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Outline

◦ Planar N = 4 supersymmetric Yang-Mills (sYM) theory

• Symmetries and Simplifications

• Infrared and Helicity Structure

◦ Polylogarithms and Cluster-Algebraic Structure

• Polylogarithms, the Coaction, and the Lie Cobracket

• Cluster-Algebraic Structure in N = 4 sYM

◦ Subalgebra Constructibility

• Decomposing the Remainder Function
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Amplitudes in N = 4 sYM

SUSY Ward identities ⇒ many relations among amplitudes
with different helicity structure

Conformal theory ⇒ no running of the coupling
or UV divergences

AdS5 × S5 dual theory ⇒ multiple ways to calculate
quantities of interest

Supersymmetric ⇒ the types of functions that
version of QCD show up here also appear in QCD
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Planar Limit and Dual Conformal Symmetry

We work with in the Nc →∞ limit with fixed g2 = g2YMNc/(16π
2)

◦ All non-planar graphs are suppressed in this limit, giving rise to a
natural ordering of external particles

◦ This ordering can be used to define a set of dual coordinates

pµi σ
αα̇
µ = λαi λ̃

α̇
i = xαα̇i − xαα̇i+1

◦ The coordinates xµi label the cusps of
a light-like polygonal Wilson loop in the
dual theory, which respects a superconformal
symmetry in this dual space
[Alday, Maldacena; Drummond, Henn, Korchemsky, Sokatchev]
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Helicity and Infrared Structure

Since we are working with all massless particles, our amplitudes An
must be renormalized in the infrared

◦ Infrared divergences are universal and entirely accounted for by
the ‘BDS Ansatz’ [Bern, Dixon, Smirnov]

◦ In the dual theory, the BDS Ansatz constitutes a particular
solution to an anomalous conformal Ward identity that determines
the Wilson loop up to a function of dual conformal invariants
[Drummond, Henn, Korchemsky, Sokatchev]

An = ABDS
n︸ ︷︷ ︸

IR structure

×

finite function of dual conformal invariants︷ ︸︸ ︷
exp(Rn)×

(
1 + PNMHV

n + PN2MHV
n + · · ·+ PMHV

n

)
︸ ︷︷ ︸

helicity structure
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Dual Conformal Invariants

◦ We can construct dual conformally invariant cross ratios out of
combinations of Mandelstam invariants

x2
ij = (xi − xj)2 = (pi + pi+1 + · · ·+ pj−1)2

that remain invariant under the dual inversion generator

I(xαα̇i ) =
xαα̇i
x2
i

⇒ I(x2
ij) =

x2
ij

x2
ix

2
j

◦ These can first be constructed for n = 6 since x2
i,i+1 = p2

i = 0

u =
x2

13x
2
46

x2
14x

2
36

, v =
x2

24x
2
51

x2
25x

2
41

, w =
x2

35x
2
62

x2
36x

2
52

x1

x2x3

x4

x5 x6

◦ In general, we can form 3n− 15 independent ratios
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Loops and Legs in Planar N = 4

Legs

∞
...
8
7
6
5
4

1 2 3 4 5 6 . . . ∞
Loops

MHV

NMHV

Ω

[Bern, Caron-Huot, Dixon, Drummond, Duhr, Foster, Gürdoğan, He, Henn, von Hippel, Golden,

Kosower, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, . . . ]

◦ Unexpected and striking structure exists in the the direction of

both higher loops and legs

• Galois Coaction Principle

• Cluster-Algebraic Structure

◦ This talk will focus on using these polylogarithmic amplitudes
(especially the two-loop MHV ones) as a data mine
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Polylogarithms

◦ Loop-level contributions to MHV (and NMHV) amplitudes are
expected to be multiple polylogarithms of uniform transcendental
weight 2L, meaning that the derivatives of these functions satisfy

dF =
∑
i

F sid log si

for some set of ‘symbol letters’ {si}, where F si is a multiple
polylogarithm of weight 2L− 1
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

◦ The symbol letters {si} can in general be algebraic functions of
dual conformal invariants

◦ Examples of such functions (and their special values) include
log(z), iπ, Lim(z), and ζm. The classical polylogarithms Lim(z)
involve only the symbol letters {z, 1− z}

Li1(z) = − log(1− z), Lim(z) =

∫ z

0

Lim−1(t)

t
dt
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The Coaction

◦ Multiple polylogarithms are endowed with a coaction that maps
functions to a tensor space of lower-weight functions [Goncharov; Brown]

Hw
∆−→

⊕
p+q=w

Hp ⊗Hdr
q

◦ If we iterate this map w − 1 times we will arrive at a function’s
‘symbol’, in terms of which all identities reduce to familiar
logarithmic identities

◦ The location of branch cuts is determined by the ∆1,w−1

component of the coproduct, up to terms involving
transcendental constants

◦ The derivatives of a function are encoded in the ∆w−1,1

component of its coproduct

∆1,...,1Lim(z) = − log(1− z)⊗ log z ⊗ · · · ⊗ log z
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Symbol Alphabets and Discontinuities

The symbol exposes the discontinuity structure of polylogarithms

◦ In six-particle kinematics there are only 9 symbol letters:

S6 = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw}

si...k = (pi + · · ·+ pk)2, u =
s12s45

s123s345

yu =
1 + u− v − w −

√
(1− u− v − w)2 − 4uvw

1 + u− v − w +
√

(1− u− v − w)2 − 4uvw

◦ Only letters whose vanishing locus coincides with internal
propagators going on shell can appear in the first symbol entry

◦ In seven-particle kinematics there are 42 analogous symbol letters,
14 of which are parity odd

◦ For more than seven particles, symbol alphabets not as well

understood

• algebraic roots appear in symbol letters even at one loop in
N2MHV amplitudes [Prlina, Spradlin, Stankowicz, Stanojevic, Volovich]
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The Steinmann Relations

◦ The Steinmann relations tell us that amplitudes cannot have
double discontinuities in partially overlapping channels
[Steinmann; Cahill, Stapp]

1

2

3 4

5

6

vs.

1

2

3 4

5

6

Discs234(Discs345(An)) = 0

· · · ⊗

log
(
u
vw

)
⊗ log

(
w
uv

)
⊗ . . .

· · · ⊗

log
(
u
vw

)
⊗ log

(
v
uw

)
⊗ . . .

◦ ...in fact, the Steinmann relations constrain not just double
discontinuities, but all iterated discontinuities
[Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]

◦ For six and seven particles, this appears to be equivalent to
requiring ‘cluster adjacency’ [Drummond, Foster, Gürdoğan]
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Infrared Normalization

◦ Steinmann functions don’t form a ring

Discsi− 1, i, i+ 1

[
A(1)
n

]
6= 0

⇓

Discs234

[
Discs345

[(
A(1)
n

)2
]]
6= 0

• The BDS ansatz exponentiates the one-loop amplitude,
leading to products of amplitudes starting at two loops
(and obscuring the Steinmann relations)

◦ This is fixed by the BDS-like ansatz, which only depends on
two-particle invariants

ABDS
n × exp(Rn)→ ABDS-like

n × EMHV
n

◦ The BDS-like ansatz only scrambles Steinmann relations involving
two-particle invariants, which are obfuscated in massless
kinematics anyways
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Infrared Normalization

◦ However, the BDS-like ansatz only exists for particle multiplicities
that are not a multiple of four [Alday, Maldacena, Sever, Vieira; Yang;

Dixon, Drummond, Harrington, AJM, Papathanasiou, Spradlin]

◦ To unpack this statement: there exists a unique decomposition of
the one-loop MHV amplitude taking the form

A(1)
MHV,n = Xn(ε, {si,i+1})︸ ︷︷ ︸

IR structure

+ Yn({si,...,i+j})︸ ︷︷ ︸
dual conformal invariant

for all particle multiplicities n that are not a multiple of four

◦ Exponentiating the function Xn rather than the full one-loop
amplitude accounts for the full infrared structure of this theory,
yet is invisible to the operation of taking discontinuities in three-
and higher-particle channels
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Infrared Normalization

◦ This is problematic if we want to test the equivalence of the
Steinmann relations and cluster adjacency in eight-particle
kinematics

◦ However, if this is test is our only objective the last slide makes
clear there is a way out: normalize the amplitude by a ‘minimal
BDS ansatz’ only consisting of the infrared-divergent part of the
one-loop amplitude

◦ It can be explicitly checked that this restores not only all

(higher-particle) Steinmann relations, but also all cluster

adjacency relations

• this provides further evidence that the these conditions
are equivalent (when cluster adjacency can be
unambiguously applied)

[Golden, AJM (to appear)]
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Lie Cobracket

Polylogarithms also come equipped with a Lie cobracket structure

δ(F ) ≡
k−1∑
i=1

(ρi ∧ ρk−i)ρ(F )

ρ(s1⊗· · ·⊗sk) =
k − 1

k

(
ρ(s1⊗· · ·⊗sk−1)⊗sk−ρ(s2⊗· · ·⊗sk)⊗s1

)

◦ The cobracket of classical polylogarithms is especially simple:

δ
(
Lik(−z)

)
= −{z}k−1 ∧ {z}1, k > 2

δ
(
Li2(−z)

)
= −{1 + z}1 ∧ {z}1

where

{z}1 = ρ(log(z)), {z}k = ρ(−Lik(−z))

◦ In fact, any weight four function that has no δ2,2 component can
be written in terms of classical polylogarithms
[Dan; Gangl; Goncharov, Rudenko]
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Different Levels of Polylogarithmic Structure

Full
Function

Analytic
Structure

Nonclassical
Structure

S

δ
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Gr(4, 6) ∼ A3
CLUSTER ALGEBRAS: AN INTRODUCTION 7
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Figure 4. The exchange graph of the cluster algebra of type A3,
which coincides with the 1-skeleton of the associahedron.

By noting that the three-term Plücker relations correspond to exchange relations
in Ad−3, one may verify the following.

Exercise 2.18. The cluster and coefficient variables of Ad−3 are in bijection with
the diagonals and sides of the d-gon, and the clusters are in bijection with trian-
gulations of the d-gon. Moreover the coordinate ring of Gr2,d is isomorphic to the
cluster algebra Ad−3 associated to the d-gon.

kll k

ji i j

Figure 5. A flip in a quadrilateral and the corresponding ex-
change relation pikpjℓ = pijpkℓ + piℓpjk.

[Williams]
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Cluster Coordinates
cluster

h12i h23i

h34i

h45ih56i

h16i

h13i

h35i
h15i

cluster

1

2

3

4

5

6

cluster cluster variables 

“a”-type:         

“x”-type: 

h2456i, h2346i, h1246i

h1246ih3456i
h1456ih2346i ,

h1256ih2346i
h1236ih2456i ,

h1234ih2456i
h1246ih2345i

h3456i h1456i

h1256i

h1236ih1234i

h2345i

h2456i

h2346i

h1246i

Gr(2, 6) $ Gr(4, 6)

↖ ↗ ↖ ↗
Gr(2, 6) Gr(4, 6)

A-coordinates X -coordinates

〈2456〉 〈1246〉〈3456〉
〈1456〉〈2346〉 =

√
u(1−v)

v(1−u)yuyv

〈2346〉 〈1234〉〈2456〉
〈1246〉〈2345〉 =

√
v(1−w)

w(1−v)yvyw

〈1246〉 〈1256〉〈2346〉
〈1236〉〈2456〉 =

√
w(1−u)

u(1−w)yuyw

ZR=α,α̇
i = (λαi , x

βα̇
i λiβ), 〈abcd〉 = εRSTUZ

R
a Z

S
b Z

T
c Z

U
d
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Cluster Algebras

◦ More generally, clusters can be defined to be quiver diagrams that
have a cluster coordinate associated with every node

Gr(k, n)

〈1, . . . , k〉f1lf00f13f12f11

f2lf00f23f22f21

f00f00f00f00f00

fklf00fk3fk2fk1

· · ·

· · ·

...
. . .

...
...

...

· · ·

oooo

��

??
oooo

��

??
oo

��

??

oooooooo
??

���� ��

??

����

?? ??

��

?? ??
oo oo oo oo

??

????

��

��

��

l ≡ n− k

fij =

{
〈i + 1, . . . , k, k + j, . . . , i + j + k − 1〉, i ≤ l − j + 1,

〈1, . . . , i + j − l − 1, i + 1, . . . , k, k + j, . . . , n〉, i > l − j + 1.
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Cluster Algebras

◦ We can translate between clusters in A-coordinates and
X -coordinates using

xi =
∏
j

a
bji
j

bij = (# of arrows i→ j)− (# of arrows j → i)

〈13〉 〈14〉 〈15〉

〈12〉

〈23〉 〈34〉 〈45〉 〈56〉

〈16〉// //
��

��

bb

��

bb

��

bb
//

m
〈12〉〈34〉
〈14〉〈23〉

〈13〉〈45〉
〈15〉〈34〉

〈14〉〈56〉
〈16〉〈45〉

// //
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Cluster Algebras

◦ A cluster algebra is the closure of a given quiver under cluster
mutation

aka
′
k =

∏
i|bik>0

a
bik
i +

∏
i|bik<0

a
−bik
i

b′ij =


−bij , if k ∈ {i, j},
bij , if bikbkj ≤ 0,

bij + bikbkj , if bik, bkj > 0,

bij − bikbkj , if bik, bkj < 0.

x′i =

x
−1
k , i = k,

xi
(

1 + x
sgn(bik)
k

)bik
, i 6= k
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Cluster-Algebraic Structure in Planar N = 4

Cluster algebras appear in planar N = 4 sYM in a number of
striking ways

δ(F )

◦ [Building Blocks] The cobracket of all two-loop MHV amplitudes
can be expressed in terms of Bloch group elements evaluated on
cluster X -coordinates, {X}k [Golden, Paulos, Spradlin, Volovich]

◦ [Cluster Adjacency] The cobracket of all two-loop MHV can be
expressed as a linear combination of terms {Xi}2 ∧ {Xj}2 and
{Xk}3 ∧ {Xl}1 where each pair of X -coordinates appears together
in a cluster of Gr(4, n) [Golden, Spradlin]

◦ [Subalgebra Constructibility] The nonclassical part of all two-loop
MHV amplitudes can be decomposed into functions defined on
their A2 and A3 subalgebras [Golden, Paulos, Spradlin, Volovich]
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Cluster-Algebraic Structure in Planar N = 4

Cluster algebras appear in planar N = 4 sYM in a number of
striking ways

S(F )

◦ [Building Blocks] The symbol alphabets for n ∈ {6, 7} are
precisely cluster coordinates on the Grassmannian Gr(4, n),
and all symbol letters in the two-loop MHV amplitudes are
also cluster coordinates on Gr(4, n)
[Golden, Goncharov, Spradlin, Vergu, Volovich; Drummond, Papathanasiou, Spradlin]

◦ [Cluster Adjacency] In the symbol of (appropriately normalized)
amplitudes in which no algebraic roots arise, each pair of adjacent
A-coordinates appears together in a cluster of Gr(4, n)
[Drummond, Foster, Gürdoğan]
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Cluster-Algebraic Structure in Planar N = 4

Cluster algebras appear in planar N = 4 sYM in a number of
striking ways

F

◦ [Building Blocks] The two-loop MHV amplitudes are expressible as
(products of) functions taking only negative cluster X -coordinate
coordinates, Lin1,...,nd(−Xi, . . . ,−Xj) [Golden, Spradlin]
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Cluster-Algebraic Structure in Planar N = 4

Cluster algebras appear in planar N = 4 sYM in a number of
striking ways ∫

I

◦ [Building Blocks] The integrands in this theory are encoded by
plabic graphs, which are dual to cluster algebras
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

◦ [Cluster Adjacency] Cluster adjacency translates to the statement
that cluster coordinates only appear in adjacent entries of the
symbol or cobracket when the boundaries corresponding to their
zero-loci are simultaneously accessible
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Cluster Polylogarithms

◦ Using cluster A- or X -coordinates, we can define polylogarithms
on any cluster algebra that can be represented as a quiver

◦ In particular, we can consider functions that live on the cluster
subalgebras of Gr(4, n)

◦ The union of all A- or X -coordinates on the clusters in a
(sub)algebra provide a symbol alphabet
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Cluster Polylogarithms

◦ Cluster polylogarithms on the subalgebras of Gr(4,n) efficiently

capture the nonclassical structure of R
(2)
n (or equivalently E(2)

n )

◦ There exists only a single nonclassical polylogarithm defined on

A2, and only two on A3, but they have special properties

• Physically:

δ2,2(R(2)
n ) =

∑
A3⊂Gr(4,n)

di δ2,2(f
A

(i)
3

) =
∑

A2⊂Gr(4,n)

ci δ2,2(f
A

(i)
2

)

• Mathematically:
- fA2 act as a basis for all nonclassical polylogarithms, while
- fA3 acts as a basis for all nonclassical cluster
- polylogarithms whose cobracket satisfies cluster adjacency

[Golden, Paulos, Spradlin, Volovich]

◦ This basis of fA2 and fA3 functions is massively overcomplete...
what about larger subalgebras of Gr(4,7)?
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what about larger subalgebras of Gr(4,7)?



Cluster Algebras,
Steinmann, and

the Lie Cobracket

Andrew McLeod

Amplitudes in
planar N = 4

· Symmetries and
Simplifications

· Infrared and Helicity
Structure

Cluster Algebras
and Polylogarithms

· Polylogarithms, the
Coaction, and the
Lie cobracket

· Cluster-Algebraic
Structure

Subalgebra
Constructibility

· Decomposing the
Remainder Function

Conclusions

Cluster Polytopes

associahedron
$ E6Gr(4,7) =

833 vertices                            
1785 squares  
1071 pentagons
476 A3 associahedra
   ⋮
14 D5 associahedra

A2 associahedra
A1 x A1
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1785 squares  
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Cluster Polylogarithms

B Cobracket Spaces in Finite Cluster Algebras

In this appendix we tabulate the number of independent weight-four cluster polylog-

arithms that have a nonzero Lie cobracket on Gr(4, 7) ' E6 and its suablagebras. In

Type Nonclassical Cobrackets
Automorphism Signature

�+⌧+ �+⌧� ��⌧+ ��⌧�

A2 1 (0) 0 1 (0) 0 0

A3 6 (1) 0 1 (0) 0 1 (1)

A4 21 (6) 0 3 (0) 0 0

D4 34 (9)

A5 56 (21) 2 (1) 5 (1) 2 (0) 5 (3)

D5 116 (42)

E6 448 (195)

D4 Automorphism Signatures
�+

D4
⌧+
D4

�+
S3

��
S3

⌧+
S3

0 0

⌧�S3
1 (0) 0

�+
D4
⌧�D4

�+
S3

��
S3

⌧+
S3

2 (0) 0

⌧�S3
0 0

��
D4
⌧+
D4

�+
S3

��
S3

⌧+
S3

1 (0) 0

⌧�S3
1 (1) 0

��
D4
⌧�D4

�+
S3

��
S3

⌧+
S3

1 (0) 0

⌧�S3
0 0

D5 Automorphism Signatures
�+

D5
⌧+
D5

Z+
2 Z�

2

5 (2) 0

�+
D5
⌧�D5

Z+
2 Z�

2

9 (2) 0

��
D5
⌧+
D5

Z+
2 Z�

2

0 3 (1)

��
D5
⌧�D5

Z+
2 Z�

2

0 7 (5)

E6 Automorphism Signatures
�+

D14
⌧+
D14

Z+
2 Z�

2

12 (6) 14 (6)

�+
D14

⌧�D14

Z+
2 Z�

2

21 (6) 17 (9)

��
D14

⌧+
D14

Z+
2 Z�

2

0 0

��
D14

⌧�D14

Z+
2 Z�

2

0 0

Table 5: The number of nonclassical weight-four cluster polylogarithms on various

finite cluster algebras, prior to consideration of their automorphism group and after

requiring specific automorphism signatures. The number of polylogarithms that can

also be made to satisfy cobracket-level cluster adjacency is given in parentheses.
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Subalgebra Constructibility

◦ D5 and A5 are special in E6, as only a single orbit of each type

exists under the E6 automorphism group

• It follows that all D5- and A5-constructible polylogarithms
in E6 necessarily take the form:

∑
D5⊂E6

fD5(xi → . . .) =
6∑
i=0

1∑
j=0

(±1)i(±1)j Zj2,E6
◦σiE6

(
fD5(xi → . . .)

)
∑

A5⊂E6

fA5(xi → . . .) =
6∑
i=0

(±1)i σiE6

(
fA5(xi → . . .)

)

◦ Surprisingly, a D5 and A5 decomposition of δ2,2(R
(2)
7 ) both exist

δ2,2(R(2)
n ) =

∑
D5⊂Gr(4,7)

δ2,2(f−−−D5
) =

∑
A5⊂Gr(4,7)

δ2,2(f−−A5
)
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Subalgebra Constructibility

◦ ...moreover, we can play the same game with the new fD5 and

fA5 functions

• there exists only a single orbit of A4 subalgebras in each D5

and A5

◦ Both fD5 and fA5 turn out to be decomposable into the same A4

function:

R
(2)
7 =

∑
D5⊂Gr(4,7)

∑
A4⊂D5

f+−
A4

(x1 → x2 → x3 → x4) + . . .

=
∑

A5⊂Gr(4,7)

∑
A4⊂A5

f+−
A4

(x1 → x2 → x3 → x4) + . . .

[Golden, AJM]
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[Golden, AJM]



Cluster Algebras,
Steinmann, and

the Lie Cobracket

Andrew McLeod

Amplitudes in
planar N = 4

· Symmetries and
Simplifications

· Infrared and Helicity
Structure

Cluster Algebras
and Polylogarithms

· Polylogarithms, the
Coaction, and the
Lie cobracket

· Cluster-Algebraic
Structure

Subalgebra
Constructibility

· Decomposing the
Remainder Function

Conclusions

Subalgebra Constructibility

In fact, many nested decompositions are possible (although, none

involving D4), each making different properties of δ2,2(R
(2)
7 ) manifest

i
jF

i
jR

(2)
7

i
jF

i
jf−−−D5

i
jF

i
jf−−A5

i
jF

i
jf+−

A4
i
jF

i
jf
−−
A3

i
jF

i
jf+−

A3

i
jF

i
jf−−A2
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Subalgebra Constructibility

◦ The same game can be played in eight-particle kinematics,
particularly using the new functions f−−−D5

, f−−A5
, and

f+−
A4

found in seven-particle kinematics [Golden, AJM (to appear)]

◦ It is completely systematic, starting from such a representation of
their nonclassical component, to generate the full analytic
expression for R

(2)
8 or E(2)

8 [Duhr, Gangl, Rhodes; Golden, Spradlin]

◦ Subalgebras of Gr(4,n) can also be associated with R-invariants,
perhaps allowing a similar story to be developed in the NMHV
sector [Drummond, Foster, Gürdoğan]
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Conclusions

◦ A great deal of surprising structure remains to be explained in
planar N = 4

◦ In particular, the role of cluster algebras in this theory deserves to

be better understood

• The ‘meaning’ of these nonclassical decompositions remains
obscure

◦ The big looming question is whether any similar types of structure
can be found that extend beyond the polylogarithmic parts of this
theory (or even to amplitudes involving algebraic roots)
[Paulos, Spradlin, Volovich; Caron-Huot, Larsen; Bourjaily, Herrmann, Trnka]
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Thanks!

AMHV
n

(2)

S
(
AMHV

n
(2)
)

δ
(
AMHV

n
(2)
)

Cluster algebras

negative
X -coordinate

arguments

cluster
adjacency

subalgebra
constructibility
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