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Scattering equations

Let us start with a rational map from the moduli space 9; ,, to the space of momenta for n
massless particles scattering:

1
kb = — % dzw*(z)

2T
|z—0a4]=¢€

w“(z)zz KL _ P(z)

z-0, -0

a=1
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Scattering equations

Let us start with a rational map from the moduli space 9; ,, to the space of momenta for n

massless particles scattering:

1
kb = — f dzw*(z)

|z—0,|=€

w“(z)zz KL _ P(z)

5 < 0a (2~ o))

wy(z)w(z) =0

wH(z) maps the My , to the null cone of momenta

1 2k, - kp

0=— d 2 = -2 2 =1,2,...,

S 7{ zw(z) ; p—— a n
|z—0a|=¢€

which are named as the scattering equations.

[Cachazo, He & Yuan, 1306.2962, 1306.6575]
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Scattering equations

The scattering equations: My, — K,

k,- k
f;,:Za sz, a=12 ..., n

O,—C0O
bta a b

e This system has an SL(2, C) redundancy, only (n—3) out of n equations are independent
e Equivalent to a system of homogeneous polynomial equations [Dolan & Goddard, 1402.7374]

e The total number of independent solutions is (n—3)!
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Scattering equations

The scattering equations: My, — K,

k,- k
fazza b:O, a=12 ..., n

O,—C0O
bta a b

e This system has an SL(2, C) redundancy, only (n—3) out of n equations are independent
e Equivalent to a system of homogeneous polynomial equations [Dolan & Goddard, 1402.7374]

e The total number of independent solutions is (n—3)!

e The scattering equations have appeared before in different contexts, e.g.,

» D. Fairlie and D. Roberts (1972): amplitudes in dual models
» D. Gross and P. Mende (1988): the high energy behavior of string scattering
» E. Witten (2004): twistor string

e Cachazo, He and Yuan rediscovered them in the context of field theory amplitudes

[CHY, 1306.2962, 1306.6575, 1307.2199, 1309.0885]
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Scattering equations in 4d

In 4 dimensions, the null map vector P#(z) can be rewritten in spinor variables as follows:

Po%(z) = (H(zaa)> Zi\é—)ﬁ) = A\*(2)X%(2)

b=1

degA\(z) =de{1,..., n—3}, degA\(z) = d, d+d = n—2. A simple construction is

@) = [[e-o) X220 2@ = [[e-o) Y220

aen lem acp iesp

We divide {1, ..., n} into two subsets O and P, [N| = k = d+1, |P| = n—k = d+1.
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Scattering equations in 4d

In 4 dimensions, the null map vector P#(z) can be rewritten in spinor variables as follows:

. n n )\O‘S\a -
pee = — b7y a
(2) <H<z aa>> >~ (2)3%(2)
a=1 b=1
degA\(z) =de{1,..., n—3}, degA\(z) = d, d+d = n—2. A simple construction is
. A 5 EAS
A% (z) = H(Z_Ua) Z Z—O/'/' A%(z) = H(Z_Ua) Z o

aen lem acp iesp

We divide {1, ..., n} into two subsets O and P, [N| = k = d+1, |P| = n—k = d+1.

Then the two spinor maps leads to

— . ~ ttl ~ . | .
Er=X-> X =0 1M E=X-D —LA=0, ieP
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4D scattering equations

Geyer-Lipstein-Mason (GLM) scattering equations:

— . ~ . ttl ~ . t,t .
Er=2f—) —X=0 1M E=X-) —A=0,icP

e These equations are originally derived from the four-dimensional ambitwistor string model,

based on them tree superamplitudes in A'=4 SYM and N =8 supergravity are obtained.
[Geyer, Lipstein & Mason, 1404.6219]
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Scattering equations in 4d

Geyer-Lipstein-Mason (GLM) scattering equations:
— o~ bt~ Lt :
Er=2¢—) —X=0 /€M E=X-) —A'=0,icP

e These equations are originally derived from the four-dimensional ambitwistor string model,

based on them tree superamplitudes in A'=4 SYM and N =8 supergravity are obtained.
[Geyer, Lipstein & Mason, 1404.6219]

e Equivalent polynomial versions [Roiban, Spradlin & Volovich, hep-th/0403190; He, ZL & Wu, 1604.02834]

d=k—1
Ztako‘—O m=0,1,. % _t, pr;,;”_
a=1
e In 4d, the scattering egs fall into “helicity sector” are characterized by k € {2, ..., n—2}

e In sector k, the number of independent solutions is <Zj
n—2
n—3
— (n—2)I
> (4 5) = (-3
k=2

Zhengwen Liu (UCLouvain) Scattering Equations in MRK 5/25



Multi-Regge Kinematics (MRK)

Multi-Regge kinematics is defined as a 2 — n—2 scattering where

the final state particles are strongly ordered in rapidity while having k2 T - ks

comparable transverse momenta,

V3> ya >+ >y, and

k3| = [ka| = ... =~ |ky|

e In lightcone coordinates k, = (K, k;; k) with kI = kO £ kZ

and ki = KX + ikY

ki>ki>- >k’

Zhengwen Liu (UCLouvain)
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Multi-Regge Kinematics (MRK)

Multi-Regge kinematics is defined as a 2 — n—2 scattering where ks
the final state particles are strongly ordered in rapidity while having

comparable transverse momenta, Qs |

V3> ya> o>y, and |ks| =~ |ks| =~ ... >~ |ky|

ds |
e In lightcone coordinates k, = (K, k;; k) with kI = kO £ kZ
and ki = KX + ikY \
ki>ki>- >k’
e We work in center-of-momentum frame:
dn
ki = (0,—k;0), k = (-k,0;0), kK=+/s
o . . . . ki
e In this region, tree amplitudes in gauge and gravity factorize
: 1 1 1 [Kuraev, Lipatov
~, cSpin o L - .
An ~ 57 Cas t Va £ 1 Va1 t Cn Del Duca, 1995;
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Lipatov, 1982]
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When scattering equations meet MRK



Scattering equations in MRK

e The simplest example: four points

513 S14 03 s+t
0'120, Oy — 0OQ, ﬂ:————:O — — =
03 (o) 04 t

In the Regge limit, s > —t, we have

03

S
gH > 1 = |og|> |04
O4 t
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Scattering equations in MRK

e The simplest example: four points

513 S14 03 s+t
0'120, Oy — 0OQ, ﬂ:————:O — — =
03 (o) 04 t

In the Regge limit, s > —t, we have |03/04] >~ |s/t| > 1 = |o3]| > |04

e The next-to-simplest: five points

Jot+
o = 2 3=345

01 =0, Oy — 0OQ, O'gl) = = PIE
a

ki

In MRK, k3 > k;” > k', we have again

03] > |o4] > [o7s|
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Scattering equations in MRK

e The simplest example: four points

S13 514 03 s+t
O'lzo, Oy — 0Q, flz——__zo — A
03 O4 O4 t

In the Regge limit, s > —t, we have |03/04] = |s/t| > 1 = |o3]| > |04

e The next-to-simplest: five points [Fairlie & Roberts, 1972]

j+ Jot+
k—i, o :k_i* a=3,45

a

In MRK, k3 > k;” > k', we have again |o3] > |04] > |0s|

o1 =0, o0,— o0, agl):

e Any n-point scattering eqs have a MHV (MHV) solution [Fairlie, 2008]

k- T k-
UgMHV) _ k_aL' UgMHV) — k;* a=3 .. .,

a

o,=0, 0,— o0,

In MRK, k3 > -+ > k', we have

o3| > |-+ > oy
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Scattering equations in MRK

e The simplest example: four points
S S o s+t
01=0, 0y—00, fA=-—2-T"=0 = — =
03 O4 O4 t

In the Regge limit, s > —t, we have |o3/04| >~ |s/t] > 1 = |o3| > |04

e The next-to-simplest: five points [Fairlie & Roberts, 1972]
k+ ki

o1=0, 03— o, agl):k—i, agz):kj* a=3,45
a a

In MRK, k3 > k;” > k', we have again |o3] > |04] > |05|
e Any n-point scattering eqs have a MHV (and MHV) solution [Fairlie, 2008]

k= /(Jr
0,=0, 0,— 00, agMHV) = é U(MHV) = P a=3,...,

In MRK, k3 > --- > kT, we have again |o3] > |-+ > |0,|

e In MRK, we conjecture for arbitrary multiplicity n

R(o3)| > > |R(o,)| & [S(o3)] > > [S(0,)] with (01,02) — (0, 00)
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Scattering equations in MRK

Conjecture: In MRK, the solutions of the scattering eqs behave as
[R(o3)| > - > R(on)| & [S(03)] > - > [S(0n)| fixing (01, 02) = (0, 00)
Similarly, for t-solutions in the 4d scattering equations, we conjecture
[t >t >, < €Pr (>t >, <o € Mo

where we fix {1,2} C N, and gauge fix 07 = 0,0, = tHh — 00, t; = —1.
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Scattering equations in MRK

Conjecture: In MRK, the solutions of the scattering eqs behave as
[R(o3)| > - > R(on)| & [S(03)] > - > [S(0n)| fixing (01, 02) = (0, 00)
Similarly, for t-variables in the 4d scattering equations, we conjecture
[t >t >, < €Pr (>t >, <o € Mo

where we fix {1,2} C N, and gauge fix 07 = 0,0, = tHh — 00, t; = —1.

e We numerically checked the scattering egs up to 8 points. Furthermore, we conjecture that
R(o.) = O (k). S(os) = O(kT), ta:(9< kj/é—ha), a=3 ..., n
h, = 1 when a € B3, otherwise h, = —1

e Here {3, n} CPB, {1,2} C N, for other cases, the solutions have the similar behavior
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Solving scattering equations in MRK



Scattering equations in lightcone

e We choose the 4d (Geyer-Lipstein-Mason) scattering equations:
» They have simpler structure compared with the CHY scattering equations;
» The 4d formalism is more suitable to study helicity amplitudes;

» 4d equations are written in spinors, MRK is naturally defined in lightcone coordinates.
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Scattering equations in lightcone

e We choose the 4d (Geyer-Lipstein-Mason) scattering equations:
» They have simpler structure compared with the CHY scattering equations;
» The 4d formalism is more suitable to study helicity amplitudes;

» 4d equations are written in spinors, MRK is naturally defined in lightcone coordinates.

e Perform rescalings for variables, t; = 7, \/k" /K and t; = 7/ \/Kk k" /ki-, and for equations

1 71 k' _
1 1 iRy _
IeM
Al ktT1 k' TiT
2 / 2 | ! / !
= L 1+ L — - L =0
5 kit & kiop kit Z oj—0|
le
Sh=XNE =KD jaT"_T’ kKt =0
: |—0j
ISPt
_ _ R TiT) §
§ = NE& = (k) =Y (k) =0
I jep /=0

e Perfectly suitable for the study of Multi-Regge kinematics.
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Scattering equations in MRK

In MRK, according to our conjecture

1

~Y

— a<hb

g,—0p O,

The 4d scattering equations get greatly simplified at leading order:

8,1—1+T,<1‘|— ZC/

/Eﬁq

8,-2:1+C,-<1— > o7

/€ﬁ>,’

=0,

=0,

where A.; := {acA|a > i}, and we define

Ca

_|_
ki Ta
ki o,

Sl=ki+m > Gki=0,
1€PB<

S =k =4 > Tk =0,
1€PB>

3<a<n

e 4d scattering equations become ‘almost linear’ in MRK.

o Indeed, as | will show later, they exactly have a unique solution.

Zhengwen Liu (UCLouvain)
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Solving scattering eqs in MRK

Let us rewrite the equations as:

S,—lzl—i—a,'T,':O, S?:(klj')*—i—b/C/:O

8,2:1—|—C,'C,':0, S}:kf'—f—d/T/:O
with

a,-E]_—l—ZC/, b,E—ZT,‘k,-J‘*, C,'E]_—ZT/, C//EZC,‘/(,-J‘

/€ﬁ<,‘ /€m>/ /€ﬁ>,' i€m<[

e At the first step, we can use the equations S* = 0 to obtain
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Solving scattering eqs in MRK

Let us rewrite the equations as:
S,—lzl—i—a,'T,':O, S?:(klj')*—i—b/C/:O
8,2:1—|—C,'C,':0, S}:kf'+d/T/:O

aizl—i—zc/, b/E—ZT,-k,-L*, C,:l—Z’T/ C//EZ:C//(,L

/€ﬁ<,’ Iles’p>l /€m>, I'E‘B<I

with

o At the first step, we can use the equations S* = 0 to obtain

1 1
T = —— G =—=
dj Cj

e Then the equations S} = k;* + d;7; = 1 are independent with S? = kj* + d; 7, = 0, and

two sets of equations have the same structure.

-y K (1 S TJ>1, b= (kt)' <1+ > @)

/€m</ J6ﬁ>,‘ l€m>/ J€m<,
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Solving scattering eqs in MRK

Let us try to solve
-1
S}:klj'—f—d/’l'/, d/_Zk,-J‘<1ZTJ>
"ef’p</ J€ﬁ>,’
First, we reorder labels: /1 < --- < [,—x_». The coefficients d, satisfy the following recursion
-1 m -1
o--( X we X w)(-x0) ca-(1-Xn) ¥ ow
/eq3<,r 1 l_1<i<l, JeN, I=r l_1<a<l,

which starts with d;, = 0.
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Solving scattering eqs in MRK

Let us try to solve
-1
Sl=ki+dmn d=-> k" (1— > n)
1€PB< J€ﬁ>,‘

First, we reorder labels: /1 < --- < I,,—x_»>. The coefficients d, satisfy the following recursion

d, = —( Yok > kﬁ) <1 - > TJ)l —d_, - (1 - iﬂ,)l > ki

1€P<r, I <i<ld, JeMN.,; l—1<a<l,
which starts with d;, = 0. Using it, we can get
. m -1 m
e £ o)
I=r I=r+1

It naturally leads to the recursion of the solution of the 4d scattering equations

1 1 m
B k,m B k,r )
Tl = —T o T, = —1 - T,
CIlm‘*‘1 q/r"’l I=r+1
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Solving scattering eqs in MRK

Let us try to solve
-1
Sl=ki+dmn d=-> k" (1— > n)
1€PB< J€ﬁ>,‘

First, we reorder labels: /1 < --- < I,,—x_»>. The coefficients d, satisfy the following recursion

d, = —( Yok > kﬁ) <1 - > TJ)l —d_, - (1 - iﬂ,)l > ki

1€P<r, I <i<ld, JeMN.,; l—1<a<l,
which starts with d;, = 0. Using it, we can get
. m -1 m
e £ o)
I=r I=r+1

It naturally leads to the recursion of the solution of the 4d scattering equations

ki- kb m pat mo gk
T =~ T, = (1_27’/ == II ==

T T T T
a,+1 di+1 = i1 200 9
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Solving scattering eqs in MRK

Solving 5,1 = 0 gives

Similarly, we can solve 5,2 = 0 and obtain

k/J_ * r—1 k/J_ ¥ /r—1 q/J_ , *
oo (qL) <1+HC//> B ( L) <H /I )
I =1 q/r =1 q//

For 7; and (;, we have

1 -1 1 *
q
nete(cexe) -(ma)
! leN.; leN; qH_l
1 - B
q
(=-t-(i-xn) - o
G — aj
1eNns,; leN;

Finally, in MRK we exactly solve the 4d scattering eqs of any sector k and any multiplicity!
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MRK solutions

e For each “helicity configuration” of any sector k and any multiplicity n, we exactly solved

the 4d scattering equations

* *

kJ_ qJ_ kJ_ qL
n= S = () (122 sew
q/—|—1 JEN-, qJ—|-1 qa; JeNn., q;
1\ 1
q q .
(] e e
/Eﬁq q/+1 /Eﬁw‘ q/

e |t is very rare that one can analytically solve the scattering egs for arbitrary multiplicities.

» MHV (and MHV) [Fairlie & Roberts, 1972]

» A very special two parameter family of kinematics [Kalousios, 1312.7743]

e Very natural to ask: how to evaluate amplitudes using this MRK solution?
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Gauge theory amplitudes in MRK



YM amplitudes

N=2MHV gluon amplitudes: [Geyer, Lipstein & Mason, 1404.6219]
A,(17,27, ..., n)
n
do,dT 1 1 _.
=-s [ [[ == T=0°(s) | | ] &i6°(57)
=3 Ta 034°°°0pn-1,n0n oy k,- -
= I lem

e P () collects the labels of negative (positive) gluons, |91 = k and M = M\ {1, 2}
o A,(1%,2F, .. .) can be evaluated using the almost same formula via “SUSY Ward identity”

e Similarly, we can obtain the formula for amplitudes with a few massless quark pairs

[He & Zhang, 1607.0284; Dixon, Henn, Plefka & Schuster, 1010.3991]
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YM amplitudes in MRK

In MRK, gluon amplitudes become

dT,d(, =
a2 s [T (e ) (T s

epy ! IeMn

e Using the procedure similar to soIving the equations we can localize these integrals

An(L,.. . n)~sC(2:3) l‘2\/(q4 Gs) - V(G 11 ) L1|2 (1)

71l

Buildling blocks: ko k3
C(25;3%) = C(1*;n*) =0, C(2%37)=1 S
4

C(1;n")=C(1";n ) = s :

n
_ o (@) G kn—1

V(Qa? at; Qa+1) = V(Qa; a Cla+1) = ak—; { dn .
[Kuraev, Lipatov & Fadin, 1976; Lipatov, 1976; Lipatov, 1991; Del Duca, 1995] kl kn
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How about gravity?



Graviton amplitudes in MRK

e Similarly, the formula for tree superamplitudes in N’ =8 SUGRA is constructed from 4d

ambitwistor strings [Geyer, Lipstein & Mason, 1404.6219].

e In MRK, the Geyer-Lipstein-Mason formula of graviton amplitudes takes

M, =s ( / H dcad”) (H(kﬁ)?az(éf‘)) (HT (f)2)>det Hdet'H

leM 1P

where
Hij= (K ¢k mi), i>j€PB; Hi=-— Z Hy;
JERJFI
Hio=-1, Hy=-¢, Hy=—-7, Hy=7¢(, I>JeP

Hip = —Hip =) Hy, Hyp=—Hp =) Hy, Hy=—Hy—Hy— >  Hy
len leMm beM, b#£a
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MHV graviton amplitudes

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

2

M,(17,27,3%, ..., nt) ~ ) det ¢,
In MRK
/x4—|—v4 X5 Xo v X7 x,,\
X5  XstVs X X7 Xp
6 — X5 X6 Xe+Ve - X7 Xn
Xp—1  Xp—1  Xp—1 “** Xp—1TVp-1 Xp
\ % xa X X Xn)
with
k-
¢ab=k‘1=Xa, a>bz>3,
d * *
Gaa = Vat+ X5, Vi = ks — ks 3<a<n,

(ks )?

Zhengwen Liu (UCLouvain) Scattering Equations in MRK
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MHV graviton amplitudes

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

2
My(17,27,3%, ... nt) ~ Ty det,
(k3)

In MRK
Xo+Vy  Xg X6 X7 Xp
X5  XstVs X X7 Xp
X6 X5 Xe+Ve - X7 Xn

detg =

Xn—1 Xn—1 Xn—1 Xn—1+Vn—1 Xn
X/’I Xn Xﬂ Xn XI’I

triangularization: column; — column;
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MHV graviton amplitudes

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

2

S
- H— ot +\ o~
M (17,27,37,...,n") ~ (k12 det ¢,
3
Almost triangular!
XatVy Xsg—Xa—Vg Xg—Xa—Va -+ Xp_1—X4—Va Xp—Xg4— V4
0 Vs Xg—Xg - Xn—_1—Xsg Xn— X5
0 0 Ve e Xn—1—X6 Xn—X6
detp = ! !
O O O R Vn_]_ Xn_Xn_l
X 0 0 o 0 Xn
Vy
row; — — X row,_3
Xn
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MHV graviton amplitudes

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

2
- 5= o+ +
My(17,27,37,...,n") ~ (kL)2 det ¢,
Almost triangular!
X4 Xog=Xp—=Vg Xe—=X4—Vq -+ Xp1—X4—=Va Xpn—=X4
0 Vs Xe—=X5 0 Xp—1=X5s  Xp—Xs
0 0 Ve e Xn—1—X6 Xn—X6
detp = " !
0 0 0 e Vi1 Xn—Xn—1
X 0 0 0 Xp
Zhengwen Liu (UCLouvain) Scattering Equations in MRK
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MHV graviton amplitudes

In MHV sector, the GLM formula is simply reduced to Hodges formula [Hodges, 1204.1930]

M,(17,27,3%, ..., nt) ~ (k;)Q det ¢,
where
Xg Xe=X4—Vg -+ Xp1—=X4—V4 Xp—X4
0 Vs e Xp—1—Xs5 Xn—Xs
detg = : :
0 0 e Vh_1 Xp—Xp_1
Xn 0 0 Xn
P

= (vavs... vn,lxn) (1 + X (1,0_1)1'”_3> = % Va Vg - e -

k
Matrix determinant lemma [Harville, 1997; Ding & Zhou, 2007]

det (v +uv') = (1+ vy lu) dety
Here we can take u = (x,,0, ..., 0)T and v = (0,0, ..., 0,1)T

Zhengwen Liu (UCLouvain) Scattering Equations in MRK
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MHV graviton amplitudes

In MRK, the MHV amplitude of gravitons factorizes

My(17,27,. )
-1

= 5°C(27;

Gs) - QV(qﬂ 1y (n_1)+in) C(l

\\2

G 1
Building blocks:

C(27;3%) =1,

L 2
ety =+ = ()

V(q/./+,CI/+1) = q/ﬂVi q/'J:H =

Zhengwen Liu (UCLouvain) Scattering Equations in MRK
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All graviton amplitudes

Beyond MHV, the formula become complicated; but fortunately the similar trick works and

wen can obtain

—1
M, = s°C(2; 3) V(Ga: 4. qs) - —1—— V(dn-1, n—1, Cln)| L|2C(l n)

!4|2 G 1|

Building blocks:

kJ_
C(2%;3%) =1, Cc(1-;nY)=Cc(1%;n") = (kl) . C(a“; b)) =0
" (kg — k" q')ai,
(kL)2
(kl — ki-aj- )q/+1
(kf )?

V(i 1T, Giv1) = g vigh, =

V(g 17, qii1) = qj v gy =

e Complicated amplitudes of gravitons simply factorizes into a t-channel ladder in MRK!

e The result agrees with the one from dispersion relations [Lipatov 1982]
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Quasi Multi-Regge Kinematics



Scattering equations in QMRK

When relaxing the strong rapidity ordering in MRK, e.g.
Ve XY > Y > 2y, >y co- o and kg e [k

e Very similar to MRK, in QMRK we conjecture that all solutions of the scattering equations

satisfy the same hierarchy as the ordering of the rapidities. More precisely,
Ro.) = O(k7), S(0)=0(k), t.=0 ( K ,«u—ha) Ca=3,....n

e Fix (0'1, 0o, 0'3) — (O, o, k;_) or (0'1,0'2 = 1, tl) — (O, o, —1)
e {3,n} CXPB, {1,2} C N, the solutions have similar behaviors for other cases
e We numerically checked the scattering eqs up to 8 points

e Using the conjecture, we can obtain the correct factorization of amplitudes
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Gluon amplitudes in QMRK (1)

® Let us study y3 ~ -+ > y, 1 > y,. Our conjecture gives k2 /:(34
S,,l_1+7,,<1+ZC,>_0, S2=1+¢,=0 |a Kn-1
leMn ks .
e Localize the integrals over {, and 7, by S¢ =0
A (17,27....n") ~sC(27;3,..., n—1) C(17;n"),

| LP

e The generalized impact factor is given by a CHY-type formula

n—1
- do,dT, 1 ki
C(2 ,3 ----- n_]-) = ql?L H T, O34 """ H kJ'

0n—2,n—10n—1

iep,len !
X H ) (kL Z T k+>(5 (k K Z UKIRpSh, C 9 )
I T I L P _
i 01O ki 010 I+ &y
TiT k" | k* TiT)
XH5(1+T' ZU U/kl>6<1+c' kiza,-—a/ !
iep [eN Pem
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Gluon amplitudes in QMRK (1)

e Similarly, in the limit ko ks
+C]1 k4

Y3 > Yo > 2 Yp1 2 Y ‘k5
using our conjecture, we can fix the integrals corresponding to | & Kn—1
legs 3 and n and obtain " K

A —1 -1 B
A,(17,27,3,...,n) ~sC(27; 3)‘ ‘QV(q4, ,...,n—l;q,7)—|ql|2 C(17;n)
4 n

e Generalised Lipatov vertices admit the following CHY-type representation

- d adt 1 ki-
V(qa; 4, ..., n—1;q,) = (g5 a, H g ( H —’L>

**O0pn—2,n-10n-1

iep,rem
tit) t tt, « ¢ «
x|1o| k- — kKt 4 ————qt || K — - % - =gt
,I;JL (I %‘71_0/ 1= jemts Z 1+ jenCy
tity k,+ tt,
xlof1- 1—— :
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Impact factors and Lipatov vertices

e Byproducts: the CHY-type formulas for generalized

impact factors and Lipatov vertices

e \WWe numerically checked these two formulasup ton = 8

e In particular, we can reproduce correct results for all

Lipatov vertices V(q1; a, b; ¢2) (99" — gg) and impact

factors C(2;3,4,5) (99" — gg) analytically ko k3
e We checked these formulas have correct factorization *Ch Ka
in soft, collinear limits : ks

' kn—l
e We checked they have correct factorization in the ‘Ch
Regge limit y3>> - >y, > - 2y > ypig > - kq Kn

[Lipatov, hep-ph/9502308; Del Duca, hep-ph/9503340, hep-ph/9601211, hep-ph/9909464...]
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Summary & Outlook

e We have initiated the study of Regge kinematics through the lens of the scattering equations.
e We found the asymptotic behaviour of the solutions in (quasi) Multi-Regge regime.

e While have no a proof of our conjecture, our conjecture implies the expected factorization

of the amplitudes in YM and gravity. This gives strong support to our conjecture!

e In particular, an application of our conjecture leads to solving the 4d scattering equations
exactly in MRK.

e Byproduct: we obtain the CHY-type formulas for impact factors and Lipatov vertices.
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Summary & Outlook

e We have initiated the study of Regge kinematics through the lens of the scattering equations.
e We found the asymptotic behaviour of the solutions in (quasi) Multi-Regge regime.

e While have no a proof of our conjecture, our conjecture implies the expected factorization

of the amplitudes in YM and gravity. This gives strong support to our conjecture!

e In particular, an application of our conjecture leads to solving the 4d scattering equations
exactly in MRK.

e Byproduct: we obtain the CHY-type representations for impact factors and Lipatov vertices.

e |t would be interesting to

» find a rigorous mathematical proof of our conjecture
» apply this framework for other theories

» extend to loop level
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