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Nonperturbative forward physics: total pp cross-section:
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® Why does it grow!?

® Relativity + quantum mechanics

p ==

e

® A cloud of virtual particles (pions, rho’s,..)
builds around the proton!



perturbative phenomenology of forward scattering:

® Deep inelastic scattering/saturation (HERA heavy ions)
small x = Regge, large Q2= perturbative

® Mueller-Navelet: pp->X+2jets, forward&backward

for review of these:see |61 1.05079



theoretical motivations:

One of few limits where perturbation theory
can be resumed

Retain rich dynamics in 2D transverse plane:
-toy model for full amplitude

-nontrivial function spaces

-predicts amplitudes and other observables in
overlapping limits



The (multi-)Regge limit at higher points has been
extensively studied, especially in planar N=4 SYM.

It reveals an amazing integrable system
5 INtCE 4 (next talk?)

Here we’ll focus on Az-2 but in QCD at finite N..
It depends on:

- energy: L =log|s/t| —in/2
- IR regulator: |/e & log(-t/ u?)

. 2 2
- color: C4,T%, Ty, ...



Nice variables

|. Coupling runs with transverse momenta,
not CM energy

= use a,(—t)

2. Crossing symmetry relates large-s & large-u limits

= use symmetrical combination

1 | —s — 10 | —u — 120
= — | lo - 10
A S

S U
—log || — i3



Crossing symmetry: Project onto signature eigenstates:

MF) (s, t) = %(./\/l(s,t) + M(—s t,t))

These simple definitions remove all i\pi’s.

The following have nice& real coefficients:

ML, as(—t),6),  — M (L, au(—t), e
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2—2 kinematic limits
soft limit of BFKL

exponentiation
of IR div
1/e = Regge limit of I
SO&T
/c:ft-

Regge

BFKL
resummation



BFKL redux

A simple, and correct, approach to high-energy scattering:
replace each fast parton by a null Wilson line

S ee + pa + n— a
U(CEJ_) EP{BZI—OO de™ AL (7,07 ,x )T




The subtlety: projectiles contain more than one parton

cloud of
radiated
partons




Transverse distribution depends on energy resolution

(+perms.

Z)

d
d_nUU ~ g’ /dZZOK(ZO,Zh@)[U(ZO)UU - UU]

® ‘shock’ = Lorentz-contracted target
® 45° lines = fast projectile partons

® Fach parton crossing the shock gets a Wilson line



The Balitsky-]IMWLK equation

o d’z0 20i°20 b ) )
H=75 / @zid’z——5—— (TeLTfL + TERT R — Ush(20) (T T g + T3 TER) )
0i%0j

—d
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® \Well established and tested
® Now well understood at NLL

® Partial NNLL results



Main feature: index contractions preserve

two global symmetries: future

SU(N)past X SU(N)future

past

Spontaneously broken to diagonal in vacuum:
O|U(z1)]0) =1

‘Goldstone boson’ W = Reggeized gluon
U, ) = 9T W (o0

BFKL : expand in W’s and study linearized evolution



Multi-Regge exchanges are suppressed by coupling

M ()

LL = one-Reggeon NLL (two W’
(one-WV exchange) (two W)

Sag(t) ANLL X /dVC(V)SE(V)
t

ALL X

‘Regge pole’ ‘Regge cut’



Perturbative structure of the BFKL Hamiltonian

eIV U1 +igWT + ..

n-n+k transitions: from LO B-JIMWLK
(W) (W)
| (W)?
=y | = (W)
Uk (W)*
Leading BFKL and
required by symmetry of d/dn BKP kernels

® Matrix is symmetrical: projectile/target symmetry
® Growth/saturation: off-diagonal can’t be ignored

® (‘Reggeon field theory’ which resums all, still elusive)

|6



® At NNLL, something new happens: | and 3
Reggeon states mix

® (@ 2-loops: violation of Regge pole factorization

® @ 3-loops: first check of mixing matrix




We don’t actually compute these diagrams:
the LO B-JIMWLK Hamiltonian gives us simple 2d integrals

SO~ L

all the work is to find the color factors that
multiply them, starting from the Hamiltonian.

5
SWe

O‘ﬁ x z x zZ a
Hk—>k+2 — B_W/[dzz][dzo] Kiz’;O (WZ—W()) Wg(WZ—W()) TI’[F FYE F} (3.11)

2
i g_; /[dzz'] [dzj][dzo] Kijo (F*FYF?F')™ [(Wz‘—WO)ngWoZ(Wj—WO)t
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result for 2loops NNLL, in any gauge theory:

M2 = 1D + D' + DYDY @ - %(CA)ZH M

R(2) — (rr)? (L - Zeg“g -+ 262@ + .. >

8¢c?

Color operator precisely corrects factorization violation!

v

at 3-loops NNLL, we computed coefficients

of 3 color structures:
Mgy = (B TETE T+ R (T T2 L+ R (Ca)® ) M)

ij—>1] ij—>1]
1

1 37
Rfj) — 1_6 (TF)B(ICL_IC) — (’]"F)B (4863 4+ ﬂgB 4+ .. )

Poles are consistent with IR exponentiation! V4



Removing the ‘hat’ requires the 3-loop gluon Regge
trajectory: H| -, which affects only the Rc color structure.

In N=4, we could fix it from

i I 49 ] i ]
H1(3—)>1 _N2 1<424 63 | 1924 CQCS | C | O(G) + Ng 0+ O(E)
Upshot:

-new 3loop prediction in QCD, up to one constant
-machine set up to compute NNLL M®) to
4&higher loops, modulo same constant.

In N=4, that constant is known. 1701 05241
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Back to NLL: high-order
Solution in the soft limit

two-Reggeon exchange (~a L)

leading order
evolution

[1711.04850]
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Each rung = the BFKL Hamiltonian H;-2

A

H = (2C4 — T?)H; + (C4 — T?) Hy,

‘integration’ part:

0,0 = [ 0 fo k) W) — (. )

‘multiplication’ part:
: L[, [P\ p* \"
H, Up k)= —|2- L) — U(p, k
00 = 2= (72) -~ (o) | vt

Both increase transcendental weight by |

22



Evolution equation: ¥ = gg¢-b  gO =1

Exact solution in adjoint channel: ¥ =1

Cases where eigenfunctions are known: [Lipatov]
- Color singlet dipoles (x-space conformal symmetry)

- Color adjoint (p-space ‘dual’ conformal symmetry)

Unfortunately, for d#4 / other color reps.,
eigenfunctions are not known

= iterative solution

23



Outermost rungs are always easy (multiplication)

000000
>

4-loop = single nontrivial integral

> (44 . (Bo)” p”
W) = —im Sl [1D4] s (= T2 O, )

+ (ZCA — T%)(CA — T?)2 Qmim(p, k)} Tz—u M(tree)

4
B L -1 (o) e+ 0 (2.32)

&
CA(Ca— T2 ( 56— g ero(@) bz o,

Note this has both leading& subleading IR divergences

— 1T




How to predict the IR divergences at higher-loops?
Facts:

| .Wavefunction ¢“)(p, k) is finiteas € — 0

=>poles can only appear from final integration

/ W (p, k)
k—0

2. Evolution closes in soft limit;

I; (£) ~ H 1 (£=1)
lim 4 (p, k) lim ¢ (p, k)

25



IR divergences only occur when a full rail goes soft!

ne n+1)e
a (PN~ L Bae ("
"\ k2 2¢ Bo(e) \ k2

Gamma-functions

ne ne n+1)e
g (Y e\ ("
T\ k2 2¢€ k2 k2

) €
= Soft wave function = polynomial in (i;)



The soft wavefunction can be easily computed to all orders,
and integrated to order O(¢")

get truckload of Gamma-functions:

(o) .1 By (e) 2\£—1 1)+l
ML, = im (e~ (1= B1) (Ca = T9) Z
mh By, ZCA_TQ T2, M) 4+ O(
X H - ( ) CA . _|— (6 )7

m=0

However, ¢ — 0 is not random:VVF has to be finite

Whole thing reducible to a geometric series!

(0| _ .1 Bile) . » B 2C4 — T} \
MNLLL_”(%)E /! (=B (1~ B ()CA—T2

x (Ca — THIT2_ Mtree) 1 O(0).
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2¢
MG = int A
MG = int A
MG = i AT
M) = it A
iteration of
lower loops

single poles =
soft anomalous dimension

- T2 M (tree) :

M (tree) .



Recall exponentiation of IR divergences:

H = Zir M ’ Z1ir = Pe™ oS Ds(as(N)

H= IR&UV renormalized scattering = Finite as e—~0

Note that e—0 limit of H and I contain all physically
observable part of S-matrix

(these suffice to compute inclusive cross-sections, when
using suitable phase-space subtractions: cf Lorenzo’s talk)

29



Notice similarity when renormalizing UV&IR operators
Oren(x) — ZUVObare(x)a ZUV — 7)6 :O %W(QS(A))
H = ZinMig_pare  Zir = PeJo TTe(:(A)

Both exponentiate for same reason:
disparate length scales factorize from each other



r, = 30 O o S - $7 0 0 (0) + A

\2
17 f

f departure,
dipole ansatz starts at 3-loops

Can be expanded in Regge limit:

| (Ozs()\)) — FLL (Ozs()\), L) -+ FNLL (Oés()\), L) + FNNLL (Cks()\), L) + ...

At LL, gluon Reggeization fixes I's from gluon trajectory:

1

LT?.
T 2 T

L (as(A)) =

31



The LL Z-factor is a simple exponential:

S 1 agC
Z£_|I_J) (%MO&S(,LL)) = exXp {Oé__ LT?} ~ S 27reA

T 2¢€

NLL = perturbation around that

T 2€

MG, = e { - 22D et 12G) (5man(n) T ()

= single-poles give I'nLL, higher poles explicitly predicted

32



All-order result:

~1
_ LT C'a
I‘l(\ILL) (=1 (1 Ca— T?R (#(Ca = T5)/2) ) T

- IP1-e(1+e)
R(e) = F(1 20

= —2(3 e — 3y €t — 6C5€5 — (1OC6 — 2C§) e - 0(67)
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Ty = in T,
(_72) —

FNLL =0
(_73) —_

FNLL o 07

I‘l(\I_L’é) = T % Ca(Cp — T?)2 T2

S—U?

DD = —im 2 Ca(Ca — T2 T2

T =3 —u?
128 ST

—6 . G
Fl(\TLL) = i 640 CA(CA - Tt2)4 Tg—uv

_ 1 2 1
r" = in {(53 CA(Ca —TH* + —= (¢ — 5¢) Ca(Ca — T?)ﬂ T._.,,

NLL— ""790 | 16 32
-8 . 1 {3@@4 3

64

I = =040 | 39 CA(Ca —TF)" +

(C3C4 — 3C7) Ca(Ca — T%)ﬂ T; ..
|. only classical zeta’s, no zetas.
2. Coefficients decay factorially
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I, =ir—G(=*1)T2, s entire function
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G(x)e "

Efficient evaluation via inverse Borel:

G(m):ﬁ/

wW-+1200

W—100

Asymptotlcs G(x) — ce®

TAARAT
W \/\/\J

8
J
N\
—~
=
~—

O

1
dn g (—) e
i

Y cos (bx + d)

0.6 F
04f
02}
0.0f
0.2}
_04f
0.6

Note: sign of I'itself is dominated by I

36



Finite part
Recall all physical info is in e—=0 limit of H and I

=/
/ " iRM ¥~ BFKL
2 fully understood

ladders
@ NLL
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Claim: e—=0 limit determined from evolution with £€=0

Hl(\IJi)L :/k ) d*~*kW(p, k) — (subtractions)

1+ / d* kY (p, k)
k hard e=0

First line computable using soft limit
of wavefunction in d dimensions

Second line: wavefunction =sum of SVHPLs
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In principle, we would like to diagonalize H:

H=(2C4—T* H + (Ca — T?) H,,
‘integration’ & multiplication parts:

(2, 2) = 4i / PwkK (w, @, 2, 2) [V(w, D) — (2, 2)

T

ﬁmw(za 5) — ](Zv EW(Z» Z)

1
° ° ° -~ — _1
simple kernels: j(z,2) = 7 log 22—z

K(w,w,z, z) = I |
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It turns out we can ‘integrate-by-parts’ derivatives
without changing kernel

- : A d
Z% _Hi\If(Z,Z)_ = H; _Z&\IJ(Z,Z)

(full algorithm requires (1-z)d/dz, just a bit harder)

That way we easily generate SVHPL expressions

{wf(1) = 2c2(L({0}) + 2L({1}))}
{wif(2) = clc2(—L({0,1}) — L({1,0}) — 2L({1,1}))
+2¢2°(L({0,0}) +2L({0,1}) + 2L({1,0}) + 4L({1,1})) }

40



we can get the IR renormalized amplitude to very high

order
Mfinite(1) = 0
Mfinite(2) = 0
1

Mfinite(3) = Z(—11)<;22§(3)

At | |-loops, we do get SV.Zs33

Coefficient grow exponentially:
finite radius of convergence ina, L

series seems alternating, for unitary representations Tt2>0
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Conclusions

® Modern approach to high-energy scattering via
Wilson lines: new theoretical control @NNLL

® Systematic and now well-tested theory, simplifies and
exponentiate many diagrams in the forward limit

® Possible applications to
-Mueller Navelet jets, small-x physics
-Predictions and new techniques for fixed-order
multi-loop QCD computations



