Recursion Relations for Anomalous Dimensions of the 6d (2,0) Theory

Arthur Lipstein

GGI

April 3, 2019

Based on 1902.00463 with Theresa Abl and Paul Heslop

AdS/CFT

- D3 branes $\leftarrow \rightarrow$ IIB string theory on AdS₅ x S⁵
- M2 branes $\leftarrow \rightarrow$ M-theory on AdS₄ x S⁷
- M5 branes $\leftarrow \rightarrow$ M-theory on AdS₇ x S⁴

M5-branes

- Abelian theory: 5 scalars, 8 fermions, self-dual 2-form (Howe, Sierra, Townsend)
- Non-abelian theory strongly coupled, so what can we say about it?
- OSp(8|4) symmetry
- When N $\rightarrow \infty$, described by 11d supergravity in AdS₇ x S⁴
- Central charge c is O(N³) (Henningson, Skenderis)
- Goal: Go beyond the supergravity approximation

Stress Tensor Correlators

- The stress tensor belongs to a ½ BPS multiplet whose lowest component is a dimension 4 scalar T_{IJ} in the symmetric traceless representation (14) of the Rsymmetry group SO(5)
- In the large-N limit, 4-point correlators of stress tensor multiplets can be computed using Witten diagrams for 11d supergravity in AdS₇ x S⁴.
- Strategy: Use superconformal and crossing symmetry to deduce 1/N corrections to 4-point correlators, which correspond to higher derivative corrections to 11d supergravity arising from M-theory.

4-Point Function

• Superconformal symmetry fixes the 4-point function in terms of a pre-potential

 $\lambda^{4} (g_{13}g_{24})^{-2} \langle T_{1}T_{2}T_{3}T_{4} \rangle = \mathcal{D} \left(\mathcal{S}F (z, \bar{z}) \right) + \mathcal{S}_{1}^{2}F (z, z) + \mathcal{S}_{2}^{2}F (\bar{z}, \bar{z})$

where $\lambda = z - \bar{z}$, $\mathcal{D} = -(\partial_z - \partial_{\bar{z}} + \lambda \partial_z \partial_{\bar{z}}) \lambda$, $T_i = T_{IJ} Y_i^I Y_i^J$, $g_{ij} = Y_i \cdot Y_j / x_{ij}^4$

$$y\bar{y} = \frac{Y_1 \cdot Y_2 Y_3 \cdot Y_4}{Y_1 \cdot Y_3 Y_2 \cdot Y_4}, \qquad (1-y)\left(1-\bar{y}\right) = \frac{Y_1 \cdot Y_4 Y_2 \cdot Y_3}{Y_1 \cdot Y_3 Y_2 \cdot Y_4},$$

 $\mathcal{S}_1 = (z - y) (z - \overline{y}), \ \mathcal{S}_2 = (\overline{z} - y) (\overline{z} - \overline{y}), \ \mathcal{S} = \mathcal{S}_1 \mathcal{S}_2$

Arutyunov,Sokatchev/Heslop

• Crossing symmetry:
$$F(u,v) = F(v,u)$$
, $F(u/v, 1/v) = v^2 F(u,v)$

CPW Expansion

• Decompose 4-point function as follows:

$$F(z,\bar{z}) = \frac{A}{u^2} + \frac{g(z) - g(\bar{z})}{u\,\lambda} + \lambda\,G(z,\bar{z})$$

- These functions can be written as a sum over operators appearing in TT OPE
- A, g, G encode identity, protected, and unprotected operators, respectively:

$$A \sim 1, \ g \sim T, \ G \sim T\partial^l \square^n T$$

where unprotected ops have scaling dimension $\Delta = 2n + l + 8 + O(1/c)$

• In more detail,

$$\lambda^2 G(z, \bar{z}) = \sum_{n,l \ge 0} A_{n,l} G^{\mathrm{S}}_{\Delta,l}(z, \bar{z})$$

where superconformal blocks can be written in terms of hypergeometrics Dolan,Osborne/Heslop/Beem,Lemos,Rastelli,van Rees

• Expand OPE data in 1/c:
$$A_{n,l} = A_{n,l}^{(0)} + \frac{1}{c}A_{n,l}^{(1)} + ..., \qquad \Delta = 2n + l + 8 + \frac{1}{c}\gamma_{n,l} + ...$$

• Crossing:
$$\sum_{n,l \ge 0} \left[A_{n,l}^{(1)} G_{\Delta,l}^{S}(z,\bar{z}) + \frac{1}{2} A_{n,l}^{(0)} \gamma_{n,l} \partial_n G_{\Delta,l}^{S}(z,\bar{z}) \right] + (u \leftrightarrow v) = 0$$

Supergravity Prediction

• Free disconnected contribution:

$$F(u, v)_{\text{free-disc}} = 1 + \frac{1}{u^2} + \frac{1}{v^2}$$

• Decomposing into A, g, G and performing CPW expansion of G gives

$$A_{n,l}^{(0)} = \frac{(l+2)(n+3)!(n+4)!(l+2n+9)(l+2n+10)(l+n+5)!(l+n+6)!}{72(2n+5)!(2l+2n+9)!}$$

• Dynamical contribution: (Arutyunov, Sokatchev)

$$F^{\text{sugra}} = -\frac{1}{c} \frac{\lambda^2}{uv} \bar{D}_{3337}$$

where the D functions arise from AdS integrals:

$$D_{\Delta_1 \Delta_2 \Delta_3 \Delta_4}(x_1, x_2, x_3, x_4) = \int \frac{\mathrm{d}^d w \, \mathrm{d} w_0}{w_0^{d+1}} \prod_{i=1}^4 K_{\Delta_i}(w, x_i) \, K_{\Delta}(w, x) = \left(\frac{w_0}{w_0^2 + (\vec{w} - x)^2}\right)^{\Delta_1}$$

• Performing CPW decomposition gives anomalous dimensions which scale like n⁵

$$\gamma_{n,l}^{\text{sugra}} = -\frac{6}{c} \left(1 + \frac{(n-2)(n+1)}{2(2n+l+4)(l+3)} \right) \frac{(n-1)_6}{(l+1)(l+2)(2n+l+5)(2n+l+6)}$$

• The CPW coefficients satisfy (Heslop,Lipstein)

$$A_{n,l}^{(1)} = \frac{1}{2} \partial_n \left(A_{n,l}^{(0)} \gamma_{n,l} \right)$$

Corrections to Supergravity

- Heemskerk, Penedones, Polchinski, Sully considered 4-point functions in a generic 2d or 4d CFT with a large-N expansion and solved the crossing equations to leading order in 1/c by truncating the CPW expansion in spin.
- They showed that the solutions are in 1 to 1 correspondence with local quartic interactions for a massive scalar field in AdS, which can be thought of as a toy model for the low-energy effective theory of the gravitational dual.
- The number of derivatives in the bulk interaction is related to the large-twist behaviour of the anomalous dimensions.

Examples

spin	interactions	anomalous dim.
0	ϕ^4	n ^{const}
2	$\phi^2 \left(abla_\mu abla_ u \phi ight)^2 \ \phi^2 \left(abla_\mu abla_ u abla_ ho \phi ight)^2$	n ^{const+4} , n ^{const+6}
4	$\phi \nabla_{\mu_1 \mu_2 \nu_1 \nu_2} \phi \nabla_{\mu_1 \mu_2} \phi \nabla_{\nu_1 \nu_2} \phi$	n ^{const+8} , n ^{const+10} , n ^{const+12}
	$\nabla_{\rho_1}\phi\nabla_{\mu_1\mu_2\nu_1\nu_2\rho_1}\phi\nabla_{\mu_1\mu_2}\phi\nabla_{\nu_1\nu_2}\phi$ $\nabla_{\rho_1\rho_2}\phi\nabla_{\mu_1\mu_2\nu_1\nu_2\rho_1\rho_2}\phi\nabla_{\mu_1\mu_2}\phi\nabla_{\nu_1\nu_2}\phi$	

Spin-0

• Spin-O solution: (Helsop,Lipstein)

$$F^{\text{spin-0}}(u,v) = C^{(0)}\lambda^2 uv \bar{D}_{5755}(u,v)$$

• Anomalous dimensions:

$$\gamma_{n,0}^{\text{spin}-0} = -\frac{C^{(0)}(n+1)_8(n+2)_6}{2240(2n+7)(2n+9)(2n+11)}$$

• Scales like n¹¹ in the large-n limit.

Effective Action

- At large twist, $\gamma^{
 m spin-0}/\gamma^{
 m sugra}\sim n^6$
- This suggests that term in the bulk effective action corresponding to the spin-0 solution has six more derivatives than the supergravity Lagrangian, and is therefore of the form (Riemann)⁴.
- This is the M-theoretic analogue of (α')³ corrections in string theory and was
 previously deduced in flat space by uplifting string amplitudes (Green,Vanhove)
- Similarly, we obtained solutions up to 20 derivatives (truncated spin 4) by guessing crossing symmetric functions and checking their CPW expansions.

Recursion Relations

• Recall crossing eq:

$$\sum_{n,l\geq 0} \left[A_{n,l}^{(1)} G_{\Delta,l}^{S}(z,\bar{z}) + \frac{1}{2} A_{n,l}^{(0)} \gamma_{n,l} \partial_n G_{\Delta,l}^{S}(z,\bar{z}) \right] + (u \leftrightarrow v) = 0$$

• Conformal blocks have schematic structure

$$G^{\rm S}_{\Delta,l}(z,\bar{z}) \sim \sum u^n h_\alpha(z) h_\beta(\bar{z})$$

where $h_{\beta}(z) = {}_{2}F_{1}(\beta/2, \beta/2 - 1, \beta, z)$

• $\partial_n G^{\rm B}_{\Delta,l}(z,\bar{z})$ gives a term with $\log(u) = \log(z\bar{z})$ so isolate $\gamma_{n,l}$ by taking

 $z \to 0$ and $\bar{z} \to 1$.

• In order for crossing equations to be consistent, the $\log(z)$ coming from $\partial_n G^{\rm B}_{\Delta,l}(z, \bar{z})$ must be accompanied by a $\log(1-\bar{z})$. Such terms arise from

$$h_{\beta}(\bar{z}) = \log(1-\bar{z})(1-\bar{z})\tilde{h}_{\beta}(1-\bar{z}) + \text{holomorphic at } \bar{z} = 1$$

where

$$\tilde{h}_{\beta}(z) = \frac{\Gamma(\beta)}{\Gamma(\beta/2)\Gamma(\beta/2-1)} {}_2F_1\left(\beta/2+1,\beta/2,2,z\right)$$

• Collecting terms proportional to $\log(z) \log(1-\overline{z})$ then gives a refined crossing eq:

$$\sum_{n,l\geq 0} A_{n,l}^{(0)} \gamma_{n,l} \left(\partial_n G_{\Delta,l}^{\mathrm{S}}(z,\bar{z}) \right) \Big|_{\log z \log(1-\bar{z})} = -\sum_{n,l\geq 0} A_{n,l}^{(0)} \gamma_{n,l} \left(\partial_n G_{\Delta,l}^{\mathrm{S}}(1-z,1-\bar{z}) \right) \Big|_{\log z \log(1-\bar{z})}$$

• To get numerical recursion relations, multiply by

$$\frac{h_{-2q}(z)}{z^q (1-z)} \times \frac{h_{-2p}(1-\bar{z})}{(1-\bar{z})^p \bar{z}}$$

and perform contour integrals around $(z, \overline{z}) = (0, 1)$

• Use orthogonality of hypergeometrics

$$\delta_{m,m'} = \oint \frac{dz}{2\pi i} \frac{z^{m-m'-1}}{1-z} h_{2m+4}(z) h_{-2m'-2}(z)$$

and define

$$\mathcal{I}_{m,m'} = \oint \frac{dz}{2\pi i} \frac{(1-z)^{m-3}}{z^{m'-1}} \,\tilde{h}_{2m}(z) \,h_{-2m'}(z)$$

• Master equation:

$$0 = \sum_{l=0}^{L} \sum_{n=0}^{\infty} A_{n,l}^{(0)} \gamma_{n,l} \Big[P_{n,l} \left(\delta_{q,n} \mathcal{I}_{n+l+6,p+2} - \delta_{q,n+l+3} \mathcal{I}_{n+3,p+2} \right) + Q_{n,l} \left(\delta_{q,n+2} \mathcal{I}_{n+l+6,p+2} - \delta_{q,n+l+3} \mathcal{I}_{n+5,p+2} \right) + R_{n,l} \left(\delta_{q,n+l+2} \mathcal{I}_{n+4,p+2} - \delta_{q,n+1} \mathcal{I}_{n+l+5,p+2} \right) + S_{n,l} \left(\delta_{q,n+l+4} \mathcal{I}_{n+4,p+2} - \delta_{q,n+1} \mathcal{I}_{n+l+7,p+2} \right) - (q \leftrightarrow p) \Big]$$

where

$$P_{n,l} = \frac{l+1}{(n+3)(n+l+5)}, \quad Q_{n,l} = \frac{(l+3)(n+5)(2n+l+8)}{4(2n+7)(2n+9)(n+l+5)(2n+l+10)},$$
$$R_{n,l} = \frac{l+3}{(n+3)(n+l+5)}, \quad S_{n,l} = \frac{(l+1)(n+l+7)(2n+l+8)}{4(n+3)(2n+l+10)(2n+2l+11)(2n+2l+13)}$$

• Recursion relations follow from choosing (p,q) appropriately and solutions are labelled by spin truncation L.

Solutions

 Let's first consider L=0. Choosing q=0 gives the following recursion relation in terms of p, which is readily solved on a computer to give

$$\gamma_{n,0}^{\text{spin}-0} = \gamma_{0,0} \, \frac{11 \left(n+1\right)_8 \left(n+2\right)_6}{2304000 \left(2n+7\right) \left(2n+9\right) \left(2n+11\right)}$$

where $\gamma_{0,0}$ is an unfixed parameter.

• For spin-L truncation, the solution will depend on (L+2)(L+8)/4 free parameters, in agreement with holographic arguments based on counting bulk vertices

Conclusions

- Found recursion relations for anomalous dimensions of double-trace operators in CPW expansion of 4-point stress tensor correlators in M5-brane theory.
- Solutions encode the low-energy effective action for M-theory on AdS₇ x S⁴, at least up to four-point interactions with unfixed coefficients.
- Next: Fix coefficients in M-theory effective action using chiral algebra conjecture Beem,Rastelli,van Rees/Chester,Perlmutter
- Explore loop expansion using methods developed for N=4 SYM by Aprile,Drummond,Heslop,Paul/Alday,Bissi