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Figure 5: Individual fit results to σtot data with the
√
smax = 8 TeV ensemble and

unconstrained (up) and constrained (down) data reductions (second column and fourth
column in Table 3, respectively).
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[fig: Menon& Silva `13]

Nonperturbative forward physics: total pp cross-section:

~p Area
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Fig. 2. The typical examples of the Reggeon trajectory with resonances at t > 012 adapted
from Ref.11 The dotted line in the right figure shows the DL Pomeron.
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Fig. 3. The parton approach to high energy scattering: longitudinal structure of the parton
cascade (Fig. 3-a) and Gribov’s diffusion (Fig. 3-b).

Fig. 3-a states that the total cross section induced by a single Pomeron exchange
is equal to

σ =
∞
∑

n−2

∫ Y

0
dy1

∫ y1

0
dy2 . . .

∫ yn−1

0
dyn

n−1
∏

i=2

d2pi,T

Ψ∗ ({xi, p⃗i,T }, yn, p⃗n,T ) Ψ ({xi, p⃗i,T , }, p⃗n,T )σparton (yn, pn,T ) , (2.18)

where Ψ is the wave function of the partons (point-like particles) which have re-
stricted transverse momentum pi,T ≤ µ. µ does not depend on the total energy. We
assume that the partons are distributed uniformly in the rapidity range (0, Y ) and
the integral over dyn converges.

Fig. 3-b illustrates Gribov’s diffusion picture in the transverse plane of the
partons populating the parton cascade. It is based on the uncertainty principle
in which ∆b pi,T ∼ 1 for the emission of a parton in the cascade. This figure

• Why does it grow?

• Relativity + quantum mechanics 
 

• A cloud of virtual particles (pions, rho’s,..)  
builds around the proton!
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[cartoon: Gottsman, Level&Maor]
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• Deep inelastic scattering/saturation (HERA,heavy ions)  
 small x = Regge, large Q2⇒perturbative 

• Mueller-Navelet: pp->X+2jets, forward&backward

(�⌘ � 1,��)

perturbative phenomenology of forward scattering:

for review of these: see 1611.05079
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theoretical motivations:

One of few limits where perturbation theory  
can be resumed

Retain rich dynamics in 2D transverse plane:  
 -toy model for full amplitude
 -nontrivial function spaces
 -predicts amplitudes and other observables in 
  overlapping limits
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Here we’ll focus on A2→2, but in QCD at finite Nc.  
It depends on:

- energy:

- IR regulator: 1/𝜀 ⇔ log(-t/𝜇2)

- color:  CA,T
2
s,T

2
t , . . .

L ⌘ log |s/t| �i⇡/2

The (multi-)Regge limit at higher points has been 
extensively studied, especially in planar N=4 SYM.

It reveals an amazing integrable system (next talk?)



Nice variables
1. Coupling runs with transverse momenta,  
   not CM energy

↵s(�t)⇒ use

2. Crossing symmetry relates large-s & large-u limits

L ⌘ 1

2

✓
log

�s� i0

�t
+ log

�u� i0

�t

◆

! log
���
s

t

���� i
⇡

2

⇒ use symmetrical combination
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via dispersion relations:

M(s, t) =
1

⇡

Z 1

0

dŝ

ŝ � s � i0
Ds(ŝ, t) +

1

⇡

Z 1

0

dû

û+ s+ t � i0
Du(û, t) (2.1)

where Ds and Du are the discontinuities of M(s, t) in the s- and u-channels, respectively.
In general the lower limit of integration should of course be a positive threshold, and there
could be subtraction terms, but this would not matter for our discussion. The important
fact is that the discontinuities Ds and Du are real, having a physical interpretation as
spectral density of positive energy states propagating in the s and u channel respectively.
To see the consequence on the amplitude, let us parametrize the discontinuities as a sum
of power laws by means of a Mellin transformation:

asj(t) =
1

⇡

Z 1

0

dŝ

ŝ
Ds(ŝ, t)

✓
ŝ

�t

◆�j

, (2.2a)

Ds(s, t) =
1

2i

Z
�+i1

��i1
dj asj(t)

✓
s

�t

◆
j

, (2.2b)

and similarly for au and Du. Note that the reality condition of Ds(s, t) implies that the
Fourier coefficients admit �

asj⇤(t)
�⇤

= asj(t), (2.3)

and similarly for au
j
(t). Substituting the inverse transform eq. (2.2b) into the dispersive

representation eq. (2.1), swapping the order of integration and performing the ŝ and û

integrals, one obtains a Mellin representation of the amplitude:

M(s, t) =
�1

2i

Z
�+i1

��i1

dj

sin(⇡j)

 
asj(t)

✓
�s � i0

�t

◆
j

+ auj (t)

✓
s+ t � i0

�t

◆
j
!

. (2.4)

Since the coefficients as,u
j

are real (for real j), and (�s � i0)j = e�i⇡j |s|j for s > 0, we see
that the phase of each power law contribution is related to its exponent. The statement
simplifies when one projects the amplitude onto eigenstates of signature, that is crossing
symmetry s $ u:

M(±)(s, t) = 1

2

⇣
M(s, t) ± M(�s � t, t)

⌘
, (2.5)

where M(+), M(�) are referred to, respectively, as the even and odd amplitudes. Restricting
to the region s > 0 and working to leading power as s � |t|, the formula then evaluates to

M(+)(s, t) = i

Z
�+i1

��i1

dj

sin(⇡j)
cos
⇣
⇡j

2

⌘
a(+)

j
(t) ejL , (2.6a)

M(�)(s, t) =

Z
�+i1

��i1

dj

sin(⇡j)
sin
⇣
⇡j

2

⌘
a(�)

j
(t) ejL , (2.6b)

where we have defined a(±)

j
(t) ⌘ 1

2
(as

j
(t) ± au

j
(t)) and L is the natural signature-even

combination of logarithms:

L ⌘ log
���
s

t

���� i
⇡

2

=
1

2

✓
log

�s � i0

�t
+ log

�u � i0

�t

◆
.

(2.7)

– 5 –

Crossing symmetry: Project onto signature eigenstates:

These simple definitions remove all i\pi’s.

The following have nice& real coefficients:

M(�)(L,↵s(�t), ✏),
1

i⇡
M(+)(L,↵s(�t), ✏)
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exponentiation 
of IR div

BFKL  
resummation

soft limit of BFKL  
= Regge limit of 𝜞soft

2→2 kinematic limits 

soft

Regge

soft-  
Regge

L ⇠ log
s

�t

⇠ log
�t

µ2

1/✏



BFKL redux
[Balitsky,Fadin,Kuraev,Lipatov ’76-78]

A simple, and correct, approach to high-energy scattering:  
replace each fast parton by a null Wilson line 

U(x?) ⌘ Pei
R 1
�1 dx+Aa

+(x+,0�,x?)Ta



...
cloud of  
radiated 
partons

The subtlety: projectiles contain more than one parton



Due to the large boost, the Wilson lines associated with a highly boosted projectile

propagating in the +-direction will be parallel to each other and supported on a common

light-front x� = 0. However, they can be located anywhere in the transverse plane, since

boosts do not a↵ect transverse coordinates. Thus the necessary operators are labelled by a

transverse coordinate

Ur(x) ⌘ Pei
R1
�1 dx+Aa

+(x+,x�=0,x)Ta
r . (2.1)

We will refer to these as “projectile” Wilson lines, in the representation r. Similarly, we have

“target” Wilson lines which go along the �-direction at x+ = 0

Ūr(x) ⌘ Pei
R1
�1 dx�Aa

�(x+=0,x�,x)Ta
r . (2.2)

Importantly, such null, infinite Wilson lines are divergent. This occurs in any number

of space-time dimensions; contrary to the well-known situation for semi-infinite Wilson lines,

dimensional regularization does not remove all divergences. Instead, the divergences can be

removed, for example, by tilting the Wilson lines slightly o↵ the light-cone to give them a

finite rapidity, ⌘ ⌘ 1
2 log

dx+

dx� . The operators U thus depend implicitly on a rapidity regulator,

U ⌘ U⌘, which we will generally not make explicit in order not to clutter the formulas.

By the factorization principle stated in the Introduction, the rapidity scale ⌘ of an op-

erator plays a role analogous, in the context of large rapidity limits, as that played by the

“renormalization scale” in the context of short-distance limits. The corresponding evolution

equation, analogous to the renormalization group equation for local operators, is known as

the (Balitsky-Kovchekov)-JIMWLK equation.

��

��

��

(a) (b)

Figure 1. Shockwave diagrams contributing to the leading order JIMWLK equation. The “shock”
represent the Lorentz-contracted target which moves in the opposite direction. Diagrams with the two
gluon endpoints attached to the same Wilson lines are also present but not shown explicitly.

2.1 The JIMWLK equation

To introduce the reader to the main equation and ideas, as well as to make contact with

di↵erent forms found in the literature, we introduce the equation in steps, beginning with the

– 7 –
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Ūr(x) ⌘ Pei
R1
�1 dx�Aa

�(x+=0,x�,x)Ta
r . (2.2)

Importantly, such null, infinite Wilson lines are divergent. This occurs in any number

of space-time dimensions; contrary to the well-known situation for semi-infinite Wilson lines,

dimensional regularization does not remove all divergences. Instead, the divergences can be

removed, for example, by tilting the Wilson lines slightly o↵ the light-cone to give them a

finite rapidity, ⌘ ⌘ 1
2 log

dx+

dx� . The operators U thus depend implicitly on a rapidity regulator,

U ⌘ U⌘, which we will generally not make explicit in order not to clutter the formulas.

By the factorization principle stated in the Introduction, the rapidity scale ⌘ of an op-

erator plays a role analogous, in the context of large rapidity limits, as that played by the

“renormalization scale” in the context of short-distance limits. The corresponding evolution

equation, analogous to the renormalization group equation for local operators, is known as

the (Balitsky-Kovchekov)-JIMWLK equation.

��

��
(a) (b)

Figure 1. Shockwave diagrams contributing to the leading order JIMWLK equation. The “shock”
represent the Lorentz-contracted target which moves in the opposite direction. Diagrams with the two
gluon endpoints attached to the same Wilson lines are also present but not shown explicitly.

2.1 The JIMWLK equation

To introduce the reader to the main equation and ideas, as well as to make contact with

di↵erent forms found in the literature, we introduce the equation in steps, beginning with the

– 7 –

(+perms.)

d

d⌘ =

• ‘shock’ = Lorentz-contracted target

• 45o lines = fast projectile partons

• Each parton crossing the shock gets a Wilson line

z1

z2

Transverse distribution depends on energy resolution

d

d⌘
UU ⇠ g2

Z
d2z0K(z0, z1, z2)

⇥
U(z0)UU � UU

⇤



• Well established and tested

• Now well understood at NLL

• Partial NNLL results
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[Balitsky ’95, Mueller,  
Kovchegov, JIMWLK*]

*Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov& Kovner

[Balitsky&Chirilli ’07&’13; 
Kovner,Lublinsky&Mulian ’13;

SCH ’14]

[SCH&Herranen ’16;
Henn& Mistlberger ’17;

SCH,Gardi&Vernazza ’17]

The Balitsky-JIMWLK equation

O[W ]. The Baker-Campbell-Hausdor↵ formula then states that

igT a
j,L =

�

�W a
j

+
g

2
fabxW x

j
�

�W b
j

+
g2

12
faexf ebyW x

j W
y
j

�

�W b
j

� g4

720
WWWW

�

�W
+ . . .

igT a
j,R =

�

�W a
j

� g

2
fabxW x

j
�

�W b
j

+
g2

12
faexf ebyW x

j W
y
j

�

�W b
j

� g4

720
WWWW

�

�W
+ . . .

(2.12)

The color contractions in the W 4�/�W and higher terms are easily obtained but will not be

needed. For the reader’s convenience we reproduce here the functional form the Balitsky-

JIMWLK equation (2.6):

�d

d⌘
⌘ H =

↵s

2⇡2

Z
d2zid

2zj
d2z0 z0i·z0j

z2
0iz

2

0j

⇣
T a
i,LT

a
j,L + T a

i,RT
a
j,R � Uab

ad
(z0)

�
T a
i,LT

b
j,R + T a

j,LT
b
i,R

�⌘
.

To linearize we plug in eqs. (2.10) and (2.12) and expand in g. Rewriting the parenthesis as

�
T a
i,L � T a

i,R

��
T a
j,R � T a

j,R

�
�
�
Uab
ad
(z0)� �ab

��
T a
i,LT

b
j,R + T a

j,LT
b
i,R

�
, (2.13)

and abbreviating W a
i ⌘ W a(zi), the various terms readily evaluate to:

�
T a
i,L � T a

i,R

��
T a
i,R � T a

i,R

�
= �faa0cf bb0cW a0

i
�

�W a
i

W b0
j

�

�W b
j

,

�
�
Uab
ad
(z0)� �ab

�
T a
i,LT

b
j,R =

1

2
faa0cf bb0c

 
(W a0

i �W a0
0 )W b0

0

�2

�W a
i �W

b
j

+W a0
0

�

�W a
i

W b0
j

�

�W b
j

!

+
1

g
fabcW c

0

�2

�W a
i �W

b
j

+O(gW 3) . (2.14)

Importantly, the 1/g piece ends up canceling after adding the (i $ j) term, so (2.13) is of

order g0. Commuting W ’s to the left of �/�W ’s and collecting terms then yields

H =
↵s

2⇡2

Z
d2zid

2zj
�d2z0 z0i·z0j

z2
0iz

2

0j

faa0cf bb0c(W a0
i �W a0

0 )(W b0
j �W b0

0 )
�2

�W a
1
�W b

2

+
↵sCA

2⇡2

Z
d2zi

d2z0
z2
0i

(W a
i �W a

0 )
�

�W a
i

+O(g4W 4�2/�2W ) .

(2.15)

This equation possesses two crucial properties.

• It contains no terms of order (W )0. This is a simple consequence of the boost invariance

of the vacuum: in this state all expectation values vanish h(W )ni = 0, and this state

must be stable.

• It contains no terms W �2/�2W . This is a simple consequence of signature (CPT)

symmetry, which interchanges initial and final states Uab
ad

7! U ba
ad
. The Reggeized gluon

is odd under this symmetry, W a ! �W a, which explains the cancelation of the 1/g

piece.

– 14 –



Main feature:  index contractions preserve 
two global symmetries:

SU(N)past x SU(N)future

Spontaneously broken to diagonal in vacuum:

[Kovner& Lublinsky ’05]
‘Goldstone boson’ W = Reggeized gluon

[SCH ’13]U(x?) = eigT
aWa(x?)

h0|U(x?)|0i = 1

past

future

BFKL : expand in W’s and study linearized evolution



. . .

. . .

. . .

Di Dj↵g

(a) (b) (c)

Figure 4. From left to right, exchange of one, two and three Reggeized gluons, respectively.
We draw the Reggeized gluons as double wavy lines, in order to distinguish them from standard
gluon exchange in perturbation theory. Single Reggeon exchange in the first diagram contribute
at LL accuracy, while two-Reggeon exchange in the second diagram contribute at NLL accuracy.
Last, three Reggeons exchange start contributing at NNLL accuracy. The shaded blobs in the
first and second diagram account for single- and two-Reggeon impact factors, which give additional
contributions at subleading logaritmic accuracy to these diagrams.

corresponding to the exchange of two or more Reggeized gluons, as indicated by diagrams
(b) and (c) in figure 4. This paper focuses on the determination of these corrections.

Restricting for now to NLL accuracy, the Regge cut contribution involves the exchange
of two Reggeized gluons, and the symmetry properties of this state dictate that it con-
tributes to the even amplitude, i.e. to M(+)

ij!ij
. From the point of view of perturbation the-

ory this can be understood by inspecting diagrams (c) and (d) in figure 3. These diagrams
introduce new color structures compared to the tree-level color factor (T b

i
)a1a4(T

b

j
)a2a3 in

eq. (2.17). To proceed and characterise these corrections, let us briefly review some aspects
of color decomposition of scattering amplitudes.

Scattering amplitudes can be seen as vectors in color-flow space,

M(s, t) =
X

i

c[i] M[i](s, t), (2.23)

where c[i] represent the elements of a color basis, and M[i](s, t) are the corresponding
amplitude coefficients. Examples of color bases are the t-channel exchange orthonormal
basis provided in appendix B, or the “trace” basis provided in appendix C. From the point
of view of Regge theory it is convenient to focus on the former, in which the color operator
(defined in (2.30)) in the t channel, T2

t , is diagonal (see in (B.3)), hence providing insight
into the factorisation structure of the amplitude in the high-energy limit.

An orthonormal color basis in the t-channel can be obtained by decomposing the direct
product of the color representations associated to the incoming and outgoing particle 1
and 4 (see Figure 2) into a direct sum. For instance, in case of gluon-gluon scattering the
amplitude lives in the space of the 8⌦8 color representation. An orthonormal color basis is
obtained decomposing it into a direct sum, i.e. 8⌦8 = 1�8s�8a�10�10�27�0. At this
point it is useful to make contact with the discussion following eq. (2.7): because of Bose

– 10 –

Multi-Regge exchanges are suppressed by coupling

+ +

LL = one-Reggeon NLL (two W’s) NNLL

+ …

‘Regge pole’ ‘Regge cut’

ANLL /
Z

d⌫c(⌫)sE(⌫)

ALL / s↵g(t)

t

M(�) M(+) M(�)

(one-W exchange)
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d

d⌘

0

BBBB@

(W )1

(W )2

(W )3

(W )4

· · ·

1

CCCCA
=

0

BBBB@

g2 0 g4 0 g6 · · ·
0 g2 0 g4

g4 0 g2 0 · · ·
0 g4 0 g2

· · ·

1

CCCCA
·

0

BBBB@

(W )1

(W )2

(W )3

(W )4

· · ·

1

CCCCA

Leading BFKL and 
BKP kernelsrequired by symmetry of d/dη

n→n+k transitions:  from LO B-JIMWLK

• Matrix is symmetrical: projectile/target symmetry

• Growth/saturation: off-diagonal can’t be ignored

• (‘Reggeon field theory’ which resums all, still elusive)

eigW
aTa

⇠ 1 + igWT + . . .

Perturbative structure of the BFKL Hamiltonian



• At NNLL, something new happens: 1 and 3 
Reggeon states mix

• @ 2-loops: violation of Regge pole factorization  

• @ 3-loops: first check of mixing matrix

Figure 7. Diagrams representing the color structure of the 1 ! 3 and 3 ! 1 transitions. Notice
that these diagrams are different from the ones representing the kinematical structure of the 1 ! 3
and 3 ! 1 transitions, i.e. H13(p1, p2, p3) in eq. (3.17). This is a consequence of the fact that the
BFKL evolution derived in section 3.1 represents an effective field theory in 2 � 2✏ dimensions, in
which the longitudinal degrees of freedom have been integrated out.

graphs in fig. 7):

C(3)

13+31
⌘ 1

6

X

�2S3

Tr
⇥
F aF �(b)F �(c)F �(d)

⇤ h
(T a

i )a1a4(T
b

j T
c

j T
d

j )a2a3 + (T b

i T
c

i T
d

i )a1a4(T
a

j )a2a3

i
.

(3.45)
Multiplying with the propagators according to our master equation (2.48d), and collecting
the integrals, this contribution to the reduced amplitude is again written in terms of the
same elementary integrals:

h j,3|Ĥ1!3| i,1i + h j,1|Ĥ3!1| i,3i =
i

12

⇣↵s

⇡

⌘3

⇡2 (r�)
3

h
2Ic�Ia�Ib

i g2

t
C(3)

13+31
. (3.46)

The main nontrivial task is to simplify the color factor. Again we would like to obtain a
color operator acting on the tree amplitude. This can be achieved by a simple systematic
algorithm: move all fabc’s onto the external states by using the Jacobi identity:

fabcT c

i = �i[T a

i , T
b

i ]. (3.47)

In fact this can be done in multiple distinct ways, since one can applies this on the i or j leg.
This makes it possible to arrange to get 4 color generators to act on each of the i and j legs,
which then enable to use eq. (3.36) to read off the result in terms of quadratic Casimirs. In
fact, we find that for the 1 ! 3 and 3 ! 1 transitions separately, the quadratic Casimir
operators do not provide a sufficient basis since the nesting for some terms does not allow
to extract any generator acting from the outside. However, the obstruction is odd under
interchange of i and j, and upon adding the two diagrams we do find a compact expression:

C(3)

13+31
=

1

4

⇣
2T2

s�u[T
2

t ,T
2

s�u] � [T2

t ,T
2

s�u]T
2

s�u

� (T2

s�u)
2CA � 1

12
(CA)

3

⌘
(T b

i )a1a4(T
b

j )a2a3 , (3.48)

thus leading to

h j,3|Ĥ1!3| i,1i + h j,1|Ĥ3!1| i,3i

– 27 –

Figure 6. Example of a diagram involved in the calculation of the three-Reggeon cut at three loops.
This diagram, together with all the other diagrams obtained by inserting a rung in all possible
ways between the three Reggeons, and considering all possible permutation of the three Reggeons
themselves, arises from the insertion of a single factor of Ĥ3!3, as discussed below eq. (3.42).

' ↵sr�
2⇡✏


T2

t � 3CA

✓
p2

p2
1

◆✏�
W a(p1)W

b(p2)W
c(p3)

�↵s

�
T2

t � 3CA

�
S✏

Z
[d̄q]H22(q; p1, p2)W

a(p1+q)W b(p2�q)W c(p3), (3.42)

where H22 is the BFKL kernel in eq. (3.15). We emphasize that the simplification of the
Hamiltonian is only valid for permutation invariant momentum dependence. Contracting
the W ’s against the target then gives the color factor derived in eq. (3.37), times three
propagators, which produce simple two-dimensional integral:

h j,3|Ĥ3!3| i,3i =
⇡2

48

⇣↵s

⇡

⌘3

(r�)
3

h
T2

t (2Ib�Ia�Ic) + 3CA (Ic � Ib)
i

·
h
(T2

s�u)
2 � 1

12
(CA)

2

i i

2s
4⇡↵s M̂(0)

ij!ij
. (3.43)

Here, using the elementary bubble integral in eq. (3.31), we have expressed all integrals in
terms of three basic ones:
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While the integrals Ia,b,c are readily available in terms of B↵,�(✏) of eq. (3.32) to all orders
in ✏, here we chose to display the first few orders in their expansion, which will be used
below.

3W ! W and W ! 3W amplitudes: transition vertices

The next contribution comes from the off-diagonal 1 ! 3 and 3 ! 1 terms in the Hamil-
tonian, given in eqs. (3.16) and (3.18). These produce the color factor (represented by the
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We don’t actually compute these diagrams:  
the LO B-JIMWLK Hamiltonian gives us simple 2d integrals

all the work is to find the color factors that  
multiply them, starting from the Hamiltonian.

one finds [16]:
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i
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j

. (3.10)

For the first nonlinear corrections, not previously written in the literature, we find:
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We have included the second term, which contributes for example to the 2 ! 4 transition,
for future reference only: in this paper we will only need the 1 ! 3 transition, entirely
generated by the first line. (We observe, a posteriori, that the two terms are not completely
independent: the first can be obtained from the second by moving �/�Wj to the left and
letting it act on Wi.)

Finally, let us explain the relationship between the Balitsky-JIMWLK power counting
(U ⇠ 1) and the BFKL power-counting (W ⇠ 1), and how it justifies our extraction of
the multi-Reggeon vertices. The key is to substitute eqs. (3.6) and (3.7) into (3.2), which
show that an m!m+k transition taken from the `-loop Balitsky-JIMWLK equation is
proportional to g2`+k

s . Thus for k � 0, all the leading interactions can be extracted from
just the leading-order equation. On the other hand, because of the symmetry of H (2.45),
interactions with k < 0 are suppressed by at least g2+|k|

s , which means that they can first
appear in the (|k|+1)-loop Balitsky-JIMWLK Hamiltonian. Thus to obtain the m!m�2

transition by direct calculation of the Hamiltonian would require a rather formidable three-
loop non-planar computation. However, this is unnecessary, since the symmetry of H

predicts the result; this is carried out explicitly in the following subsection (see eq. (3.18)).

3.1 Evolution in momentum space

Due to the simple form eq. (3.4) of the kernel in momentum space, the perturbative calcu-
lation will be easier in this space. Let us thus introduce the Fourier transform:

W a(p) =

Z
[dz] e�ipz W a(z), W a(z) =

Z
[d̄p] eipz W a(p). (3.12)

Substituting into eq. (3.10), and using the Fourier representation of the kernel eq. (3.5), one
finds, after a bit of algebra again,
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Z
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(3.13)
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�
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,
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3.5 Result: the three-loop reduced amplitude to NNLL accuracy

To summarize, in this section we used BFKL theory to calculate the signature odd part
of the 2 ! 2 amplitude to NNLL accuracy. The result at one- and two-loop is recorded
in eq. (3.39), while the three-loop result is obtained by multiplying the preceding equation
with the appropriate minus sign and factor from eq. (2.48):
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C
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, (3.51)

where we have introduced the functions
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◆
. (3.52)

This equation is the main result of this section. The integrals Ia,b,c are defined in eq. (3.44)
where they are evaluated, using the bubble integral (3.32), to all orders in ✏ in terms of �
functions. Here we will be interested in particular in their ✏ ! 0 limit, hence we quote their
expansion through finite terms.

We note that all the integrals entering M̂(�,3,1)

ij!ij
in eq. (3.51) are of uniform polyloga-

rithmic weight 3 (as usual in this context, ✏ is assigned weight �1). Given that M̂(�,3,1)

ij!ij
is

itself the coefficient of a single (high-energy) logarithm, and taking into account the overall
factor of ⇡2 in eq. (3.51), we see that the weight adds up to 6, which is the maximal weight
at three loops. Such a uniform maximal weight structure is expected in N = 4 SYM theory,
while in general not in QCD. However, as we have seen, M̂(�,3,1)

ij!ij
is fully determined by

gluon interactions, and therefore entirely independent of the matter contents of the theory.
Thus, it is indeed expected that the result, which is valid for any gauge theory, should
retain the uniform maximal weight nature characteristic of N = 4 SYM.

We further emphasise that these results are valid for arbitrary projectiles (quarks or
gluons) in arbitrary representation of the gauge group; only the impact factors D(1)

i
and

D(2)

i
in eq. (3.39) depend upon this choice. In the next section we discuss our predictions

for the amplitude itself, and discuss its nontrivial consistency with infrared exponentiation
theorems.

Finally note that the gluon Regge trajectory does not enter the above formulae, because
it is subtracted in the definition of the reduced amplitude, eq. (2.26). This definition is also
the reason why terms with more logarithms are absent: M̂(�,1,1)

ij!ij
= M̂(�,2,2)

ij!ij
= M̂(�,3,3)

ij!ij
= 0

and well as M̂(�,2,1)

ij!ij
= M̂(�,3,2)

ij!ij
= 0. The logarithm-free term at three loops, M̂(�,3,0)

ij!ij
, is

beyond our current NNLL accuracy. The presently known results from BFKL theory in the
even sector, which hold to NLL accuracy, have been reviewed in eq. (2.28).
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result for 2loops NNLL, in any gauge theory:

Poles are consistent with IR exponentiation!

✔

This is a nice feature of the Regge limit: a two-loop amplitude has been reduced to essen-
tially a free theory computation in the effective Reggeon theory. The more difficult aspect
is to deal with the colour factor:

C(2)

33
=

1

36

X

�2S3

⇣
T�(a)
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. (3.34)

Our strategy, keeping in mind our goal to compare the infrared divergent part, is to express
this as some kind of operator acting on the tree colour factor. Fortunately, there is a sys-
tematic way to do so: we iteratively peel off contracted indices, starting from the outermost
ones, and re-express them in terms of Casimirs, for example

h
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With the help of the identities used in eq. (2.32), the Casimirs can be further decomposed
into signature even and odd combinations, which gives us the following two useful formulas:
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. (3.36)

By repeatedly applying these formulas it is now a simple exercise to obtain that
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and substituting into (3.30) gives the two-loop amplitude:
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Total to two loops

Adding the results of eqs. (3.27), (3.28), (3.29) and (3.38) as indicated in eq. (2.48) we get
the total contribution to the odd amplitude at one and two loops. Explicitly, expanding the
reduced amplitude in powers of ↵s/⇡ as defined for the complete amplitude in eq. (2.14),
we have
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where we have introduced the function
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(3.40)
where B↵,�(✏) is given in eq. (3.32). Here we have factored out ⇡2 to emphasize that this
term originates as a Regge cut proportional to (i⇡)2. This formula, in particular the fact
that R(2) multiplies the nontrivial colour factor (T2

s�u)
2, is responsible for the breakdown of

Regge pole factorization as will be discussed in section 4. The fact that with two unknown
impact factors D(2)

g , D(2)

q , this formula can describe the three processes of gluon-gluon,
gluon-quark and quark-quark scattering is highly nontrivial.
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Our strategy, keeping in mind our goal to compare the infrared divergent part, is to express
this as some kind of operator acting on the tree colour factor. Fortunately, there is a sys-
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By repeatedly applying these formulas it is now a simple exercise to obtain that
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and substituting into (3.30) gives the two-loop amplitude:
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Total to two loops

Adding the results of eqs. (3.27), (3.28), (3.29) and (3.38) as indicated in eq. (2.48) we get
the total contribution to the odd amplitude at one and two loops. Explicitly, expanding the
reduced amplitude in powers of ↵s/⇡ as defined for the complete amplitude in eq. (2.14),
we have
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where B↵,�(✏) is given in eq. (3.32). Here we have factored out ⇡2 to emphasize that this
term originates as a Regge cut proportional to (i⇡)2. This formula, in particular the fact
that R(2) multiplies the nontrivial colour factor (T2

s�u)
2, is responsible for the breakdown of

Regge pole factorization as will be discussed in section 4. The fact that with two unknown
impact factors D(2)

g , D(2)

q , this formula can describe the three processes of gluon-gluon,
gluon-quark and quark-quark scattering is highly nontrivial.
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R(2) =

Color operator precisely corrects factorization violation!

at 3-loops NNLL, we computed coefficients 
of 3 color structures:

✔

3.5 Result: the three-loop reduced amplitude to NNLL accuracy

To summarize, in this section we used BFKL theory to calculate the signature odd part
of the 2 ! 2 amplitude to NNLL accuracy. The result at one- and two-loop is recorded
in eq. (3.39), while the three-loop result is obtained by multiplying the preceding equation
with the appropriate minus sign and factor from eq. (2.48):
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This equation is the main result of this section. The integrals Ia,b,c are defined in eq. (3.44)
where they are evaluated, using the bubble integral (3.32), to all orders in ✏ in terms of �
functions. Here we will be interested in particular in their ✏ ! 0 limit, hence we quote their
expansion through finite terms.

We note that all the integrals entering M̂(�,3,1)

ij!ij
in eq. (3.51) are of uniform polyloga-

rithmic weight 3 (as usual in this context, ✏ is assigned weight �1). Given that M̂(�,3,1)

ij!ij
is

itself the coefficient of a single (high-energy) logarithm, and taking into account the overall
factor of ⇡2 in eq. (3.51), we see that the weight adds up to 6, which is the maximal weight
at three loops. Such a uniform maximal weight structure is expected in N = 4 SYM theory,
while in general not in QCD. However, as we have seen, M̂(�,3,1)

ij!ij
is fully determined by

gluon interactions, and therefore entirely independent of the matter contents of the theory.
Thus, it is indeed expected that the result, which is valid for any gauge theory, should
retain the uniform maximal weight nature characteristic of N = 4 SYM.

We further emphasise that these results are valid for arbitrary projectiles (quarks or
gluons) in arbitrary representation of the gauge group; only the impact factors D(1)

i
and

D(2)

i
in eq. (3.39) depend upon this choice. In the next section we discuss our predictions

for the amplitude itself, and discuss its nontrivial consistency with infrared exponentiation
theorems.

Finally note that the gluon Regge trajectory does not enter the above formulae, because
it is subtracted in the definition of the reduced amplitude, eq. (2.26). This definition is also
the reason why terms with more logarithms are absent: M̂(�,1,1)

ij!ij
= M̂(�,2,2)

ij!ij
= M̂(�,3,3)

ij!ij
= 0

and well as M̂(�,2,1)

ij!ij
= M̂(�,3,2)

ij!ij
= 0. The logarithm-free term at three loops, M̂(�,3,0)

ij!ij
, is

beyond our current NNLL accuracy. The presently known results from BFKL theory in the
even sector, which hold to NLL accuracy, have been reviewed in eq. (2.28).
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In N=4, we could fix it from [Henn& Mistlberger ’16]

Upshot:  
 -new 3loop prediction in QCD, up to one constant  
 -machine set up to compute NNLL M(-) to 
  4&higher loops, modulo same constant.
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appendix B, we find
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where the constants R(3)

A
, R(3)

B
, R(3)

C
are given in eq. (3.52).

While this paper was in preparation, a remarkable calculation of the non-planar three-
loop gluon-gluon amplitude in N = 4 SYM appeared [41], which yields, in terms of the MS

coupling at scale �t,
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Using (4.48) we are therefore able to obtain, in this theory, the “trajectory” ↵g(t)Nc =

�H1!1 to three loop:
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with the first two coefficients, ↵(1)

g |N=4SYM = k1 and ↵(2)

g |N=4SYM = k2 given in eq. (4.50),
while the three-loop one given instead by

↵(3)

g |N=4SYM = N2

c


� ⇣2

144

1

✏3
+

49⇣4
192

1

✏
+

107

144
⇣2⇣3 +

⇣5
4

+ O(✏)

�
+N0

c


0 + O(✏)

�
. (4.52)

It is important to stress that, even though to three loop accuracy the adjoint amplitude
may look like a Regge pole, e.g. a pure power-law, it is actually not: starting from two-
loops it is really a sum of multiple powers. Simply exponentiating the exponent defined by
eq. (4.49) would predict a definitely incorrect four-loop amplitude. The correct, predictive,
procedure is to exponentiate the action of the Hamiltonian following eq. (2.39). With the
“trajectory” eq. (4.51) now fixed, this procedure will not require any new parameter for the
odd amplitude at NNLL to all loop orders.

Finally, we comment on the fact that the trajectory of eq. (4.51), minus single-poles from
the cusp anomalous dimension, is not finite. Superficially, this would seem to contradict
the prediction of Ref. [10]. However, it is important to stress that ↵(3)

g is not physically
observable by itself and in the present BFKL framework, it depends on an arbitrary choice
of scheme used to separate one- and three-Reggeon contributions. As explained below
eq. (4.38), it is likely that our (arbitrary) choice to force the physics into a somewhat peculiar
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In N=4, that constant is known.

Removing the ‘hat’ requires the 3-loop gluon Regge 
trajectory: H1→1, which affects only the RC color structure.

1701.05241
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Figure 4. From left to right, exchange of one, two and three Reggeized gluons, respectively.
We draw the Reggeized gluons as double wavy lines, in order to distinguish them from standard
gluon exchange in perturbation theory. Single Reggeon exchange in the first diagram contribute
at LL accuracy, while two-Reggeon exchange in the second diagram contribute at NLL accuracy.
Last, three Reggeons exchange start contributing at NNLL accuracy. The shaded blobs in the
first and second diagram account for single- and two-Reggeon impact factors, which give additional
contributions at subleading logaritmic accuracy to these diagrams.

corresponding to the exchange of two or more Reggeized gluons, as indicated by diagrams
(b) and (c) in figure 4. This paper focuses on the determination of these corrections.

Restricting for now to NLL accuracy, the Regge cut contribution involves the exchange
of two Reggeized gluons, and the symmetry properties of this state dictate that it con-
tributes to the even amplitude, i.e. to M(+)

ij!ij
. From the point of view of perturbation the-

ory this can be understood by inspecting diagrams (c) and (d) in figure 3. These diagrams
introduce new color structures compared to the tree-level color factor (T b

i
)a1a4(T

b

j
)a2a3 in

eq. (2.17). To proceed and characterise these corrections, let us briefly review some aspects
of color decomposition of scattering amplitudes.

Scattering amplitudes can be seen as vectors in color-flow space,

M(s, t) =
X

i

c[i] M[i](s, t), (2.23)

where c[i] represent the elements of a color basis, and M[i](s, t) are the corresponding
amplitude coefficients. Examples of color bases are the t-channel exchange orthonormal
basis provided in appendix B, or the “trace” basis provided in appendix C. From the point
of view of Regge theory it is convenient to focus on the former, in which the color operator
(defined in (2.30)) in the t channel, T2

t , is diagonal (see in (B.3)), hence providing insight
into the factorisation structure of the amplitude in the high-energy limit.

An orthonormal color basis in the t-channel can be obtained by decomposing the direct
product of the color representations associated to the incoming and outgoing particle 1
and 4 (see Figure 2) into a direct sum. For instance, in case of gluon-gluon scattering the
amplitude lives in the space of the 8⌦8 color representation. An orthonormal color basis is
obtained decomposing it into a direct sum, i.e. 8⌦8 = 1�8s�8a�10�10�27�0. At this
point it is useful to make contact with the discussion following eq. (2.7): because of Bose
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Back to NLL: high-order 
Solution in the soft limit
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two-Reggeon exchange

M(+)

[1711.04850]
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Both increase transcendental weight by 1

Each rung = the BFKL Hamiltonian H2→2

Wilson lines associated to the colour flow of the external partons [8], which are described
as “target” and “projectile” in the (high-energy) forward scattering configuration of figure 1.
The wavefunction then represents the transverse momenta in each of two Wilson lines
and the BFKL equation is obtained as an appropriate limit of the more general Balitsky-
JIMWLK evolution equation.

A graphical representation of eq. (2.13) is provided in figure 2. As a result of BFKL
evolution, the amplitude at NLL accuracy can be represented as a ladder. At order ` it is
obtained by closing the ladder and integrating the wavefunction of order (` � 1) over the
resulting loop momentum, according to eq. (2.13). The wavefunction ⌦(`�1)(p, k), in turn,
is obtained by applying once the leading-order BFKL evolution kernel to the wavefunction
of order (`� 2). Graphically, this operation corresponds to adding one rung to the ladder.

︸ ︷︷ ︸

M̂(ℓ)(p)

︸ ︷︷ ︸

Ω(ℓ−1)(p, k)

︸ ︷︷ ︸

LO BFKL

︸ ︷︷ ︸

Ω(ℓ−2)(p, k′)

Figure 2. Graphical representation of the amplitude at NLL accuracy, as obtained through BFKL
evolution. The addition of one rung corresponds to applying once the leading-order BFKL evolution
onto the projectile wavefunction or impact factor at order (` � 2). This gives the wavefunction at
order (` � 1), according to eq. (2.18). Closing the ladder and integrating over the resulting loop
momentum gives the reduced amplitude, according to eq. (2.13).

2.2 Iterative solution for the wavefunction and amplitude

Eq. (2.13) shows that the `-th order amplitude is obtained in terms of iterated integrals,
which arise upon evaluating the wavefunction ⌦(`�1)(p, k) to order (`�1). It is straightfor-
ward to compute the first few orders, which gives us an opportunity to revisit the findings
of ref. [23]. We will be able to explain why a new colour structure emerges for the first time
at four loops, and explore the general structure of the relevant iterated integrals.

A useful fact is that the evolution admits one well-known solution in the case where the
exchanged state is colour-adjoint and ⌦(p, k) is constant (independent of k) [1, 2], which
gives a positive-signature state with the same leading-order trajectory as the Reggeized
gluon. This enables one to rewrite the Hamiltonian (2.15) as a part which vanishes when
⌦(p, k) is constant, plus a part proportional to (CA �T2

t ):

⌦(`�1)(p, k) = Ĥ ⌦(`�2)(p, k), Ĥ = (2CA �T2

t ) Ĥi + (CA �T2

t ) Ĥm (2.18)
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‘integration’ part:

Ĥm (p, k) =
1

2✏
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p
2

k2
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�
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p
2

(p�k)2

◆✏�
 (p, k)

‘multiplication’ part:

Ĥi (p, k) =

Z
d
2�2✏

k
0
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f(p, k, k0) [ (p, k0)� (p, k)]
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Cases where eigenfunctions are known: [Lipatov]

- Color singlet dipoles (x-space conformal symmetry)

- Color adjoint  (p-space ‘dual’ conformal symmetry)

Unfortunately, for d≠4 / other color reps.,
eigenfunctions are not known

⇒ iterative solution

Evolution equation:  (`) = Ĥ (`�1)
,  (0) = 1.

Exact solution in adjoint channel:   = 1



(CA −T2
t ) (CA −T2

t )
or

(2CA −T2
t )

(CA −T2
t )

Figure 4. Graphical representation of the BFKL ladder at four loops. The fact that ⌦(1)(p, k) ⇠
(CA �T2

t ) in conjunction with the target-projectile symmetry imply that the first rungs on either
side can only give rise to contributions proportional to (CA�T2

t ). As a consequence, distinct colour
structures can appear for the first time at four loops.

This symmetry relation generalises to higher orders, i.e. one has
Z

[Dk]
p2

k2(p� k)2
⌦ia1...an(p, k) = 0, (2.31)

for any a1 . . . an. While this symmetry ensures that there is only one colour structure at
three loops, this is no longer the case starting at four loops. There, one obtains [23]

M̂(+,4)

NLL
= �i⇡

(B0)4

3!

Z
[Dk]

p2

k2(p� k)2

⇢
(CA �T2

t )
3⌦mmm(p, k)

+ (2CA �T2

t )(CA �T2

t )
2⌦mim(p, k)

�
T2

s�uM(tree)

= i⇡
(B0)4

4!

⇢
(CA �T2

t )
3

✓
1

(2✏)4
+

175⇣5
2

✏+O(✏2)

◆
(2.32)

+CA(CA �T2

t )
2

✓
� ⇣3

8✏
� 3

16
⇣4 �

167⇣5
8

✏+O(✏2)

◆�
T2

s�uM(tree).

One sees that the integrated result involves two colour structures, and in the final expression
in eq. (2.32) we rearranged them so as to single out a factor of CA. In section 4 below
we will see that in this form it is easy to compare the amplitude with the structure of
infrared divergences. Specifically, we will see that corrections involving the colour structure
(CA �T2

t )
`�1 at ` loop order emerge directly from the simplest “dipole” formula of the soft

anomalous dimension, while other colour structures, namely Cj

A
(CA�T2

t )
`�j�1 with j � 1,

identify deviations from the dipole formula, as was first observed in ref. [23] for ` = 4.
Inspecting the diagrammatic representation of BFKL evolution in figure 2, one can

interpret the delayed appearance of a new colour structure to four loops, as a consequence
of the target-projectile symmetry. Recall that for the first rung of the ladder, only the
second term Ĥm in eq. (2.18) contributes, so the wavefunction has a single colour structure
(CA �T2

t ). Considering more rungs, using target-projectile symmetry one can deduce that
the same is true for the first rung on the opposite side of the ladder. As a consequence,
despite the fact that ⌦(2)(p, k) contains two structures (see eq. (2.25)), the effect of the
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Outermost rungs are always easy (multiplication)

Note this has both leading& subleading IR divergences

(CA −T2
t ) (CA −T2

t )
or

(2CA −T2
t )

(CA −T2
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Figure 4. Graphical representation of the BFKL ladder at four loops. The fact that ⌦(1)(p, k) ⇠
(CA �T2

t ) in conjunction with the target-projectile symmetry imply that the first rungs on either
side can only give rise to contributions proportional to (CA�T2

t ). As a consequence, distinct colour
structures can appear for the first time at four loops.

This symmetry relation generalises to higher orders, i.e. one has
Z

[Dk]
p2

k2(p� k)2
⌦ia1...an(p, k) = 0, (2.31)

for any a1 . . . an. While this symmetry ensures that there is only one colour structure at
three loops, this is no longer the case starting at four loops. There, one obtains [23]
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One sees that the integrated result involves two colour structures, and in the final expression
in eq. (2.32) we rearranged them so as to single out a factor of CA. In section 4 below
we will see that in this form it is easy to compare the amplitude with the structure of
infrared divergences. Specifically, we will see that corrections involving the colour structure
(CA �T2

t )
`�1 at ` loop order emerge directly from the simplest “dipole” formula of the soft

anomalous dimension, while other colour structures, namely Cj

A
(CA�T2

t )
`�j�1 with j � 1,

identify deviations from the dipole formula, as was first observed in ref. [23] for ` = 4.
Inspecting the diagrammatic representation of BFKL evolution in figure 2, one can

interpret the delayed appearance of a new colour structure to four loops, as a consequence
of the target-projectile symmetry. Recall that for the first rung of the ladder, only the
second term Ĥm in eq. (2.18) contributes, so the wavefunction has a single colour structure
(CA �T2

t ). Considering more rungs, using target-projectile symmetry one can deduce that
the same is true for the first rung on the opposite side of the ladder. As a consequence,
despite the fact that ⌦(2)(p, k) contains two structures (see eq. (2.25)), the effect of the
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4-loop = single nontrivial integral

[SCH ’13]
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How to predict the IR divergences at higher-loops?

Facts:

1. Wavefunction               is finite as ✏ ! 0 (`)(p, k)

2.  Evolution closes in soft limit:

Z

k!0
 (`)(p, k)

⇒poles can only appear from final integration

lim
k!0

 
(`)(p, k) ⇠ Ĥ lim

k!0
 
(`�1)(p, k)
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(a) (b) (c)

Figure 4. From left to right, exchange of one, two and three Reggeized gluons, respectively.
We draw the Reggeized gluons as double wavy lines, in order to distinguish them from standard
gluon exchange in perturbation theory. Single Reggeon exchange in the first diagram contribute
at LL accuracy, while two-Reggeon exchange in the second diagram contribute at NLL accuracy.
Last, three Reggeons exchange start contributing at NNLL accuracy. The shaded blobs in the
first and second diagram account for single- and two-Reggeon impact factors, which give additional
contributions at subleading logaritmic accuracy to these diagrams.

corresponding to the exchange of two or more Reggeized gluons, as indicated by diagrams
(b) and (c) in figure 4. This paper focuses on the determination of these corrections.

Restricting for now to NLL accuracy, the Regge cut contribution involves the exchange
of two Reggeized gluons, and the symmetry properties of this state dictate that it con-
tributes to the even amplitude, i.e. to M(+)

ij!ij
. From the point of view of perturbation the-

ory this can be understood by inspecting diagrams (c) and (d) in figure 3. These diagrams
introduce new color structures compared to the tree-level color factor (T b

i
)a1a4(T

b

j
)a2a3 in

eq. (2.17). To proceed and characterise these corrections, let us briefly review some aspects
of color decomposition of scattering amplitudes.

Scattering amplitudes can be seen as vectors in color-flow space,

M(s, t) =
X

i

c[i] M[i](s, t), (2.23)

where c[i] represent the elements of a color basis, and M[i](s, t) are the corresponding
amplitude coefficients. Examples of color bases are the t-channel exchange orthonormal
basis provided in appendix B, or the “trace” basis provided in appendix C. From the point
of view of Regge theory it is convenient to focus on the former, in which the color operator
(defined in (2.30)) in the t channel, T2

t , is diagonal (see in (B.3)), hence providing insight
into the factorisation structure of the amplitude in the high-energy limit.

An orthonormal color basis in the t-channel can be obtained by decomposing the direct
product of the color representations associated to the incoming and outgoing particle 1
and 4 (see Figure 2) into a direct sum. For instance, in case of gluon-gluon scattering the
amplitude lives in the space of the 8⌦8 color representation. An orthonormal color basis is
obtained decomposing it into a direct sum, i.e. 8⌦8 = 1�8s�8a�10�10�27�0. At this
point it is useful to make contact with the discussion following eq. (2.7): because of Bose
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IR divergences only occur when a full rail goes soft!
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Ĥm

✓
p
2

k2

◆n✏

=
1

2✏

"✓
p
2

k2

◆n✏

�
✓
p
2

k2

◆(n+1)✏
#

Gamma-functions

⇒Soft wave function = polynomial in 
✓
p2

k2

◆✏



 27

The soft wavefunction can be easily computed to all orders, 
and integrated to order O(✏0)

get truckload of Gamma-functions:

3.2 The all-order structure of two-parton scattering amplitudes at NLL

The main result of the previous section is that, in the soft approximation, the wavefunction
reduces to a polynomial in

�
p2/k2

�
✏, given by eq. (3.11). As a consequence, the calculation

of the amplitude (3.5) becomes straightforward, because it involves only integrals of the
type

Z
p
2

0

dk2

k2

✓
p2

k2

◆n ✏

= � 1

n ✏
, (3.12)

which allows us to obtain

M̂(+,`)

NLL

���
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
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2CA �T2
t
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t

�
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s�uM(tree) +O(✏0), (3.13)

where the factor (1� B̂�1) follows from rewriting the factor e✏�E/�(1� ✏) = B�1(✏):

(B0)
`�1

e✏�E

�(1� ✏)
= (B0)

`
B�1(✏)

B0(✏)
= (B0)

`(1� B̂�1). (3.14)

Eq. (3.13) looks rather involved but one must keep in mind that, upon expansion in ✏,
it contains many finite terms which do not represent the actual amplitude since we are
working in the soft approximation. Given the overall factor of 1/(2✏)` in eq. (3.13), all
the singularities are obtained by retaining only contributions up to ✏`�1 in the subsequent
factors. When this is taken into account a great simplification arises: indeed, as shown in
appendix B, it is possible to prove that eq. (3.13) is equivalent to

M̂(+,`)

NLL

���
s

= i⇡
1

(2✏)`
B`

0
(✏)

`!
(1� B̂�1)

✓
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t
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t

◆�1

⇥ (CA �T2

t )
`�1T2

s�uM(tree) +O(✏0). (3.15)

It is remarkable that the complicated sum of products of bubble integrals weighed by a
binomial factor collapses to a single factor which depends only on one bubble integral,
namely B̂�1(✏). The main ingredient of the proof is the fact that the wavefunction itself is
finite.

Eq. (3.15) constitutes the main result of this section: by iterating the BFKL equation
(which was not diagonalised before in d = 4 � 2✏ dimensions) we obtained the singular
part of the even amplitude at NLL accuracy, to all orders in the strong coupling constant.
Anticipating comparison with the structure of infrared divergences dictated by the soft
anomalous dimension, it proves useful to rearrange eq. (3.15) in such a way to single out the
colour structures CA and (CA�T2

t ). Indeed, as discussed at the end of section 2.2, we know
that the dipole formula of infrared divergencies fixes the singularities of the even amplitude
in the high-energy limit to be proportional to the colour structure (CA �T2

t )
`�1T2

s�u at `
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However,           is not random: WF has to be finite✏ ! 0
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Eq. (3.15) constitutes the main result of this section: by iterating the BFKL equation
(which was not diagonalised before in d = 4 � 2✏ dimensions) we obtained the singular
part of the even amplitude at NLL accuracy, to all orders in the strong coupling constant.
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Whole thing reducible to a geometric series!



Figure 8. The approximation of eq. (4.32) for G(x) for x � 1, divided by eax (solid line) contrasted
with numerical results (crosses). The coefficients a and b were extracted from the poles of g(1/⌘)
while c and d were fitted after dividing the full, numerically evaluated, G(x) by eax. Already for
moderate values of x we observe excellent agreement. The singlet exchange is shown on the left
and the 27 is on the right.

4.4 Exponentiation check for higher-order infrared poles

As a final step we confirm the agreement between the BFKL prediction and the soft fac-
torisation theorem. Thus far we have only used the single poles as predicted by the BFKL
evolution to extract the NLL soft anomalous dimension �(�)

NLL
. As explained in section 4.1,

higher-order poles of the amplitude are generated upon expansion of the path-ordered ex-
ponential in eq. (4.16). They have to match the BFKL computation and therefore provide
an independent and non-trivial check of our results.

To see how this works, let us expand the BFKL result (4.17) to the first few orders,
namely
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iteration of 
lower loops

single poles =  
soft anomalous dimension
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H = ZIRM ZIR = Pe�
R µ
0

d�
� �s(↵s(�))

Recall exponentiation of IR divergences:

,

Finite as 𝜀→0

Note that 𝜀→0 limit of H and 𝜞s  contain all physically 
observable part of S-matrix 

(these suffice to compute inclusive cross-sections, when
 using suitable phase-space subtractions: cf Lorenzo’s talk)  

H= IR&UV renormalized scattering = 

[Weinzeirl]



Notice similarity when renormalizing UV&IR operators

ZUV = Pe
R 1
µ

d�
� �(↵s(�))Oren(x) = ZUVObare(x),

Both exponentiate for same reason:  
disparate length scales factorize from each other

ZIR = Pe�
R µ
0

d�
� �s(↵s(�)),H = ZIRMIR−bare
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Figure 5. Tree-level elastic amplitude in the Regge limit. Leading logarithm corrections follow from

summing the renormalization group evolution for the gluon source, which e↵ectively Reggeizes the

exchanged gluon.

In prevision of using this to constrain the so-called soft anomalous dimension, we per-

form all computations in dimensional regularization using the D-dimensional kernel given in

eq. (3.5).

4.1 General structure of the amplitudeWe consider the amplitude Mij!ij where the projectiles retain their identities (for example

gg ! gg or gq ! gq etc.) It will be convenient to work in a frame where the incoming partons

1 and 2 both have vanishing transverse momentum, with momenta P4 and P3 being nearly

opposite to P1, P2, respectively. These kinematics are shown in fig. 4.
The first step in the computation is to perform an operator expansion, wherein we ap-

proximate the projectile by Wilson lines. At the Born level, this amounts to the naive eikonal

approximation (see ref. [38] for an interesting application)
âi,�3,a(P3)â†i,�2,a0(P2) ⇠ p+2 ��2,�̄3

Ui(p)aa0 (leading log). (4.1)
Here â† and â are creation and annihilation operators for the external states, Ui is a Wilson

line in the representation associated with particle i with color indices a and a0, and p is

the transverse momentum component of P3. We use capital letters to denote four-vectors,

Pi ⌘ (p+i , p
�

i , pi). The �i’s are the helicities of the particles, which are conserved in the

high-energy limit.
At higher orders in perturbation theory, several types of corrections to (4.1) must be

expected, in line with its interpretation as an Operator Product Expansion.
First, the coe�cient of Ui(p) can receive radiative corrections, which will depend on

the particle species i. Second, and perhaps more significantly, operators containing multiple

Wilson lines must appear. This is necessary because according to the JIMWLK equation, the

original operator Ui(p) will mix with such products under rapidity evolution. Hence they must

necessarily appear in the OPE, be it only to fix “constants of integration” for the evolution.

(The need to include such multi-Wilson line operators was also demonstrated directly long
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i

�Ji(↵s(�)) +�

dipole ansatz
departure,  

starts at 3-loops

Can be expanded in Regge limit:

where �dip. involves only pairwise interactions amongst the hard partons, and is therefore
referred to as the “dipole formula”. The kinematic variables are �sij = 2|pi · pj |e�i⇡�ij with
�ij = 1 if partons i and j both belong to either the initial or the final state and �ij = 0

otherwise. The function �K(↵s) in eq. (4.4) is the (lightlike) cusp anomalous dimension
[38–40], divided by the quadratic Casimir of the corresponding Wilson lines. The functions
�i(↵s) represent the field anomalous dimension corresponding to the parton i, which governs
hard collinear singularities. Both �K(↵s) and �i(↵s) are known through three-loop in QCD
and their values are summarised in Appendix A of ref. [24]. In eq. (4.4) �(n) for n � 3

accounts for multi-parton correlations. The three-loop correction �(3), correlating up to
four hard partons, was calculated recently [26, 27] for any number of partons in general
kinematics. Specializing to 2 ! 2 parton scattering in the high-energy limit, ref. [24]
showed that �(3) contributes starting from NNLL accuracy in the imaginary (even) part
of the amplitude, and starting from N3LL accuracy in the real (odd) part; we refer the
interested reader to eq. (4.11) in ref. [24] for an expression for �(3) in this limit. Given our
focus here on NLL accuracy, we shall not discuss it further.

While it is known that �dip. fully describes the infrared singularities associated with
Regge pole factorisation [21, 22] — meaning it is exact at leading and NLL accuracy for
the real part the amplitude — it does not fully capture the structure of the two-Reggeon
cut [23] at NLL accuracy, where �(n) at four loops and beyond, are relevant. To identify
the contribution of the soft anomalous dimension in two-parton scattering, ij ! ij, at
increasing logarithmic accuracy, let us expand � in powers of ↵s, keeping the product ↵sL

fixed, as follows:

� (↵s(�)) = �LL (↵s(�), L) + �NLL (↵s(�), L) + �NNLL (↵s(�), L) + . . . . (4.5)

The NkLL term in eq. (4.5) can be written as an expansion in ↵m
s Lm�k for m � 1. Using

Regge-pole factorisation it can be shown [21, 22] that the leading logarithmic contribution
�LL takes the one-loop exact form,

�LL (↵s(�)) =
↵s(�)

⇡

�(1)
K

2
LT2

t =
↵s(�)

⇡
LT2

t . (4.6)

This exactly corresponds to the infrared-divergent part of the one-loop gluon Regge trajec-
tory in eq. (2.5). Note that the LL anomalous dimension has even signature �LL = �(+)

LL
.

At NLL the anomalous dimension can be divided into signature-even and odd parts:

�NLL = �(+)

NLL
+ �(�)

NLL
. (4.7)

The even part3, which is governed by the Regge pole, is two-loop exact. Referring to
eq. (4.4), it contains the terms in the one-loop anomalous dimension that are not enhanced
by L, as well as the infrared-divergent part of the two-loop gluon Regge trajectory:

�(+)

NLL
=

↵s(�)

⇡

2X

i=1

 
�(1)
K

2
Ci log

�t

�2
+ 2�(1)

i

!
+

✓
↵s(�)

⇡

◆2 �(2)
K

2
LT2

t . (4.8)

3Note that the even part of the NLL anomalous dimension, �(+)
NLL, contributes to the odd NLL amplitude,

M
(�)
NLL, since it acts on the LL part of H in eq. (4.1), which is itself odd.
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This exactly corresponds to the infrared-divergent part of the one-loop gluon Regge trajec-
tory in eq. (2.5). Note that the LL anomalous dimension has even signature �LL = �(+)

LL
.

At NLL the anomalous dimension can be divided into signature-even and odd parts:

�NLL = �(+)

NLL
+ �(�)

NLL
. (4.7)

The even part3, which is governed by the Regge pole, is two-loop exact. Referring to
eq. (4.4), it contains the terms in the one-loop anomalous dimension that are not enhanced
by L, as well as the infrared-divergent part of the two-loop gluon Regge trajectory:

�(+)
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=

↵s(�)

⇡
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✓
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⇡

◆2 �(2)
K

2
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t . (4.8)

3Note that the even part of the NLL anomalous dimension, �(+)
NLL, contributes to the odd NLL amplitude,

M
(�)
NLL, since it acts on the LL part of H in eq. (4.1), which is itself odd.
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The odd part is however sensitive the the two-Reggeon cut. At one-loop it can be obtained
from the dipole formula [21, 22],

�(�)

NLL
= i⇡

↵s(�)

⇡
T2

s�u +O(↵4

sL
3) , (4.9)

while higher-order terms have so far been unknown. The reduced amplitude obtained in
section 3 contains information on the infrared divergences of next-to-leading high-energy
logarithms to all orders in ↵s, and hence allows us to determine �(�)

NLL
to all orders.

In order to make contact with section 3 we need to express the reduced amplitude
defined in eq. (2.3) in its infrared-factorised form. Focusing on the even component, we
substitute eq. (4.1) there and expand it to NLL accuracy:

M̂(+)

NLL
= exp

⇢
� ↵s(µ)
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B0(✏)

2✏
LT2

t
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t
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({pi}, µ,↵s(µ))

+ Z(+)
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⇣s
t
, µ,↵s(µ)

⌘
H(+)

NLL
({pi}, µ,↵s(µ))

�
,

(4.10)

where we have written the Regge trajectory explicitly according to eq. (2.5). Substituting
�LL of eq. (4.6) into eq. (4.2) and integrating over the scale (using the zeroth-order scale
dependence of ↵s) we obtain:

Z(+)
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⇣s
t
, µ,↵s(µ)

⌘
= exp

⇢
↵s

⇡

1

2✏
LT2

t

�
. (4.11)

Considering the second term in the square brackets of eq. (4.10) we note that Z(+)

LL
can

be combined with the exponential of the Regge trajectory, and this combination gives rise
to an exponent proportional to (B0(✏) � 1)/(2✏) ⇠ O(✏). Given that the hard function is
finite by definition, H(+)

NLL
⇠ O(✏0), we conclude that the second term in eq. (4.10) only

contributes to finite terms in M̂(+)

NLL
. This implies that the infrared-singular part of the

reduced amplitude is insensitive to H(+)

NLL
[23] and is given by:
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�
Z(�)
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({pi}, µ,↵s(µ))+O(✏0). (4.12)

Equation (4.12) can be further simplified by noticing that the hard function at LL
accuracy is fixed by Regge factorisation: it is simply the exponential of the finite part of
the gluon Regge trajectory, i.e. we have

H(�)

LL
({pi}, µ,↵s(µ)) = exp

⇢
↵s

⇡

B0(✏)� 1

2✏
LCA

�
M(tree), (4.13)

where we used the fact that T2
t = CA when acting on the Regge limit of the tree level am-

plitude. Moving this (finite) exponential to the left, this result allows us to write eq. (4.12)
more explicitly as
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no 
poles

⇒ single-poles give 𝜞NLL, higher poles explicitly predicted

exp

⇢
(1�B0(✏))

2✏

↵s

⇡
L(CA �T2

t )

�
M̂NLL = exp

⇢
� 1

2✏

↵s

⇡
LT2

t

�

⇥ P exp

⇢
�
Z

p

0

d�

�


�LL (↵s(�)) + �NLL (↵s(�))

��
M(tree) +O(✏0), (4.14)

where it is understood that both sides of this equality are to be projected onto even sig-
nature. Below we will abbreviate the l.h.s. as M̄NLL. The NLL contribution to the path-
ordered exponential on the second line can be written out fully as

�
Z

p

0

d�

�


P exp

⇢
�
Z

�

0

d�0

�0 �LL

�
↵s(�

0)
���

�NLL (↵s(�))


P exp

⇢
�
Z

p

�

d�0

�0 �LL

�
↵s(�

0)
���

.

(4.15)
Finally, integrating the exponents in each of the two brackets as in eq. (4.11) and using
again that T2

t = CA in the right factor upon acting on M(tree), we obtain, projecting onto
the even amplitude:

M̄(+)

NLL
= �

Z
p

0

d�

�
exp

⇢
1

2✏

↵s(p)

⇡
L(CA �T2

t )


1�

✓
p2

�2

◆✏ ��
�(�)

NLL
(↵s(�)) M(tree) +O(✏0).

(4.16)

This expression for the even amplitude may be compared directly with the one obtained in
eq. (3.18) using the BFKL analysis; exploiting the fact that the exponential on the l.h.s. of
eq. (4.14) is finite (and that R(✏) is finite), the BFKL prediction can be written as

M̄(+)

NLL
= i⇡

2

664

exp

⇢
1

2✏

↵s

⇡
L(CA �T2

t )

�
� 1

L(CA �T2
t
)

3

775

✓
1� CA

CA �T2
t

R(✏)

◆�1

T2

s�uM(tree) +O(✏0)

(4.17)

with R(✏) defined in eq. (3.17). We now have two expressions for the infrared singularities of
the reduced amplitude — an expression in terms of the soft anomalous dimension, eq. (4.16),
and the all-order result of BFKL evolution in the soft approximation, eq. (4.17). In the
next section we equate them and extract �(�)

NLL
.

4.2 Extracting the soft anomalous dimension at NLL

In minimal subtraction schemes, anomalous dimensions can be extracted by taking the
coefficient of pure 1/✏ single poles. Indeed, to get the coefficient of the single poles in
eq. (4.16) we can drop the exponentials to get

h
M̄(+)

NLL

i

single poles
= �

Z
p

0

d�

�
�(�)

NLL
(↵s(�)) M(tree)

=
1

2✏

1X

`=1

✓
↵s(p)

⇡

◆
`

L`�1
1

`
�(�,`)

NLL
M(tree) . (4.18)

This result must be set equal to the single poles obtained from eq. (4.17), whose `-loop
coefficient is

M̄(+,`)

NLL
=

i⇡

2✏ `!


(CA �T2

t )

2✏

�`�1✓
1� CA

CA �T2
t

R(✏)

◆�1

T2

s�uM(tree) +O(✏0). (4.19)
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Comparing with eq. (4.18) then gives

�(�,`)

NLL
= i⇡G(`)T2

s�u (4.20)

with

G(`) ⌘ 1

(`� 1)!


(CA �T2

t )

2

�`�1 ✓
1� CA

CA �T2
t

R(✏)

◆�1
�����
✏`�1

, (4.21)

where the subscript indicates that one should extract the coefficient of ✏`�1. Although the
notation does not manifest this, the end result is always a polynomial in colour operators
CA and T2

t , since R(✏) has a regular series as ✏ ! 0. Rescaling ✏, this can also be written
as

�(�,`)

NLL
=

i⇡

(`� 1)!

 
1� CA

CA �T2
t

R
�
x(CA �T2

t )/2
�
!�1

������
x`�1

T2

s�u . (4.22)

where the function R(✏) = �2⇣3 ✏3 + . . . is defined in eq. (3.17).
Equation (4.22) is the main result of this paper: it gives the soft anomalous dimension

in the Regge limit to any loop order at next-to-leading logarithmic accuracy (i.e. all terms
of the form ↵`

sL
`�1); the even contribution �(+,`)

NLL
was given in eqs. (4.6) and (4.8). In other

words, we now know eq. (4.9) to all orders:

�(�)

NLL
=

1X

`=1

�(�,`)

NLL

✓
↵s(�)

⇡

◆
`

L`�1 . (4.23)

Expanding the above formula explicitly to eight loops:

�(�,1)

NLL
= i⇡T2

s�u

�(�,2)

NLL
= 0

�(�,3)

NLL
= 0,

�(�,4)
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CA(CA �T2

t )
2T2

s�u,

�(�,5)

NLL
= �i⇡

⇣4
128

CA(CA �T2

t )
3T2

s�u,

�(�,6)

NLL
= �i⇡

⇣5
640

CA(CA �T2

t )
4T2

s�u,

�(�,7)

NLL
= i⇡

1

720


⇣2
3

16
C2

A(CA �T2

t )
4 +

1

32

�
⇣23 � 5⇣6

�
CA(CA �T2

t )
5

�
T2

s�u,

�(�,8)

NLL
= i⇡

1

5040


3⇣3⇣4
32

C2

A(CA �T2

t )
5 +

3

64
(⇣3⇣4 � 3⇣7) CA(CA �T2

t )
6

�
T2

s�u.

(4.24)

These results are valid in any gauge theory, and hold modulo colour operators which vanish
when acting on the Regge limit of the tree amplitude (which is given by the t-channel gluon
exchange diagram).
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All-order result:loops. From eq. (3.15) we obtain

M̂(+,`)

NLL

���
s

= i⇡
1

(2✏)`
B`

0
(✏)

`!

✓
1�R(✏)

CA

CA �T2
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◆�1

(CA �T2

t )
`�1T2

s�uM(tree) +O(✏0),

(3.16)
where we have introduced the function

R(✏) ⌘ B0(✏)

B�1(✏)
� 1 =

�3(1� ✏)�(1 + ✏)

�(1� 2✏)
� 1

= �2⇣3 ✏
3 � 3⇣4 ✏

4 � 6⇣5✏
5 �

�
10⇣6 � 2⇣23

�
✏6 +O(✏7). (3.17)

Furthermore, by resumming eq. (3.16) according to eq. (2.12) we get the all-order amplitude:
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NLL

���
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=
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t
)

✓
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exp
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⇡
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�
� 1

�
T2

s�uM(tree) +O(✏0). (3.18)

This result will be used in the next section to extract the soft anomalous dimension.
Before addressing this topic, however, it proves useful to explore in more detail the

implications of eq. (3.16) by writing explicitly a few orders in perturbation theory. Up to
three loops eq. (3.16) reduces to

M̂(+,`=1,2,3)

NLL

���
s

= i⇡
B`

0
(✏)

`! (2✏)`
(CA �T2

t )
`�1T2

s�uM(tree) +O(✏0), (3.19)

i.e. only one colour structure contributes to the amplitude up to three loops, and the
singularities are correctly reproduced by the dipole formula of infrared divergences. Starting
at four loops, and for the subsequent three orders, one gets an additional contribution
proportional to a new colour structure:

M̂(+,`=4,5,6)

NLL

���
s

= i⇡
B`

0
(✏)

`! (2✏)`
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(CA �T2
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`�1 +R(✏)CA(CA �T2

t )
`�2

�
T2

s�uM(tree) +O(✏0),

(3.20)
which matches with the infrared-divergent part of the result reported earlier in eq. (2.32).
It can be easily verified (see the next section) that the infrared divergences associated with
the first colour structure are predicted by the dipole formula, while the ones associated with
the second are not. Next, starting at seven loops, and for the subsequent three orders, yet
another colour structure arises:
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Expanding eq. (3.16) for the next three orders in ↵s we get
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Comparing with eq. (4.18) then gives

�(�,`)

NLL
= i⇡G(`)T2

s�u (4.20)

with

G(`) ⌘ 1

(`� 1)!


(CA �T2

t )

2

�`�1 ✓
1� CA

CA �T2
t

R(✏)

◆�1
�����
✏`�1

, (4.21)

where the subscript indicates that one should extract the coefficient of ✏`�1. Although the
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where the function R(✏) = �2⇣3 ✏3 + . . . is defined in eq. (3.17).
Equation (4.22) is the main result of this paper: it gives the soft anomalous dimension

in the Regge limit to any loop order at next-to-leading logarithmic accuracy (i.e. all terms
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3

16
C2

A(CA �T2

t )
4 +

1

32

�
⇣23 � 5⇣6

�
CA(CA �T2

t )
5

�
T2

s�u,

�(�,8)

NLL
= i⇡

1

5040


3⇣3⇣4
32

C2

A(CA �T2

t )
5 +

3

64
(⇣3⇣4 � 3⇣7) CA(CA �T2

t )
6

�
T2

s�u.

(4.24)

These results are valid in any gauge theory, and hold modulo colour operators which vanish
when acting on the Regge limit of the tree amplitude (which is given by the t-channel gluon
exchange diagram).
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1. only classical zeta’s, no zeta2. 
2. Coefficients decay factorially
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Figure 6. Partial sums Gn(x) =
Pn

`=1 G
(`)x`�1 for n = 1, . . . , 22 (rainbow, red through violet)

and numerical results for G(x) (black crosses). The plot illustrates convergence in that increasing
the order n extends the range of x for which the the partial sum matches the numerical result. The
figure shows the singlet (left) as well as the 27 exchange (right).

where the integration contour runs parallel to the imaginary axis, to the right of all singu-
larities of the integrand.

The function g(y) in eq. (4.28) only has isolated poles away from the origin and has a
finite radius of convergence: it is well-defined in a disc around the origin. It then follows that
G(x) has an infinite radius of convergence, hence this function — and the soft anomalous
dimension �(�)

NLL
in eq. (4.26) — is an entire function, free of any singularities for any finite

x = L↵s/⇡.
We stress that our use of the Borel transform is opposite to the usual application of Borel

summation (which is ordinarily used to sum asymptotic series): the function G(x), in which
we are interested, is an entire function; we make use of its inverse Borel transform, g(y),
which has worse behaviour by having merely a finite radius of convergence. Nonetheless
we find that numerically integrating eq. (4.30) is a particularly convenient way to evaluate
the anomalous dimension. This numerical integration is compared to the partial sums

Gn(x) ⌘
nX

`=1

G(`)x`�1 (4.31)

in figure 6, where we find good agreement for the given values of x. While it becomes
challenging to efficiently compute the coefficients G(`) at high orders (here we only evaluated
them for `  22), we find the numerical integration of eq. (4.30) to be very stable, even for
larger values of x. Thus, the remarkable convergence properties of G(x) along with the Borel
technique, presents us with the possibility of computing �(�)

NLL
for x = L↵s/⇡ � 1, i.e. at

asymptotically high energies. This is a rather unique situation in a perturbative setting —
in other circumstances resummation techniques are limited to the region x = L↵s/⇡ . 1.

Evaluating the integral (4.30) and plotting G(x) for larger values of x reveals oscillations
with a constant period and an exponentially growing amplitude. Since this behaviour is
difficult to capture graphically we instead show the logarithm of |G(x)| weighted by the
sign of G(x) in figure 7. This observation suggests to approximate (4.30) by
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Figure 5. Logarithmic plot of the absolute value of the coefficients G(`) (4.27), for ` = 1, . . . , 22.
The |G(`)| quickly become very small suggesting good convergence of the series. Shown is the singlet
(crosses) and 27 exchange (circles).

suppression of the coefficients G(`) as a function of the order ` for CA = Nc = 3 and for the
two relevant representations, the singlet and the 27.

Furthermore, we can establish that the anomalous dimension (4.22) has an infinite
radius of convergence as a function of x ⌘ L↵s/⇡. To see this we write the resummed soft
anomalous dimension as:

�(�)

NLL
= i⇡

↵s

⇡
G
⇣↵s

⇡
L
⌘
T2

s�u , (4.26)

where the generating function for the expansion coefficients is defined by

G(x) =
1X

`=1

x`�1G(`) . (4.27)

It is convenient to further identify G(x) as the Borel transform of some function

g(y) ⌘
Z 1

0

dxG(x) e�x/y =
1X

`=1

G(`)y`(`� 1)! , (4.28)

which upon using eq. (4.21), simply evaluates to

g(y) =
y

1� CA

CA �T2
t

R
�
y(CA �T2

t )/2
� . (4.29)

We may now recover the original G(x) via the integral

G(x) =
1

2⇡i

Z
w+i1

w�i1
d⌘ g

✓
1

⌘

◆
e⌘x , (4.30)

– 23 –

is entire function
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π
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Asymptotics:

Figure 7. Numerical results for sign [G(x)] ln |G(x)| for the singlet (blue) and 27 exchange (orange).
The “heartbeat” at small x reflects the logarithmic divergence of ln |G(x)| where G(x) changes its
sign for the first time (similar divergences occur every oscillation but are not visible due to the
finite resolution of the plot).

G(x) ! c eax cos (bx+ d) , (4.32)

for sufficiently large values of x. By means of eq. (4.28), this model is equivalent to

g

✓
1

⌘

◆
! cRe


eid

⌘ � a� ib

�
=

c

2

✓
eid

⌘ � a� ib
+

e�id

⌘ � a+ ib

◆
, (4.33)

which is to be integrated as in (4.30) with a contour to the right of the poles. We thus
find that to capture the behaviour G(x) at large x it is sufficient to simply consider g

⇣
1

⌘

⌘

as a pair of complex-conjugated poles at ⌘ = a ± ib. Indeed, numerically extracting the
rightmost poles of g

⇣
1

⌘

⌘
of eq. (4.29) to identify the parameters a and b in eq. (4.33), and

dividing the full, numerically-evaluated, G(x) by eax leaves us with almost pure cosine-like
behaviour for any x � 1, as can be seen in figure 8. For reference, we quote our numerical
results for a, b, c and d in table 1.

a b c d

1 1.97 1.52 0.25 0.48

27 1.46 0.41 0.58 2.01

Table 1. Numerical results for a, b, c and d, cf. eq. (4.32), for the singlet (1) and 27 representation.
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Figure 8. The approximation of eq. (4.32) for G(x) for x � 1, divided by eax (solid line) contrasted
with numerical results (crosses). The coefficients a and b were extracted from the poles of g(1/⌘)
while c and d were fitted after dividing the full, numerically evaluated, G(x) by eax. Already for
moderate values of x we observe excellent agreement. The singlet exchange is shown on the left
and the 27 is on the right.

4.4 Exponentiation check for higher-order infrared poles

As a final step we confirm the agreement between the BFKL prediction and the soft fac-
torisation theorem. Thus far we have only used the single poles as predicted by the BFKL
evolution to extract the NLL soft anomalous dimension �(�)

NLL
. As explained in section 4.1,

higher-order poles of the amplitude are generated upon expansion of the path-ordered ex-
ponential in eq. (4.16). They have to match the BFKL computation and therefore provide
an independent and non-trivial check of our results.

To see how this works, let us expand the BFKL result (4.17) to the first few orders,
namely

M̄(+)

NLL

✓
s

�t

◆
=

1X

`=1

⇣↵s

⇡

⌘
`

L`�1 M̄(+,`)

NLL
. (4.34)

with

M̄(+,1)

NLL
= i⇡


1

2✏
+O(✏0)

�
T2

s�uM(tree), (4.35a)

M̄(+,2)

NLL
= i⇡

(CA �T2
t )

2!


1

(2✏)2
+O(✏0)

�
T2

s�uM(tree), (4.35b)

M̄(+,3)

NLL
= i⇡

(CA �T2
t )

2

3!


1

(2✏)3
+O(✏0)

�
T2

s�uM(tree), (4.35c)

M̄(+,4)

NLL
= i⇡

(CA �T2
t )

3

4!


1

(2✏)4
� 1

2✏

⇣3CA

4(CA �T2
t
)
+O(✏0)

�
T2

s�uM(tree), (4.35d)

M̄(+,5)

NLL
= i⇡

(CA �T2
t )

4

5!


1

(2✏)5
� 1

(2✏)2
⇣3CA

4(CA �T2
t
)

� 1

2✏

3⇣4CA

16(CA �T2
t
)
+O(✏0)

�
T2

s�uM(tree). (4.35e)
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Note: sign of 𝜞 itself is dominated by 𝜞LL

Efficient evaluation via inverse Borel:

Figure 5. Logarithmic plot of the absolute value of the coefficients G(`) (4.27), for ` = 1, . . . , 22.
The |G(`)| quickly become very small suggesting good convergence of the series. Shown is the singlet
(crosses) and 27 exchange (circles).

suppression of the coefficients G(`) as a function of the order ` for CA = Nc = 3 and for the
two relevant representations, the singlet and the 27.

Furthermore, we can establish that the anomalous dimension (4.22) has an infinite
radius of convergence as a function of x ⌘ L↵s/⇡. To see this we write the resummed soft
anomalous dimension as:

�(�)

NLL
= i⇡

↵s

⇡
G
⇣↵s

⇡
L
⌘
T2

s�u , (4.26)

where the generating function for the expansion coefficients is defined by

G(x) =
1X

`=1

x`�1G(`) . (4.27)

It is convenient to further identify G(x) as the Borel transform of some function

g(y) ⌘
Z 1

0

dxG(x) e�x/y =
1X

`=1

G(`)y`(`� 1)! , (4.28)

which upon using eq. (4.21), simply evaluates to

g(y) =
y

1� CA

CA �T2
t

R
�
y(CA �T2

t )/2
� . (4.29)

We may now recover the original G(x) via the integral

G(x) =
1

2⇡i

Z
w+i1

w�i1
d⌘ g

✓
1

⌘

◆
e⌘x , (4.30)
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Recall all physical info is in 𝜀→0 limit of H and 𝜞s 

H = ZIRM

fully understood 
@ NLL

??

BFKL
ladders
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Claim: 𝜀→0 limit determined from evolution with 𝜀=0

H(+)
NLL =

∫

k soft
d2−2ϵkΨ(p, k)− (subtractions)

+

∫

k hard
d2kΨ(p, k)

∣∣∣
ϵ=0

First line computable using soft limit  
of wavefunction in d dimensions

Second line:  wavefunction =sum of SVHPLs
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Wilson lines associated to the colour flow of the external partons [8], which are described
as “target” and “projectile” in the (high-energy) forward scattering configuration of figure 1.
The wavefunction then represents the transverse momenta in each of two Wilson lines
and the BFKL equation is obtained as an appropriate limit of the more general Balitsky-
JIMWLK evolution equation.

A graphical representation of eq. (2.13) is provided in figure 2. As a result of BFKL
evolution, the amplitude at NLL accuracy can be represented as a ladder. At order ` it is
obtained by closing the ladder and integrating the wavefunction of order (` � 1) over the
resulting loop momentum, according to eq. (2.13). The wavefunction ⌦(`�1)(p, k), in turn,
is obtained by applying once the leading-order BFKL evolution kernel to the wavefunction
of order (`� 2). Graphically, this operation corresponds to adding one rung to the ladder.

︸ ︷︷ ︸

M̂(ℓ)(p)

︸ ︷︷ ︸

Ω(ℓ−1)(p, k)

︸ ︷︷ ︸

LO BFKL

︸ ︷︷ ︸

Ω(ℓ−2)(p, k′)

Figure 2. Graphical representation of the amplitude at NLL accuracy, as obtained through BFKL
evolution. The addition of one rung corresponds to applying once the leading-order BFKL evolution
onto the projectile wavefunction or impact factor at order (` � 2). This gives the wavefunction at
order (` � 1), according to eq. (2.18). Closing the ladder and integrating over the resulting loop
momentum gives the reduced amplitude, according to eq. (2.13).

2.2 Iterative solution for the wavefunction and amplitude

Eq. (2.13) shows that the `-th order amplitude is obtained in terms of iterated integrals,
which arise upon evaluating the wavefunction ⌦(`�1)(p, k) to order (`�1). It is straightfor-
ward to compute the first few orders, which gives us an opportunity to revisit the findings
of ref. [23]. We will be able to explain why a new colour structure emerges for the first time
at four loops, and explore the general structure of the relevant iterated integrals.

A useful fact is that the evolution admits one well-known solution in the case where the
exchanged state is colour-adjoint and ⌦(p, k) is constant (independent of k) [1, 2], which
gives a positive-signature state with the same leading-order trajectory as the Reggeized
gluon. This enables one to rewrite the Hamiltonian (2.15) as a part which vanishes when
⌦(p, k) is constant, plus a part proportional to (CA �T2

t ):

⌦(`�1)(p, k) = Ĥ ⌦(`�2)(p, k), Ĥ = (2CA �T2

t ) Ĥi + (CA �T2

t ) Ĥm (2.18)
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‘integration’ & multiplication parts:

In principle, we would like to diagonalize H:

4.2 BFKL evolution in two dimensions

As stated in the introduction much of the complication of solving the BFKL evolution stems
from the D dimensionality of the Hamiltonian. Recalling that the two-reggeon wavefunction
is finite at any loop order it should be clear that no regularisation is required if we (a) only
care about finite terms and (b) remove any soft kinematics from the last integration.

In two dimensions, let us view the euclidean momentum vectors k and k0 as complex
numbers and introduce new variables z, w 2 C according to

k

p
=

z

z � 1
and

k0

p
=

w

w � 1
. (4.5)

In the new variables one has

p2f(p, k, k0) ! (1� w)2(1� w̄)2
zw̄ + wz̄

ww̄(z � w)(z̄ � w̄)
(4.6)

and

J(p, k) ! j(z, z̄) =
1

2
log


z

(1� z)2
z̄

(1� z̄)2

�
(4.7)

while the measure becomes
d2k0

p2
=

d2w

(1� w)2(1� w̄)2
. (4.8)

The two Hamiltonians consequently read

Ĥi (z, z̄) =
1

4⇡

Z
d2wK(w, w̄, z, z̄) [ (w, w̄)�  (z, z̄)] (4.9)

Ĥm (z, z̄) = j(z, z̄) (z, z̄) (4.10)

where
K(w, w̄, z, z̄) =

1

w̄(z � w)
+

2

(z � w)(z̄ � w̄)
+

1

w(z̄ � w̄)
. (4.11)

4.3 Evolution of the 2D wavefunction

The evolution of the wavefunction in strictly two dimensions inherits from the D-dimensional
case the following obvious characteristics. For one, iterating Ĥm is trivial. Second, each
application of Ĥi adds a layer of integration such that the computation of ⌦(`�1) requires one
to solve `� 1 nested integrals.

To calculate these integrals we will use the method of differential equations detailed in C.
To this end, a sufficient number2 of differential operators that commute with Ĥi is needed, c.f.
eq. (C.1). We choose a pedagogical approach and, for now, work with the simplest operator
� = z d

dz to demonstrate the form of the differential equations. The generalisation to other
differential operators is straightforward.

First, we observe that, for generic z, z̄, w, w̄,

z
d

dz
K(w, w̄, z, z̄) = � d

dw
[wK(w, w̄, z, z̄)] . (4.12)

2
Here, the number will turn out to be three.
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Ĥm (z, z̄) = j(z, z̄) (z, z̄) (4.10)

where
K(w, w̄, z, z̄) =

1

w̄(z � w)
+

2

(z � w)(z̄ � w̄)
+

1

w(z̄ � w̄)
. (4.11)

4.3 Evolution of the 2D wavefunction

The evolution of the wavefunction in strictly two dimensions inherits from the D-dimensional
case the following obvious characteristics. For one, iterating Ĥm is trivial. Second, each
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{
wf(1) → 1

2c2(L({0}) + 2L({1}))
}

{
wf(2) → 1

4c1c2(−L({0, 1})− L({1, 0})− 2L({1, 1}))
+ 1

2c2
2(L({0, 0}) + 2L({0, 1}) + 2L({1, 0}) + 4L({1, 1}))

}

It turns out we can ‘integrate-by-parts’ derivatives 
without changing kernelwhich lets us conclude that

z
d

dz

h
Ĥi (z, z̄)

i
=

1

4⇡

Z
d2w

⇢
� d

dw
[wK(w, w̄, z, z̄)] [ (w, w̄)� (z, z̄)] (4.13)

�z
d

dz
 (z, z̄)

�
(4.14)

=
1

4⇡

Z
d2wK(w, w̄, z, z̄)


w

d

dw
 (w, w̄)� z

d

dz
 (z, z̄)

�
(4.15)

= Ĥi


z
d

dz
 (z, z̄)

�
. (4.16)

However, the complex-conjugate pairs w, w̄ and z, z̄ cannot be treated as independent ev-
erywhere. Derivatives w.r.t. those variables receive additional contributions from the non-
holomorphic/singular points of the function they act on. These “anomalies” are captured by
the two-dimensional Poisson equation

@z@z̄ log(zz̄) = ⇡�2(z). (4.17)

or, more concretely,
d

dw

1

w̄ � c
= ⇡�2(w � c). (4.18)

with c a complex number.

For easy bookkeeping let us split a derivative into its regular part, which is correct in the
holomorphic regime, and its contact terms, governed by eq. (4.18). Eq. (4.12) — now valid
for generic z, z̄, w, w̄ as well as special points — then becomes

z
d

dz
K(w, w̄, z, z̄) =


z
d

dz
K(w, w̄, z, z̄)

�

reg

+


z
d

dz
K(w, w̄, z, z̄)

�

con

(4.19)

= �


d

dw
wK(w, w̄, z, z̄)

�

reg

+


z
d

dz
K(w, w̄, z, z̄)

�

con

(4.20)

= � d

dw
wK(w, w̄, z, z̄) +


d

dw
wK(w, w̄, z, z̄)

�

con

(4.21)

+


z
d

dz
K(w, w̄, z, z̄)

�

con

(4.22)

Plugged into eq. (4.16) this gives

z
d

dz

h
Ĥi (z, z̄)

i
= Ĥi


z
d

dz
 (z, z̄)

�

+
1

4⇡

Z
d2w

⇢
d

dw
wK(w, w̄, z, z̄)

�

con

+


z
d

dz
K(w, w̄, z, z̄)

�

con

�

⇥ [ (w, w̄)� (z, z̄)] . (4.23)

We shall continue to refer to this as the commutativity of z d
dz and Ĥi even though we

implicitly mean commutativity modulo contact terms. Note, that the presence of the contact
terms does not conflict with the strategy described in C; each contact term contains a �2(w�c)
and therefore makes the integral on the r.h.s. easy to evaluate.

The operator z d
dz is suited to calculate the action of Ĥi on any function L0,�

z
d

dz

h
ĤiL0,�(z, z̄)

i
= Ĥi [L�(z, z̄)] + (contact terms), (4.24)
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which lets us conclude that

z
d

dz

h
Ĥi (z, z̄)

i
=

1

4⇡

Z
d2w

⇢
� d

dw
[wK(w, w̄, z, z̄)] [ (w, w̄)� (z, z̄)] (4.13)

�z
d

dz
 (z, z̄)

�
(4.14)

=
1

4⇡

Z
d2wK(w, w̄, z, z̄)


w

d

dw
 (w, w̄)� z

d

dz
 (z, z̄)

�
(4.15)

= Ĥi


z
d

dz
 (z, z̄)

�
. (4.16)

However, the complex-conjugate pairs w, w̄ and z, z̄ cannot be treated as independent ev-
erywhere. Derivatives w.r.t. those variables receive additional contributions from the non-
holomorphic/singular points of the function they act on. These “anomalies” are captured by
the two-dimensional Poisson equation

@z@z̄ log(zz̄) = ⇡�2(z). (4.17)

or, more concretely,
d

dw

1

w̄ � c
= ⇡�2(w � c). (4.18)

with c a complex number.

For easy bookkeeping let us split a derivative into its regular part, which is correct in the
holomorphic regime, and its contact terms, governed by eq. (4.18). Eq. (4.12) — now valid
for generic z, z̄, w, w̄ as well as special points — then becomes

z
d

dz
K(w, w̄, z, z̄) =


z
d

dz
K(w, w̄, z, z̄)

�

reg

+


z
d

dz
K(w, w̄, z, z̄)

�

con

(4.19)

= �


d

dw
wK(w, w̄, z, z̄)

�

reg

+


z
d

dz
K(w, w̄, z, z̄)

�

con

(4.20)

= � d

dw
wK(w, w̄, z, z̄) +


d

dw
wK(w, w̄, z, z̄)

�

con

(4.21)

+


z
d

dz
K(w, w̄, z, z̄)

�

con

(4.22)

Plugged into eq. (4.16) this gives

z
d

dz

h
Ĥi (z, z̄)

i
= Ĥi


z
d

dz
 (z, z̄)

�

+
1

4⇡

Z
d2w

⇢
d

dw
wK(w, w̄, z, z̄)

�

con

+


z
d

dz
K(w, w̄, z, z̄)

�

con

�

⇥ [ (w, w̄)� (z, z̄)] . (4.23)

We shall continue to refer to this as the commutativity of z d
dz and Ĥi even though we

implicitly mean commutativity modulo contact terms. Note, that the presence of the contact
terms does not conflict with the strategy described in C; each contact term contains a �2(w�c)
and therefore makes the integral on the r.h.s. easy to evaluate.

The operator z d
dz is suited to calculate the action of Ĥi on any function L0,�

z
d

dz

h
ĤiL0,�(z, z̄)

i
= Ĥi [L�(z, z̄)] + (contact terms), (4.24)

21

(full algorithm requires (1-z)d/dz, just a bit harder)

That way we easily generate SVHPL expressions 
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Mfinite(1) = 0

Mfinite(2) = 0

Mfinite(3) =
1

4
(−11)c22ζ(3)

we can get the IR renormalized amplitude to very high 
order

…

At 11-loops, we do get   SVZ5,3,3

Coefficient grow exponentially:  
 finite radius of convergence in 

series seems alternating, for unitary representations Tt2>0

αsL



Conclusions
• Modern approach to high-energy scattering via 

Wilson lines: new theoretical control @NNLL

• Systematic and now well-tested theory, simplifies and 
exponentiate many diagrams in the forward limit  

• Possible applications to 
-Mueller Navelet jets, small-x physics  
-Predictions and new techniques for fixed-order  
 multi-loop QCD computations


