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Introduction

Multiple Polylogarithms

Integrals over rational factors:

G(w1,w2, . . . ; z) =
∫ z

0

1
x − w1

G(w2, . . . ; x)dx
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Introduction

Elliptic Multiple Polylogarithms

Integrals over an elliptic curve:

E
(

0 n2 ...
0 c2 ...

; z
)

=
∫ z

0

1
y(x)E( n2 ...c2 ... ; x) dx

where

y2 ∼ (x4) + x3 + . . .
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Introduction

??? Multiple Polylogarithms

Integrals over a higher-dimensional manifold:

F (? ? ? ) =
∫ 1

y(x1, x2, . . .)
F (? ? ? ; x1, x2, . . .)dx1dx2 . . .

where
y2 ∼ P(x1, x2, . . .)
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Introduction

Known Examples are Calabi-Yau

Known to be CYL−1 at L
loops [Bloch, Kerr, Vanhove;
Broadhurst]

Eight-loop φ4 vacuum graph
with a K3 (CY2) [Brown,
Schnetz]
L-loop “traintracks” appear to
be CYL−1 [Bourjaily, He,
Mcleod, MvH, Wilhelm]
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Introduction

Questions:

Why are these examples Calabi-Yau?
Are more Feynman integrals Calabi-Yau? (All?)
How bad can it get? (Dimensions vs. loop order)

My Goals Today:
Make what definite statements I can
Inspire further investigation!
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Direct Integration and Rigidity

Symanzik Form

Introduce “alpha parameters” for each propagator:

1
p2 −m2 =

∫ ∞
0

ei(p2−m2)αdα

Get well-known form, projective integral over one variable per edge:

Γ(E − LD/2)
∫

xi≥0
[dE−1xi ]

UE−(L+1)D/2

FE−LD/2

Graph polynomials U and F defined by:

U ≡
∑
{T}∈T1

∏
ei /∈T

xi , F ≡
[ ∑
{T1,T2}∈T2

sT1

( ∏
ei /∈T1∪T2

xi
)]

+ U
∑
ei

xi m2
i

(Neglecting numerators, higher propagator powers)
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Direct Integration and Rigidity

Symanzik Form: Special Cases

Two cases where things simplify, both for even dimensions:
E = LD/2: Explored by mathematicians. Superficial divergence from
gamma function, if there are no subdivergences can strip this off, no
need for dim reg. Only U contributes.∫

xi≥0
[dE−1xi ]

1
UD/2

E = (L + 1)D/2: Marginal. If finite, can again avoid dim reg. Only
F contributes. ∫

xi≥0
[dE−1xi ]

1
FD/2

In D = 2, these are the sunrise/banana graphs!
Many more cases in D = 4
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Direct Integration and Rigidity

Direct Integration

We can attempt to integrate these with direct integration:
Start with a rational function. Can partial-fraction in some variable x ,
getting ∫

x≥0

P(z)
x − Q(z) + R(z)

(x − S(z))2 + . . .

where z represents the other variables.
Linear denominators integrate to logarithms, double poles and higher
stay rational
If P,Q, . . . rational in another variable, repeat: get polylogarithms
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Direct Integration and Rigidity

Rigidity

What if some of P,Q, . . . aren’t rational?
Square root of a quadratic: this is expected to still be polylogarithmic.
Sometimes possible to manifestly rationalize with a change of variables,
see e.g. [Besier, Van Straten, Weinzierl]
Square root of cubic or higher: in general, cannot be rationalized, sign
of non-polylogarithmicity

Try all possible integration orders. We define the rigidity of an
integral as the minimum number of variables left in the root.
N.B.: This does not rule out more unusual changes of
variables/re-parametrizations! To do that, would need a “more
invariant” picture (differential equations?)
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Marginal Integrals are Calabi-Yau

What is a Calabi-Yau?

Compact Kähler manifold with vanishing first Chern class
Ricci-flat
Preserves N=1 supersymmetry of compactifications

. . . not helpful!
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Marginal Integrals are Calabi-Yau

How do you diagnose a Calabi-Yau?

Embed the patient in a weighted projective
space!

Curve should scale uniformly in λ
(homogeneous polynomial)
If the sum of the coordinate weights
equals the overall scaling (degree), your
curve is Calabi-Yau!
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Marginal Integrals are Calabi-Yau

Did you check the patient for singularities?

Strictly, this only works if the Calabi-Yau is
not singular

F is singular≡ points where ∇F = 0
Generically, our manifolds are singular!
Can blow up to smooth singularities –
we usually skip this part
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Marginal Integrals are Calabi-Yau

Did you check the patient for singularities?

Excuses:
All cases we’ve checked in detail
work [ongoing with Candelas, Elmi,
Schafer-Nameki, Wang]

Even mathematicians assume this will
work [Brown 0910.0114]
Charles Doran: “A Calabi-Yau is
whatever you want it to be”
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Marginal Integrals are Calabi-Yau

Marginal Integrals are Calabi-Yau

Let’s look at our “special cases”.
[Brown 0910.0114] explored the E = LD/2 case, argument for marginal
integrals (E = (L + 1)D/2) similar:

F is homogenous, degree L + 1, so FD/2 has degree (L + 1)D/2 = E
in E variables
Direct integration preserves this: each integration removes one
variable, and decreases the degree of the denominator by one.
Suppose we encounter a square root. For rigidity m, root

√
Q(xi ) will

contain a degree 2m polynomial in m variables.
Curve y2 = Q(xi ). Give the xi weight 1, y weight m. Then sum of
the weights is equal to degree → diagnosed Calabi-Yau!
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Marginal Integrals are Calabi-Yau

Example: Massless D = 4

Specialize to D = 4, massless propagators:∫
xi≥0

[d2L+1xi ]
1
F2

F is linear in every variable (x2
i only shows up in the mass term). We

may integrate out any one parameter xj . Writing F≡ F
(j)
0 + xjF

(j)
1 :∫

xi≥0
[d2Lxi ]

1
F

(j)
0 F

(j)
1

Each factor is still linear, so we can integrate in another variable xk .
Writing F

(j)
i ≡ F

(j,k)
i ,0 + xkF

(j,k)
i ,1 :

∫
xi≥0

[d2L−1xi ]
log
(
F

(j,k)
0,0 F

(j,k)
1,1

)
− log

(
F

(j,k)
0,1 F

(j,k)
1,0

)
F

(j,k)
0,0 F

(j,k)
1,1 − F

(j,k)
0,1 F

(j,k)
1,0
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Marginal Integrals are Calabi-Yau

Example: Massless D = 4

∫
xi≥0

[d2L−1xi ]
log
(
F

(j,k)
0,0 F

(j,k)
1,1

)
− log

(
F

(j,k)
0,1 F

(j,k)
1,0

)
F

(j,k)
0,0 F

(j,k)
1,1 − F

(j,k)
0,1 F

(j,k)
1,0

Denominator is at most quadratic in each remaining variable.
If irreducibly quadratic in all variables (and discriminants irreducibly
cubic or quartic in all other variables), then Calabi-Yau with rigidity
2L− 2.
Thus for massless marginal integrals in 4D, rigidity is bounded.
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A Calabi-Yau Bestiary

Is this bound saturated?

Yes!
Even L ≥ 2 Odd L ≥ 1 Odd L ≥ 5
Tardigrades Paramecia Amoebas
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A Calabi-Yau Bestiary

Observations:

The L = 2 tardigrade is a two-loop, five-point (three external masses)
K3!
We’ve looked at other marginal integrals with box power counting
through seven loops, the majority are maximally rigid.
The L = 3 amoeba is oddly enough not maximally rigid.
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Traintracks

What about the Traintracks?

Not marginal: E = 3L + 1 6= (L + 1)D/2 for L 6= 1
Not Symanzik: ∫ ∞

0
[dLα]dLβ

1
(f1 · · · fL)gL

fk≡(a0ak−1;akbk−1)(ak−1bk ;bk−1a0)(akbk ;ak−1bk−1)fk−1+α0(αk +βk)+αkβk

+
k−1∑
j=1

[
αjαk(bja0;ajak)+αjβk(bja0;ajbk)+αkβj(a0aj ;akbj)+βjβk(a0aj ;bkbj)

]

gL≡α0+
L∑

j=1

[
αj(bja0;ajb0)+βj(a0aj ;b0bj)

]
; (ab;cd)≡ xa,b xc,d

xa,c xb,d
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Traintracks

Three-Loop K3

Take codimension L + 1 residue, uncovering rigidity
Get
√

Q, where Q is degree 4 in α2 and degree 6 in α1 and α0

Can transform to Weierstrass form, rational transformation α2 → x
s.t. the curve becomes:

y2 = 4x3 − xg2(α0, α1)− g3(α0, α1)

where g2 has degree 8 and g3 has degree 12
Assign weight 6 to y , weight 4 to x , and weight 1 to α0, α1.
6 + 4 + 1 + 1 = 12, satisfies Calabi-Yau condition.
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Traintracks

Wheel/Coccolithophore

Once again, not marginal, not Symanzik
Planar, relevant to N = 4 sYM
For special kinematics, is CY3
We haven’t found embedding for general kinematics though...maybe
rigid, but not CY?
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Conclusions

Further Questions

Do different integration pathways give different Calabi-Yaus?
Different parametrizations?

Unlike elliptic curves, no general way to determine if two Calabi-Yaus
are the same
Could show two curves are different by checking geometric data
Is there an invariant notion of “the geometry”? Maybe from differential
equations?

Generalizations?
Traintracks are not marginal, but they are Calabi-Yau. How general is
this?
Are all Feynman integrals Calabi-Yau? Currently looking at a potential
counterexample.
If they are, does this rule out higher genus?
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Conclusions

Thank You

This project has received funding from the European Union’s Horizon 2020

research and innovation program under grant agreement No. 793151
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