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but about a way of incorporating both commuting and
anticommuting functions into the structure sheaf of a geometric
object such as a manifold, variety, stack.
This is a very mild case of non commutative geometry.
Much of what can be done in commutative algebra and geometry
carries over. But the main interest is in new phenomena that do not
have straightforward ‘bosonic’ analogues.
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Background: particles

bosons: force carriers (e.g. photon, gluon) Z spin, commute
fermions matter (e.g. electrons, quarks) 1

2Z spin, anti commute

V a vector space
Commuting functions on V : A = Sym•(V ∗)
Anticommuting functions on V : A = ∧•(V ∗)

In its simplest form, “super” refers to: a Z-graded ring A, which is
graded-commutative:

b · a = (−1)deg(a)deg(b)a · b,
or to its geometric spectrum. In fact, this needs only Z/2-grading.
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Background: string perturbation theory

Perturbative string amplitudes = sums of contributions over all g ,
with a fixed number n of punctures.
Each: an integral over all metrics (and more).

Lots of symmetry =>
integrand depends only on the complex structure.
So: amplitudes = integrals over Mg ,n.
(Mg ,n = moduli space of complex structures.)
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Background: string perturbation theory

Integrand is a section of a certain line bundle over Mg (or Mg ,n).
Integrand is a volume form only if some anomaly is cancelled.

Let Li denote the determinant-of-cohomology of i-uple holomorphic
differentials on the universal curve Cg → Mg .
More precisely, π : Cg := Mg ,n+1 → Mg ,n is the universal curve;
ω := ωCg/Mg,n

is the bundle of holomorphic 1-forms on the moving
curve;
ω⊗i is the bundle of holomorphic i-uple differentials;
Vi := π∗(omega⊗i ) the vector bundle on Mg ,n of all global
holomorphic i-uple differentials;
Li is the detereminant of Vi , aka determinant of cohomology of ω⊗i .
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The integrand differs from a volume form by a ratio L2/(L1)d/2

Li is the determinant-of-cohomology of i-uple holomorphic
differentials on the universal curve Cg → Mg

d is the dimension of space-time.
Mumford’s theorem: L2 = (L1)13, independent of g .
=> Bosonic string is consistent in d = 26 dimensions.
Also need to compactify Mg : Deligne-Mumford Mg .
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Background: super string perturbation theory

Both bosons and fermions can be combined in super strings:
Perturbative super string amplitudes = sums of contributions over
all g , with a fixed number n of punctures.

There are actually two different kinds of punctures: Neveu-Schwarz
and Ramond.
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Both bosons and fermions can be combined in super strings:
Perturbative super string amplitudes = sums of contributions over
all g , with fixed numbers N and R of punctures.

Each integral is over all “super” metrics (and more).
Lots of (super)symmetry => integrand depends only on a certain
super conformal structure: a super Riemann surface. (Includes:
complex structure of a RS + spin structure + more.)
So amplitudes = integrals over the moduli space Mg ,N,R of SRSs.
Integrand is a section of a certain line bundle over Mg ,N,R (or Mg ).
Integrand is a volume form only if some anomaly is cancelled.
It involves a ratio (L 3

2
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2
)d/2.

Li is the determinant-of-cohomology of i-uple holomorphic differentials
on the universal curve Cg →Mg . i can now be half integer.
Super Mumford: d/2 = 5, d = 10 = 4 + 6 => need to compactify 6
real dimensions, eventually on a CY3 .
Also need to compactify Mg : super Deligne-Mumford Mg .
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Calculations

The actual calculation?
Elementary at “tree level” (g = 0) and elliptic (g = 1).
D’Hoker and Phong: g = 2.

Idea: use forgetful map Mg → Mg , integrate along the odd fibers,
get an identifiable quantity to integrate on Mg .
Van Geemen et al proposed: similar calculations for g = 3:

• Push the integrand forward from Mg to Mg

• Identify global properties of the pushforward

• Use classical algebraic geometry to identify the resulting measure
on Mg

• Integrate it.

This led to very intensive work,
trying to push this up to higher and higher genus. (up to 6? ∞?)
[DW]: this must fail at g = 5, maybe sooner.
Reason: there is no projection Mg → Mg .
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Supermanifolds

A manifold is a

ringed space (M,OM), locally isomorphic to Euclidean
space with its standard sheaf of functions.
A supermanifold S = (M,OS) is a ringed space, locally isomorphic to
Euclidean space with a graded ring of functions:

OS
∼= OM ⊗ ∧•(V ∗).

M = body, V = soul.
dim(S) = (m|n) if m = dim(M), n = rank(V ).
Can define TS , a (super) vector bundle on S of rank (m|n).
Its restriction to M splits into even and odd parts:
TS ,+ = TM ,TS ,− = V .
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Supermanifolds

The split supermanifold S = S(M,V ) is S = (M,OS) where

OS := OM ⊗ ∧•(V ∗).

A supermanifold S = (M,OS) is split if S = S(M,V ) for some vector
bundle V on M. It is projected if there is a projection S → M.

{ Split } ⊂ { Projected } ⊂ { Supermanifolds.}

Is every supermanifold split and/or projected?
There is an obstruction class in cohomology:

ω ∈ H1(M,TM ⊗ ∧2V ∗)

Every C∞ manifold is split. The obstruction class vanishes because
the sheaf is fine. (There is a partition of unity.)
It can be non-0 in the holomorphic world. Which is where physics
needs it.
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Super symmetric manifolds

A supersymmetric manifold is a supermanifold S = (M,OS) whose
underlying V = TS ,− is a direct sum V ∼= SN of N copies of a spinor
bundle of TM .
It is a much tighter structure than a supermanifold.
In particular, dim(S) = (m|n) with n = N2m

′
, where

m′ ∼= [(m − 1)/2].
First example: m = N = n = 1 in the holomorphic world: a Super
Riemann Surface.
Spinors = square root of TM = spin structure, theta characteristic.
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Super symmetric manifolds

A SRS is: a complex supermanifold of dimension (1|1) together with
a maximally non-integrable odd distribution.

In local coordinates (x , θ):
∂θ is integrable: ∂2θ = 0.
v := ∂θ + θ∂x is maximally non integrable:
v : f (x) + θg(x) 7→ g(x) + θf ′(x)
v2 : f (x) + θg(x) 7→ f ′(x) + θg ′(x)
v2 = ∂x .
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Super Riemann Surfaces

Key point: can do algebraic geometry with SRSs.
There are moduli spaces Mg : super, not susy
Riemann’s (super) count: dim(Mg ) = (3g − 3|2g − 2).

T+Mg |[S] = H1(TM), T−Mg |[S] = H1((TM)
1
2 )

T ∗+Mg |[S] = H0(KM)2), T ∗−Mg |[S] = H0((KM)
3
2 )

Underlying manifold: SMg is the modui space of Riemann surfaces
with a spin structure.
Two types of puncture: N and R.
Neveu-Schwarz puncture lives at a point (a submanifold of dimension
(0|0)), can be forgotten.
Ramond puncture lives on a divisor (a submanifold of dimension
(0|1)), cannot be forgotten.
Local picture: v := ∂θ + xθ∂x .
v2 = x∂x : v is maximally non integrable except where x = 0.
DM compactification: two types of nodes
Gluing rules
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Non splitness of supermoduli

[DW1]: Mg (and others) are non split and non projected, for g ≥ 5.
(Note: the analogous question for the DM compactification is easier.)
Idea: find compact curve C in Mg ,
described as a family of branched covers.
Lift it to Mg

Calculate: the obstruction, restricted to a neighborhood of C , is 6= 0.
Lift requires: all branching odd.
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Atiyah classes vs obstructions

Atiyah class := obstruction to existence of a connection
On a manifold: in H1(X ,∧2T ∗X ⊗ TX )
On a vector bundle V : H1(X ,T ∗X ⊗ V ∗ ⊗ V )
On a principal G-bundle P : H1(X ,T ∗X ⊗ ad(P))
(Case of a manifold: V = T ∗X but one component vanishes due to
torsion freeness)
Bundles on supermanifolds have super Atiyah classes
[DW2]: The super Atiyah class of a supermanifold S = (M,OS) has 3
components:

• the Atiyah class of M, i.e. of T+S

• the Atiyah class of V = T−S

• the obstruction class to splitting S .
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Ramond boundary

Coming up:
Funny behavior of DM near R-bdry
=> Spontaneous susy breaking at 1 loop.

In: More on superstring perturbation theory, arXiv:1304.2832,
Witten explained several subtleties of superstring perturbation theory
in the RNS framework.
One of these is the spontaneous breakdown of supersymmetry at one
loop in certain superstring models through the appearance of a
Goldstone fermion in supersymmetric Ward identities.
Witten’s discussion depended on a rather subtle mathematical result
about the geometry of super moduli spaces in genus 1 near the
Ramond boundary. We explain and prove that mathematical result.
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Ramond boundary

There is a large class of heterotic string compactifications to four
dimensions that are supersymmetric at tree level but have an
anomalous U(1) gauge field. A concrete example treated by Witten is
the SO(32) heterotic string compactified on a Calabi-Yau manifold
with the spin connection embedded in the gauge group in the
standard way. (The anomalous U(1) arises in this case as the first
factor in the commutant, U(1)× SO(26), in the gauge group SO(32),
of the SU(3) spin connection when this is embedded in SO(32).)
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Ramond boundary

The breaking of supersymmetry at one loop in this case can be
reduced to a particular result about the boundary of the
Deligne-Mumford compactification of the moduli space M1,1,2 of
super Riemann surfaces of genus 1 with one Neveu-Schwarz puncture
and two Ramond punctures.

In general, this boundary is a divisor with normal crossings. Its generic
points parametrize stable super Riemann surfaces with a single node.
This node can be of NS or R type.
We show that in the case of M1,1,2, the boundary consists of two
divisors parametrizing stable super Riemann surfaces with an NS
node, and two others parametrizing stable super Riemann surfaces
with an R node. Let R ⊂M1,1,2 be one of the two Ramond boundary
components, Rred its reduced space, L := NR\M1,1,2

the normal
bundle to R in M1,1,2, and L0 = L|Rred

its restriction to Rred, which
is also the normal bundle to Rred in SM1,1,2 = M1,1,2red.
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Ramond boundary

Turns out R is split, hence projected: p : R → Rred. The needed
result is that the normal bundle L1 := L ⊗ p∗(L0)−1 is non trivial.
Equivalently, our main mathematical result is that L is not the pull
back by p of any bundle on Rred.

In case S = M1,1,2, we have the forgetful map π : M1,1,2 →M1,0,2.
This identifies the moduli space M1,1,2 with the universal SRS over
M1,0,2. In terms of π, the odd tangent bundle can be described as an
extension involving two simpler bundles:

0→ L→ T−M1,1,2 → π∗T−M1,0,2 → 0. (1)

Here L := Tπ,− is the bundle of odd tangent vectors along the fibers
of π. These fibers are super Riemann surfaces (with two R
punctures), so L can be interpreted as the family of generalized spin
bundles along the fibers. The map T−M1,1,2 → π∗T−M1,0,2 is the
differential of π. We prove the non-splitness of this extension, on all
of M1,1,2 as well as when restricted to R, and we reduce our main
result to this non-splitness.



Outline Background Calculations Supermanifolds Susy manifolds Non splitness Ramond boundary Conclusion

Ramond boundary

Turns out R is split, hence projected: p : R → Rred. The needed
result is that the normal bundle L1 := L ⊗ p∗(L0)−1 is non trivial.
Equivalently, our main mathematical result is that L is not the pull
back by p of any bundle on Rred.
In case S = M1,1,2, we have the forgetful map π : M1,1,2 →M1,0,2.
This identifies the moduli space M1,1,2 with the universal SRS over
M1,0,2. In terms of π, the odd tangent bundle can be described as an
extension involving two simpler bundles:

0→ L→ T−M1,1,2 → π∗T−M1,0,2 → 0. (1)

Here L := Tπ,− is the bundle of odd tangent vectors along the fibers
of π. These fibers are super Riemann surfaces (with two R
punctures), so L can be interpreted as the family of generalized spin
bundles along the fibers. The map T−M1,1,2 → π∗T−M1,0,2 is the
differential of π. We prove the non-splitness of this extension, on all
of M1,1,2 as well as when restricted to R, and we reduce our main
result to this non-splitness.



Outline Background Calculations Supermanifolds Susy manifolds Non splitness Ramond boundary Conclusion

Ramond boundary

In more detail:
The restriction πR of the forgetful map π to the Ramond divisor R
exhibits R as an affine C0|1-bundle over M1,0,2. One may ask whether
this bundle has a section, i.e. whether it is actually a line bundle.

We show that this happens if and only if the normal bundle
L := NR\M1,1,2

is pulled back by p from some bundle on Rred.
The existence of a section of the Ramond divisor R, in turn, can be
interpreted as the splitting of the restriction to Rred of sequence (1).
This restricted sequence exhibits T−M1,1,2|Rred

, the restriction to
Rred of the odd tangent budle T−M1,1,2, as an extension involving
two simpler bundles. The middle term can be identified with R itself,
and the map T−M1,1,2|Rred → π∗T−M1,0,2|Rred is then identified with
πR : R →M1,0,2.
It is straightforward to show that the sequence (1) on SM1,1,2 does
not split. It takes more detailed calculations to show that the
sequence still does not split after restriction to Rred .
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Ongoing:

• Justify van Geemen’s original proposal: meromorphic projection
M3 → M3.

• Heterotic MS, via SCY? (cf. Melnikov-Plesser)

• Super Hilbert schemes (Jang)

• super Teichmueller theory, cluster coordinates (Penner-Zeitlin)

• Super DM via super log strs? (With Ionita, Morissey)

• Super toric geometry? Fans, projectivity, apply toroidal
embeddings to DM. (With Jang)
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Morals:

• Origins in perturbative super string theory

• Supermanifolds vs supersymmetric manifolds

• Split vs non-split supermanifolds, e.g. Mg

• Obstruction theory, analogous to Atiyah classes

• Rich theory of supermoduli, DM compactifications

• R vs NS punctures and nodes
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Thank you!!!
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