Cluster Algebras, Steinmann Relations, and the Lie Cobracket in planar $\mathcal{N} = 4$ sYM

Andrew McLeod (Niels Bohr Institute)

Galileo Galilei Institute November 8, 2018

Based on work in collaboration with John Golden $1810.12181,\ 190 \times \infty \times \times$

イロト 不得 トイヨト イヨト 二日 -

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Outline

- Planar $\mathcal{N} = 4$ supersymmetric Yang-Mills (sYM) theory
 - Symmetries and Simplifications
 - Infrared and Helicity Structure
- Polylogarithms and Cluster-Algebraic Structure
 - Polylogarithms, the Coaction, and the Lie Cobracket

・ ロ ト ・ (目 ト ・ 目 ト ・ 日 ト ・ 日 - -

- Cluster-Algebraic Structure in $\mathcal{N} = 4$ sYM
- Subalgebra Constructibility
 - Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Amplitudes in $\mathcal{N} = 4$ sYM

- $AdS_5 \times S^5$ dual theory \Rightarrow multiple ways to calculate quantities of interest

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

Planar Limit and Dual Conformal Symmetry

We work with in the $N_c \rightarrow \infty$ limit with fixed $g^2 = g_{\rm VM}^2 N_c / (16\pi^2)$

- All non-planar graphs are suppressed in this limit, giving rise to a 0 natural ordering of external particles
- This ordering can be used to define a set of dual coordinates 0

$$p_i^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}} = \lambda_i^{\alpha} \tilde{\lambda}_i^{\dot{\alpha}} = x_i^{\alpha \dot{\alpha}} - x_{i+1}^{\alpha \dot{\alpha}} \qquad x_2 \qquad p_2$$

The coordinates x_i^{μ} label the cusps of
a light-like polygonal Wilson loop in the
dual theory, which respects a superconformal

[Alday, Maldacena; Drummond, Henn, Korchemsky, Sokatchev]

symmetry in this dual space

0

dual theory,

 p_3

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in

Symmetries and Simplifications

Subalgebra

・ ロ ト ス 雪 ト ス ヨ ト ス ヨ ト

Helicity and Infrared Structure

Since we are working with all massless particles, our amplitudes \mathcal{A}_n must be renormalized in the infrared

- Infrared divergences are universal and entirely accounted for by the 'BDS Ansatz' [Bern, Dixon, Smirnov]
- In the dual theory, the BDS Ansatz constitutes a particular solution to an anomalous conformal Ward identity that determines the Wilson loop up to a function of dual conformal invariants

[Drummond, Henn, Korchemsky, Sokatchev]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Dual Conformal Invariants

 We can construct dual conformally invariant cross ratios out of combinations of Mandelstam invariants

$$x_{ij}^{2} = (x_{i} - x_{j})^{2} = (p_{i} + p_{i+1} + \dots + p_{j-1})^{2}$$

that remain invariant under the dual inversion generator

$$I(x_i^{\alpha \dot{\alpha}}) = \frac{x_i^{\alpha \dot{\alpha}}}{x_i^2} \quad \Rightarrow \quad I(x_{ij}^2) = \frac{x_{ij}^2}{x_i^2 x_j^2}$$

 $\circ~$ These can first be constructed for n=6 since $x_{i,i+1}^2=p_i^2=0$

• In general, we can form 3n - 15 independent ratios

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 x_3

 $x \gamma$

Loops and Legs in Planar $\mathcal{N}=4$

[Bern, Caron-Huot, Dixon, Drummond, Duhr, Foster, Gürdoğan, He, Henn, von Hippel, Golden, Kosower, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, ...]

- Unexpected and striking structure exists in the direction of both higher loops and legs
 - Galois Coaction Principle
 - Cluster-Algebraic Structure
- This talk will focus on using these polylogarithmic amplitudes (especially the two-loop MHV ones) as a data mine

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

 Symmetries and Simplifications

 Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

 Polylogarithms, the Coaction, and the Lie cobracket

Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Polylogarithms

• Loop-level contributions to MHV (and NMHV) amplitudes are expected to be multiple polylogarithms of uniform transcendental weight 2L, meaning that the derivatives of these functions satisfy

$$dF = \sum_{i} F^{s_i} d\log s_i$$

for some set of 'symbol letters' $\{s_i\},$ where F^{s_i} is a multiple polylogarithm of weight 2L-1

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]

- The symbol letters $\{s_i\}$ can in general be algebraic functions of dual conformal invariants
- Examples of such functions (and their special values) include $\log(z)$, $i\pi$, $\operatorname{Li}_m(z)$, and ζ_m . The classical polylogarithms $\operatorname{Li}_m(z)$ involve only the symbol letters $\{z, 1-z\}$

$$\text{Li}_1(z) = -\log(1-z), \quad \text{Li}_m(z) = \int_0^z \frac{\text{Li}_{m-1}(t)}{t} dt$$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

・ロト ・ 四ト ・ ヨト ・ 日 ・ うへつ

The Coaction

 Multiple polylogarithms are endowed with a coaction that maps functions to a tensor space of lower-weight functions [Goncharov; Brown]

$$\mathcal{H}_w \stackrel{\Delta}{\longrightarrow} igoplus_{p+q=w} \mathcal{H}_p \otimes \mathcal{H}_q^{\mathfrak{dr}}$$

- $\circ~$ If we iterate this map w-1 times we will arrive at a function's 'symbol', in terms of which all identities reduce to familiar logarithmic identities
- The location of branch cuts is determined by the $\Delta_{1,w-1}$ component of the coproduct, up to terms involving transcendental constants
- The derivatives of a function are encoded in the $\Delta_{w-1,1}$ component of its coproduct

 $\Delta_{1,\dots,1} \mathrm{Li}_m(z) = -\log(1-z) \otimes \log z \otimes \dots \otimes \log z$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

・ロト・西ト・山田・山田・山口・

Symbol Alphabets and Discontinuities

The symbol exposes the discontinuity structure of polylogarithms

• In six-particle kinematics there are only 9 symbol letters:

$$\mathcal{S}_6 = \{u, v, w, 1 - u, 1 - v, 1 - w, y_u, y_v, y_w\}$$

$$s_{i\dots k} = (p_i + \dots + p_k)^2, \quad u = \frac{s_{12}s_{45}}{s_{123}s_{345}}$$

$$y_u = \frac{1+u-v-w-\sqrt{(1-u-v-w)^2-4uvw}}{1+u-v-w+\sqrt{(1-u-v-w)^2-4uvw}}$$

- Only letters whose vanishing locus coincides with internal propagators going on shell can appear in the first symbol entry
- In seven-particle kinematics there are 42 analogous symbol letters, 14 of which are parity odd
- For more than seven particles, symbol alphabets not as well understood
 - algebraic roots appear in symbol letters even at one loop in N^2MHV amplitudes [Prlina, Spradlin, Stankowicz, Stanojevic, Volovich]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

The Steinmann Relations

 The Steinmann relations tell us that amplitudes cannot have double discontinuities in partially overlapping channels [Steinmann; Cahill, Stapp]

 $\log\left(\frac{u}{w}\right) \otimes \log\left(\frac{w}{w}\right) \otimes \dots$

$$\mathsf{Disc}_{s_{234}}(\mathsf{Disc}_{s_{345}}(\mathcal{A}_n)) = 0$$

$$\log\left(\frac{u}{vw}\right) \otimes \log\left(\frac{v}{uw}\right) \otimes \dots$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

The Steinmann Relations

 The Steinmann relations tell us that amplitudes cannot have double discontinuities in partially overlapping channels [Steinmann; Cahill, Stapp]

- $\cdots \otimes \log\left(\frac{u}{vw}\right) \otimes \log\left(\frac{w}{uv}\right) \otimes \ldots \qquad \cdots \otimes \log\left(\frac{u}{vw}\right) \otimes \log\left(\frac{v}{uw}\right) \otimes \ldots$
- ...in fact, the Steinmann relations constrain not just double discontinuities, but all iterated discontinuities [Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]
- For six and seven particles, this appears to be equivalent to requiring 'cluster adjacency' [Drummond, Foster, Gürdoğan]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

· Steinmann functions don't form a ring

$$\begin{split} \mathsf{Disc}_{s_{i-1,i,i+1}} \left[\mathcal{A}_n^{(1)} \right] \neq 0 \\ & \Downarrow \\ \mathsf{Disc}_{s_{234}} \left[\mathsf{Disc}_{s_{345}} \left[\left(\mathcal{A}_n^{(1)} \right)^2 \right] \right] \neq 0 \end{split}$$

• The BDS ansatz exponentiates the one-loop amplitude, leading to products of amplitudes starting at two loops (and obscuring the Steinmann relations) Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

· Steinmann functions don't form a ring

$$\begin{split} \mathsf{Disc}_{s_{i-1,i,i+1}} \left[\mathcal{A}_n^{(1)} \right] \neq 0 \\ & \Downarrow \\ \mathsf{Disc}_{s_{234}} \left[\mathsf{Disc}_{s_{345}} \left[\left(\mathcal{A}_n^{(1)} \right)^2 \right] \right] \neq 0 \end{split}$$

- The BDS ansatz exponentiates the one-loop amplitude, leading to products of amplitudes starting at two loops (and obscuring the Steinmann relations)
- This is fixed by the BDS-like ansatz, which only depends on two-particle invariants

$$\mathcal{A}_n^{\mathrm{BDS}} \times \exp(R_n) \to \mathcal{A}_n^{\mathrm{BDS-like}} \times \mathcal{E}_n^{\mathrm{MHV}}$$

 The BDS-like ansatz only scrambles Steinmann relations involving two-particle invariants, which are obfuscated in massless kinematics anyways Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

 However, the BDS-like ansatz only exists for particle multiplicities that are not a multiple of four [Alday, Maldacena, Sever, Vieira; Yang; Dixon, Drummond, Harrington, AJM, Papathanasiou, Spradlin]

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

- However, the BDS-like ansatz only exists for particle multiplicities that are not a multiple of four [Alday, Maldacena, Sever, Vieira; Yang; Dixon, Drummond, Harrington, AJM, Papathanasiou, Spradlin]
- To unpack this statement: there exists a unique decomposition of the one-loop MHV amplitude taking the form

$$\mathcal{A}_{\mathsf{MHV},n}^{(1)} = \underbrace{X_n(\epsilon, \{s_{i,i+1}\})}_{\mathsf{IR \ structure}} + \underbrace{Y_n(\{s_{i,\dots,i+j}\})}_{\mathsf{dual \ conformal \ invariant}}$$

for all particle multiplicities n that are not a multiple of four

• Exponentiating the function X_n rather than the full one-loop amplitude accounts for the full infrared structure of this theory, yet is invisible to the operation of taking discontinuities in threeand higher-particle channels

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

- This is problematic if we want to test the equivalence of the Steinmann relations and cluster adjacency in eight-particle kinematics
- However, if this is test is our only objective the last slide makes clear there is a way out: normalize the amplitude by a 'minimal BDS ansatz' only consisting of the infrared-divergent part of the one-loop amplitude
- It can be explicitly checked that this restores not only all (higher-particle) Steinmann relations, but also all cluster adjacency relations
 - this provides further evidence that the these conditions are equivalent (when cluster adjacency can be unambiguously applied)

[Golden, AJM (to appear)]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Lie Cobracket

Polylogarithms also come equipped with a Lie cobracket structure

$$\delta(F) \equiv \sum_{i=1}^{k-1} (\rho_i \wedge \rho_{k-i}) \rho(F)$$

$$\rho(s_1 \otimes \cdots \otimes s_k) = \frac{k-1}{k} \Big(\rho(s_1 \otimes \cdots \otimes s_{k-1}) \otimes s_k - \rho(s_2 \otimes \cdots \otimes s_k) \otimes s_1 \Big)$$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Lie Cobracket

Polylogarithms also come equipped with a Lie cobracket structure

$$\delta(F) \equiv \sum_{i=1}^{k-1} (\rho_i \wedge \rho_{k-i}) \rho(F)$$

 $\rho(s_1 \otimes \cdots \otimes s_k) = \frac{k-1}{k} \Big(\rho(s_1 \otimes \cdots \otimes s_{k-1}) \otimes s_k - \rho(s_2 \otimes \cdots \otimes s_k) \otimes s_1 \Big)$

• The cobracket of classical polylogarithms is especially simple:

$$\begin{split} \delta \big(\mathsf{Li}_k(-z) \big) &= -\{z\}_{k-1} \wedge \{z\}_1, \quad k > 2\\ \delta \big(\mathsf{Li}_2(-z) \big) &= -\{1+z\}_1 \wedge \{z\}_1 \end{split}$$

where

$$\{z\}_1 = \rho(\log(z)), \quad \{z\}_k = \rho(-\mathsf{Li}_k(-z))$$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Lie Cobracket

Polylogarithms also come equipped with a Lie cobracket structure

$$\delta(F) \equiv \sum_{i=1}^{k-1} (\rho_i \wedge \rho_{k-i}) \rho(F)$$

 $\rho(s_1 \otimes \cdots \otimes s_k) = \frac{k-1}{k} \Big(\rho(s_1 \otimes \cdots \otimes s_{k-1}) \otimes s_k - \rho(s_2 \otimes \cdots \otimes s_k) \otimes s_1 \Big)$

• The cobracket of classical polylogarithms is especially simple:

$$\delta(\mathsf{Li}_{k}(-z)) = -\{z\}_{k-1} \land \{z\}_{1}, \quad k > 2$$

$$\delta(\mathsf{Li}_{2}(-z)) = -\{1+z\}_{1} \land \{z\}_{1}$$

where

$$\{z\}_1 = \rho(\log(z)), \quad \{z\}_k = \rho(-\mathsf{Li}_k(-z))$$

 $\circ~$ In fact, any weight four function that has no $\delta_{2,2}$ component can be written in terms of classical polylogarithms

[Dan; Gangl; Goncharov, Rudenko]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Different Levels of Polylogarithmic Structure

Cluster Algebras,

Steinmann, and the Lie Cobracket

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

うしん 同一人用 人用 人名 マート

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

・ロト・(四ト・(日下・(日下・))

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in blanar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

(日) (四) (三) (三) (三)

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N}=4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

[Williams]

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Cluster Coordinates

 $Z_i^{R=\alpha,\dot{\alpha}} = (\lambda_i^{\alpha}, x_i^{\beta\dot{\alpha}}\lambda_{i\beta}), \quad \langle abcd \rangle = \epsilon_{RSTU} Z_a^R Z_b^S Z_c^T Z_d^U$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

 More generally, clusters can be defined to be quiver diagrams that have a cluster coordinate associated with every node

$$f_{ij} = \begin{cases} \langle i+1, \dots, k, k+j, \dots, i+j+k-1 \rangle, & i \le l-j+1, \\ \langle 1, \dots, i+j-l-1, i+1, \dots, k, k+j, \dots, n \rangle, & i > l-j+1. \end{cases}$$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

 $\circ~$ We can translate between clusters in $\mathcal A\text{-}coordinates$ and $\mathcal X\text{-}coordinates using}$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

 A cluster algebra is the closure of a given quiver under cluster mutation

$$a_k a'_k = \prod_{i|b_{ik}>0} a_i^{b_{ik}} + \prod_{i|b_{ik}<0} a_i^{-b_{ik}}$$

$$b'_{ij} = \begin{cases} -b_{ij}, & \text{ if } k \in \{i, j\}, \\ b_{ij}, & \text{ if } b_{ik}b_{kj} \leq 0, \\ b_{ij} + b_{ik}b_{kj}, & \text{ if } b_{ik}, b_{kj} > 0, \\ b_{ij} - b_{ik}b_{kj}, & \text{ if } b_{ik}, b_{kj} < 0. \end{cases}$$

$$x'_{i} = \begin{cases} x_{k}^{-1}, & i = k, \\ x_{i} \left(1 + x_{k}^{\operatorname{sgn}(b_{ik})} \right)^{b_{ik}}, & i \neq k \end{cases}$$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Cluster algebras appear in planar $\mathcal{N}=4~\mathrm{sYM}$ in a number of striking ways

 $\delta(F)$

- [Building Blocks] The cobracket of all two-loop MHV amplitudes can be expressed in terms of Bloch group elements evaluated on cluster \mathcal{X} -coordinates, $\{\mathcal{X}\}_k$ [Golden, Paulos, Spradlin, Volovich]
- [Cluster Adjacency] The cobracket of all two-loop MHV can be expressed as a linear combination of terms $\{X_i\}_2 \land \{X_j\}_2$ and $\{X_k\}_3 \land \{X_l\}_1$ where each pair of \mathcal{X} -coordinates appears together in a cluster of Gr(4, n) [Golden, Spradlin]
- \circ [Subalgebra Constructibility] The nonclassical part of all two-loop MHV amplitudes can be decomposed into functions defined on their A_2 and A_3 subalgebras [Golden, Paulos, Spradlin, Volovich]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster algebras appear in planar $\mathcal{N}=4~\mathrm{sYM}$ in a number of striking ways

 $\mathcal{S}(F)$

• [Building Blocks] The symbol alphabets for $n \in \{6,7\}$ are precisely cluster coordinates on the Grassmannian Gr(4, n), and all symbol letters in the two-loop MHV amplitudes are also cluster coordinates on Gr(4, n)

[Golden, Goncharov, Spradlin, Vergu, Volovich; Drummond, Papathanasiou, Spradlin]

• [Cluster Adjacency] In the symbol of (appropriately normalized) amplitudes in which no algebraic roots arise, each pair of adjacent \mathcal{A} -coordinates appears together in a cluster of Gr(4, n)

[Drummond, Foster, Gürdoğan]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Cluster algebras appear in planar $\mathcal{N}=4~\mathrm{sYM}$ in a number of striking ways

F

• [Building Blocks] The two-loop MHV amplitudes are expressible as (products of) functions taking only negative cluster \mathcal{X} -coordinate coordinates, $\operatorname{Li}_{n_1,\ldots,n_d}(-\mathcal{X}_i,\ldots,-\mathcal{X}_j)$ [Golden, Spradlin]

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster algebras appear in planar $\mathcal{N}=4~\mathrm{sYM}$ in a number of striking ways

- [Building Blocks] The integrands in this theory are encoded by plabic graphs, which are dual to cluster algebras
 [Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka]
- [Cluster Adjacency] Cluster adjacency translates to the statement that cluster coordinates only appear in adjacent entries of the symbol or cobracket when the boundaries corresponding to their zero-loci are simultaneously accessible

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

- Using cluster A- or X-coordinates, we can define polylogarithms on any cluster algebra that can be represented as a quiver
- $\circ~$ In particular, we can consider functions that live on the cluster subalgebras of ${\rm Gr}(4,n)$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

• The union of all *A*- or *X*-coordinates on the clusters in a (sub)algebra provide a symbol alphabet

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

- Cluster polylogarithms on the subalgebras of Gr(4,n) efficiently capture the nonclassical structure of $R_n^{(2)}$ (or equivalently $\mathcal{E}_n^{(2)}$)
- There exists only a single nonclassical polylogarithm defined on A_2 , and only two on A_3 , but they have special properties
 - Physically:

$$\delta_{2,2}(R_n^{(2)}) = \sum_{A_3 \subset \operatorname{Gr}(4,n)} d_i \ \delta_{2,2}(f_{A_3^{(i)}}) = \sum_{A_2 \subset \operatorname{Gr}(4,n)} c_i \ \delta_{2,2}(f_{A_2^{(i)}})$$

- Mathematically:
 - f_{A_2} act as a basis for all nonclassical polylogarithms, while
 - f_{A3} acts as a basis for all nonclassical cluster polylogarithms whose cobracket satisfies cluster adjacency

・ ロ ト ・ (目 ト ・ 目 ト ・ 日 ト ・ 日 - -

[Golden, Paulos, Spradlin, Volovich]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

- Cluster polylogarithms on the subalgebras of Gr(4,n) efficiently capture the nonclassical structure of $R_n^{(2)}$ (or equivalently $\mathcal{E}_n^{(2)}$)
- There exists only a single nonclassical polylogarithm defined on A_2 , and only two on A_3 , but they have special properties
 - Physically:

$$\delta_{2,2}(R_n^{(2)}) = \sum_{A_3 \subset \operatorname{Gr}(4,n)} d_i \ \delta_{2,2}(f_{A_3^{(i)}}) = \sum_{A_2 \subset \operatorname{Gr}(4,n)} c_i \ \delta_{2,2}(f_{A_2^{(i)}})$$

- Mathematically:
 - f_{A_2} act as a basis for all nonclassical polylogarithms, while
 - f_{A3} acts as a basis for all nonclassical cluster polylogarithms whose cobracket satisfies cluster adjacency

[Golden, Paulos, Spradlin, Volovich]

• This basis of f_{A_2} and f_{A_3} functions is massively overcomplete... what about larger subalgebras of Gr(4,7)? Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Cluster Polytopes

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in

· Decomposing the Remainder Function

イロト イ理ト イヨト イヨト

Cluster Polytopes

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in

· Decomposing the Remainder Function

<ロ> (四) (四) (三) (三) (三)

 \mathbb{Z}_{2}^{+}

5(2)

Type	Nonclassical Cobrackets	Automorphism Signature			
		$\sigma^+\tau^+$	$\sigma^+\tau^-$	$\sigma^-\tau^+$	$\sigma^- \tau^-$
A_2	1(0)	0	1(0)	0	0
A_3	6(1)	0	1(0)	0	1(1)
A_4	21 (6)	0	3(0)	0	0
D_4	34(9)				
A_5	56(21)	2(1)	5(1)	2(0)	5(3)
D_5	116(42)				
E_6	448(195)				

Nonclassical D_5 Polylogarithms

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in

 Decomposing the Remainder Function

A D F A B F A B F A B F э

- D_5 and A_5 are special in E_6 , as only a single orbit of each type exists under the E_6 automorphism group
 - It follows that all D₅- and A₅-constructible polylogarithms in E₆ necessarily take the form:

$$\sum_{D_5 \subset E_6} f_{D_5}(x_i \to \ldots) = \sum_{i=0}^6 \sum_{j=0}^1 (\pm 1)^i (\pm 1)^j \mathbb{Z}_{2,E_6}^j \circ \sigma_{E_6}^i \left(f_{D_5}(x_i \to \ldots) \right)$$

$$\sum_{A_5 \subset E_6} f_{A_5}(x_i \to \ldots) = \sum_{i=0}^6 (\pm 1)^i \sigma_{E_6}^i (f_{A_5}(x_i \to \ldots))$$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

- D_5 and A_5 are special in E_6 , as only a single orbit of each type exists under the E_6 automorphism group
 - It follows that all D₅- and A₅-constructible polylogarithms in E₆ necessarily take the form:

$$\sum_{D_5 \subset E_6} f_{D_5}(x_i \to \ldots) = \sum_{i=0}^6 \sum_{j=0}^1 (\pm 1)^i (\pm 1)^j \mathbb{Z}_{2,E_6}^j \circ \sigma_{E_6}^i \left(f_{D_5}(x_i \to \ldots) \right)$$

$$\sum_{A_5 \subset E_6} f_{A_5}(x_i \to \ldots) = \sum_{i=0}^6 (\pm 1)^i \sigma_{E_6}^i (f_{A_5}(x_i \to \ldots))$$

• Surprisingly, a D_5 and A_5 decomposition of $\delta_{2,2}(R_7^{(2)})$ both exist

$$\delta_{2,2}(R_n^{(2)}) = \sum_{D_5 \subset \mathsf{Gr}(4,7)} \, \delta_{2,2}(f_{D_5}^{---}) = \sum_{A_5 \subset \mathsf{Gr}(4,7)} \delta_{2,2}(f_{A_5}^{--})$$

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

- $\circ\,$...moreover, we can play the same game with the new f_{D_5} and f_{A_5} functions
 - there exists only a single orbit of A_4 subalgebras in each D_5 and A_5

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

- $\circ\,$...moreover, we can play the same game with the new f_{D_5} and f_{A_5} functions
 - there exists only a single orbit of A_4 subalgebras in each D_5 and A_5
- $\circ\;$ Both f_{D_5} and f_{A_5} turn out to be decomposable into the same A_4 function:

$$R_7^{(2)} = \sum_{D_5 \subset Gr(4,7)} \sum_{A_4 \subset D_5} f_{A_4}^{+-}(x_1 \to x_2 \to x_3 \to x_4) + \dots$$
$$= \sum_{A_5 \subset Gr(4,7)} \sum_{A_4 \subset A_5} f_{A_4}^{+-}(x_1 \to x_2 \to x_3 \to x_4) + \dots$$

(日)、(間)、(日)、(日)、(日)

[Golden, AJM]

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

In fact, many nested decompositions are possible (although, none involving D_4), each making different properties of $\delta_{2,2}(R_7^{(2)})$ manifest

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへ⊙

- The same game can be played in eight-particle kinematics, particularly using the new functions $f_{D_5}^{---}$, $f_{A_5}^{--}$, and $f_{A_4}^{+-}$ found in seven-particle kinematics [Golden, AJM (to appear)]
- $\circ~$ It is completely systematic, starting from such a representation of their nonclassical component, to generate the full analytic expression for $R_8^{(2)}$ or $\mathcal{E}_8^{(2)}$ [Duhr, Gangl, Rhodes; Golden, Spradlin]
- Subalgebras of Gr(4,n) can also be associated with R-invariants, perhaps allowing a similar story to be developed in the NMHV sector [Drummond, Foster, Gürdoğan]

・ コ ト ・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Conclusions

- $\circ~$ A great deal of surprising structure remains to be explained in planar $\mathcal{N}=4$
- In particular, the role of cluster algebras in this theory deserves to be better understood
 - The 'meaning' of these nonclassical decompositions remains obscure
- The big looming question is whether any similar types of structure can be found that extend beyond the polylogarithmic parts of this theory (or even to amplitudes involving algebraic roots) [Paulos, Spradlin, Volovich; Caron-Huot, Larsen; Bourjaily, Herrmann, Trnka]

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function

Thanks!

Cluster Algebras, Steinmann, and the Lie Cobracket

Andrew McLeod

Amplitudes in planar $\mathcal{N} = 4$

- Symmetries and Simplifications
- Infrared and Helicity Structure

Cluster Algebras and Polylogarithms

- Polylogarithms, the Coaction, and the Lie cobracket
- Cluster-Algebraic
 Structure

Subalgebra Constructibility

 Decomposing the Remainder Function