain ordinary MPLs



Meet the pure eMPLs on the elliptic curve:

o
e 0 / e e el
0
n; € 4

n; € 7, 1salabel

c; € C  indicate punctures (for n; 7 0)

Infinitely many kernels, ¥, butonly |n| <2
typically appear in explicit problems



Meet the pure eMPLs on the elliptic curve:
Ealer e 32, ) = / dt U, (c1,t,d) Ex( ey 7 ey 5t @)
0
n; € 4

dx Uy, (c,x,d) = dz; [Q(n)(zx S e T g(n)(zx 26T

=04n1 (9(1)(% — 2, 7) + g0 (2 + 24, T))]

~

Recall: ¢'"(z,7) are the kernels of the eMPLs T’



Meet the pure eMPLs on the elliptic curve:
Ealer e 32, ) = / dt U, (c1,t,d) Ex( ey 7 ey 5t @)
0
n; € 4

dx Uy, (c,x,d) = dz; [g(n)(za: S e T g(n)(zw 26T

=04n1 (9(1)(Z:c — 2, 7) + g0 (2 + 24, T))]

They form a basis for all eMPLs /

(one-to-one correspondence with basis of 1)



Meet the pure eMPLs on the elliptic curve:
Ealer e 32, ) = / dt U, (c1,t,d) Ex( ey 7 ey 5t @)
0
n; € 4

dx Uy, (c,x,d) = dz; [g(n)(za: S e T g(n)(zw 26T

=04n1 (9(1)(Z:c — 2, 7) + g0 (2 + 24, T))]

They are pure /

(Linear combination of 1" with numeric coethicients)



Meet the pure eMPLs on the elliptic curve:

o
e 0 / e e el
0
n; € 4

dx Uie, x,d) = dzg [Q(n)(zx S e T g(n)(zx 26T

=04n1 (9(1)(% — 2, 7) + g0 (2 + 24, T))]

They have definite parity /

(Recall ¢ (=z,7) = (-1)"¢"(2, 7))



Meet the pure eMPLs on the elliptic curve:

o
e 0 / e e el
0
n; € 4

dx Uy, (c,x,d) = dz; [g(n)(za: S e T g(n)(zx 26T

dx

drVi(c,z,a) =

¢ 7 00

)
Sl

They manifestly contain ordinary MPLs



Making 1t explicit

\IJO(vaaa): C—4
W1y
T(e,z,3) = —
T
1\Cy Ly CU—C’
— yC — C4:
Ve zrak= + Z4lc,a) —,
( ) y{z — c) ( )y
\Ill(OO,ZE‘,C_i) = _Z4(£E7C—L))%7
= = = =
W_i(c0,2,a) = Y —g[a1+204 G (a)] Ye =/ Palc)

Nothing comes without a price — explicit dependence on

1 =
= 9(1) (Z*7 T) and Z4(Ca CL)

Wi \
\ Transcendental function

Image of —co on the torus with pole at ¢ = 00

G.(@)

In general transcendental, but ssimphity in specific applications



Length and weight

For MPLs, notion of weight and length are straightforward
Length = weight = # of integrations (except for ir)

For eMPLs, they are not the same!

Semi-simple vs. unipotent

Unipotent: total differential has no homogeneous term

W; : periods e = = wo

1i ° quasi-periods m 12 m —iw/wi 01 Wi

S semi-simple / \ unipotent
(Legendre)

/ Wlanlaiﬂ-/wl

. Semi-simple periods have length 0
Roughly speaking: . . | .
Unipotent periods have length = # of integrations



Weight:

Empirically, by requiring relations between uniform weight functions,

we postulate:

W1 — QK()\) — =
wy = 20 K(1 = \) ' . Recall: - =s
— 2 — 0
W1
= — =
Ealer 1 of 1@, @) =y

We'll see 1n applications that using these definitions, results
are of uniform weight



Other properties that work the same way as for MPLs:

Shuttle
E(Ar - Ap;m, @) Ea(Appr - A 3,8) = Y EalAgy+ Ao(iors); T, @)
oS (k,1)
Unipotent — Symbol
. — =)
Shuffle preserving regularisation of &4(- -+ 35, &, Q)

1
Analogue of G(0,...,0;2) = = log" 2
e n!
n times



Name Unipotent | Length | Weight
Rational Functions No 0 0
Algebraic Functions No 0 0

LT No 0 1
Con No 0 2n

Cont1 Yes 0 2n + 1

log x Yes s 1

Eir) Yes n n

Bl Yes k k

w1 No 0 1

M No 0 1

T Yes il 0

g™ (z, 1) No 0 n

R (r) No 0 n

Z4(c,a) No 0 0

G.(a) No 0 0
Ea(er 2 en 3 @, 0) Yes =
f(le = Yes k >
Hoe e e Yes k S>=—

.




Applications

— Broedel, Duhr, Dulat, Penante, Tancredi (to appear) —

m

2-point functions — @ @/
m
- » P1 » P1
kl kl
3-point functions
X X
< > P2 > D2

— Tancredi, von Manteuttel '17 — — Aghetti, Bonciani ‘07 —

4-p0int functions \

—Henn: Saurney 1o —




Applications

— Broedel, Duhr, Dulat, Penante, Tancredi (to appear) —

2-point functions

3-point functions

= /a,’\} 1’17 — — Aghetti, Bonciam 07 —

4-point functions \

—Henn: Saurney 1o —




Step by step
Start from Feynman parametric integral

Do as many integrals as possible in terms of MPLs G

G(al,...,an;z):/ = e 0 0
0

t—a1

1
Reach a representation of the type I = / =t x (bunch of Gs)
oG5

Rewrite (bunch of Gs) as U, (..., z,ad)&(...;z,d)

Integrate in terms of eMPLs

4 &
Site e agi= / W (et arlt 2 g
0



Ex 1: Sunrise first master p —

=
-

Semi-simple \ / Unipotent

. Wi
We can write: S1(p*, m?) = — (P2 + m2) cq Ty (p*, m?)
Wi
Cut[S1(p?, m?) | p_s] = —
[ 1(p )|D—2] (pz = m2) ca

Just like

anmz) = Cut 5y (p2,m2)|D:2] x 17 (p2,m2) non-elliptic

— |

CasSe



2 —2€
Tl(pz,mz) -~ (m_> [Tl(o) = eTl(l) = 0(62)}
Tf“? e e e

Bl =g (0l Lia a6 (i a6 (]l L) s, 13
— 264045 05L:8) —264(04y 151:8) —264(04, 031:8) —264(04, 1:1,8)
—264(04, 031:8) —264(0a, 1359 —284(0 4, 055:8) —284{0a, 13 1,)
+264(0 o 01 1,8) +284(0 o 13 1,8) +6€4(( ¢ o 11,8) +6E4(p1 53 1,8)
—264(0 9 05 1:8) —284(g o 1;1,8) —284(5 7 95 1,d) —284(g 7 151, 6)
+ 6imEL( 0 431, @) + 6imEal =}
= G =

i (504 VIFP) 50+ VITP) 5= VITP) 50 - VITP) p=— — and 5= - =



2 —2€
Gt = () [0+ + o)
O =263 L8 + 83 LD + (i1

T = 48, (81 <11,2) —464(8 1 1,1,8) —46,(8 L 21:1,3) —464(8 2 21,4

0 as o0 0a; o0 0aq o0 0ax o0
25 L LD L L) =285, L) aln (LT
—08ite o ha 26ty S tatdbla ke aen
+264(32218;1,8) +264(3 32 11,8} Recall weights:

~26,(37 318 2633 1L9)|

S T aEEbine A

Eql el 0 ekix) — Z\nz\

1

w1, ™ — 1

g\. X
£

.’ Manifestly pure of weight 21 ;




2

3

The second master =+

m

Semi-simple \ / Unipotent

Sip 0 T1(p?, m?)
S2(p2’m2) Hy _mZ(p2+m2)%p2—|—9m2)Ql TQ(p27m2)

Wi
Q=
! C4 (m2 = p2) :
Hy = deqm w (15m* + 12m*p? + p*)
— L m2(Om2 0 Gegm? (m2 + p?)? (9m? + p?)
5 9 2 —2€
Cut[SQ(p , T )|D:2] TQ(pQ,TTLQ) = <_m—pQ> [TQ(O) + €T2(1) == 0(62)i|

T —26,(22:1,8) +&(2;1,8) + E4(52;1,8)

i o e

Uniform weight 2!



u e

Massive loop M \

b1

k1

= =
P2

— / o 2 — p2
dn F[= D =
i=1 "1 ==
o= _2(1?1 'p2)



In terms of pure eMPLs Ey

32w1
== To(a) + 3T _(a) + 5T (a) + Ofe
q2(1—|—\/1—16a)[0() (a) +(a) + O(e)]
= s a s e
1
log(a)[€4(§ o 031) +€4(3 o 13 )]+ 5€4(5 5 51) (G2 — log™(a))
3
L= :—§C254(;};7“—)+C254(;}857“—)—254(3.}&}37“—)54(8;}51)
FEEC aen o T EEIE S G b e

i
0
Lo A A She sl ke )
1
0

— 54(;} 8 };7“_) log(r_) +54(_1 8 ;r_) log(1 —r_

o

s = - = =

)
-

= (O,%(l—\/l—ma),%(l—l—\/l—16a),1> m— %(l—vliﬁla) a=m?/{—q¢%)



In terms of pure eMPLs &4 :

32&)1

I = T + 31_ + 5T’ + O
T (@) + 3T (@) + 5T (a) + O(e)
Ii=—Ciliaouil) Glomoil) Cilomiol) Sllowiolit
1
log(a)[€4( o 03 1) +&4(8 % 13 D)] + 5€4(5 0 51) (G2 — log*(a))
3
e —§C254(;};7“—)+C254(;}85"“—) = &}57“—)54(8;}51)
(5o r) +E( T8 i) —E(S1 8 i) —Ea( 281 s )
re2ithr ) (e ra 2 thr) &)
—54(;}8%;7“_)10g(r_)+5 (OO1 é,r )log(l—r )
15

e ) Al i) HGG S S L A0 T )
1=
07

1
0 oo
— (o105 Toalowori™) —Gali o) T&li % 0157H)

Uniform weight 4!



Back to the real world

The elliptic double box of N=4 SYM

— Caron-Huot, Larsen '12 / Nandan, Paulos, Spradlin, Volovich 14 /
Bourjaily, MclLeod, Spradlin, von Hippel, Wilhelm 17 —

rell dOé
: / Pure combination of MPLs
Usin o Quartic polynomial (with quadradic sqrts)
= Cq

\IJO (07 X, a) =i

W1y

Weight 1 Weight 3
=
Io ~ — T T — / dor (0, ) G (a)

Uniform weight 4, as expected!



Conclusions
* First step into defining a concept of purity and uniform weight in the
elliptic case, worked out several examples

* Both conceptual and practical relevance — 1n the end we are interested
in computing amplitudes and obtaining reliable analytical expressions

* Purity 1s of great relevance in the MPL case (differential equations),

hopefully soon we will have a similar understanding ftor elliptic Feynman
integrals too

* Not the end, integrals with multiple elliptic curves, more complicated
geometries, etc. — Adams, Chaubey, Weinzierl '18 — =

* Lots to do still, but we are definitely moving forward!



Conclusions
* First step into defining a concept of purity and uniform weight in the
elliptic case, worked out several examples

* Both conceptual and practical relevance — 1n the end we are interested
in computing amplitudes and obtaining reliable analytical expressions

* Purity 1s of great relevance in the MPL case (differential equations),

hopefully soon we will have a similar understanding ftor elliptic Feynman
integrals too

* Not the end, integrals with multiple elliptic curves, more complicated
geometries, etc. — Adams, Chaubey, Weinzierl '18 — =

* Lots to do still, but we are definitely moving forward!

Grazie!



