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•Thoughts	on	asymptoDc	safety	in	a	messy	UV	

•RG	in	a	messy	UV:	the	string	case	

•UV	compleDon	on	the	world	line

Overview



Asympto(c	safety	in	a	messy	UV?



Gaussian	IR	fixed	point	=>	perturbaDve	

InteracDng	UV	fixed	point	=>	finite	anomalous	dimensions	
In	a	field	theory	replace	1/e	with	1/c	=>	divergences	of	marginal	
operators	(which	affect	the	fixed	point),	some	cured		

Weinberg	et	al’s	basis	for	a	proposal	of	UV	complete	theories	

AS	as	a	UV	comple(on

Figure 5: Theories on the critical surface flow (dashed lines) to a critical point in the IR.

Turning on relevant operators drives the theory away from the critical surface (solid lines),

with flow lines focussing on the (red) trajectory emanating from the critical point.

Now consider starting near a critical point and turning on the coupling to any operator

with ⇥i > d. According to (5.33) this coupling becomes smaller as the scale ⇤ is lowered,

or as we probe the theory in the IR. We say that the corresponding operator is irrelevant

since if we include it in the action then RG flow just makes us flow back to the critical

point g⇤i . Classically, we can obtain operators with arbitrarily high mass dimension by

including more and more fields and derivatives, so we expect that the critical point g⇤i sits

on an infinite dimensional surface C such that if we turn on any combination of operators

that move us along C, under RG flow we will end up back at the critical point. C is known

as the critical surface and we can think of the couplings of irrelevant operators as provided

coordinates on C, at least in the neighbourhood of g⇤i . (See figure 5.)

On the other hand, couplings with ⇥i < d grow as the scale is lowered and so are

called relevant. If our action contains vertices with relevant couplings then RG flow will

drive us away from the critical surface C as we head into the IR. Starting precisely from a

critical point and turning on a relevant operator generates what is known as a renormalized

trajectory: the RG flow emanating from the critical point. As we probe the theory at lower

and lower scales we evolve along the renormalized trajectory either forever or until we

eventually meet another23 critical point g⇤⇤i . Since each new field or derivative adds to the

dimension of an operator, in fixed space–time dimension d there will be only finitely many

22It’s a theorem that this is always true in two dimensions. It is believed to be true also in higher

dimensions, but the question is actually a current hot topic of research.
23There are a few exotic examples where the theories flow to a limiting cycle rather than a fixed point.
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Note	relevant	or	marginally	relevant	operators	sDll	have	“infiniDes”	at	the	FP	-	just	as	
quark	masses,	they	sDll	run	at	the	FP	just	like	any	other	relevant	operator:	but	being	
relevant	they	do	not	affect	the	FP.	(By	definiDon	they	become	unimportant	at	in	the	UV.)			

Irrelevant	operators:	would	disrupt	the	fixed	point	-	therefore	asymptoDcally	safe	
theories	have	to	emanate	precisely	from	UV	fixed	point	where	they	are	assumed	zero	
(exactly	renormalizable	trajectory)	

Marginal	operators:	can	be	involved	in	determining	the	UV	fixed	point	where	they	
become	exactly	marginal.	Or	can	be	marginally	relevant	(asymptoDcally	free)	or	
irrelevant.	

Relevant	operators:	become	“irrelevant”	in	the	UV	but	may	determine	the	IR	fixed	
point.	

Dangerously	irrelevant	operators:	grow	in	both	the	UV	and	IR	(common	in	e.g.	SUSY)	

Harmless	relevant	operators:	shrink	in	both	the	UV	and	IR	

Categorise	the	possible	content	of	a	theory	as	follows:



Normally	try	to	think	about	such	UV	fixed	point	behaviour	within	field	
theory:	but	is	string	theory	already	asympto(cally	free?



Normally	try	to	think	about	such	UV	fixed	point	behaviour	within	field	
theory:	but	is	string	theory	already	asympto(cally	free?

A) No!	(Distler)	String	theory	doesn’t	need	such	behaviour	to	make	itself	finite.	The	
massless	spectrum	doesn’t	control	finiteness,	and	in	any	case	it	doesn’t	resemble	any	
known	field	theory	with	a	UV	fixed	point.	
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A) No!	(Distler)	String	theory	doesn’t	need	such	behaviour	to	make	itself	finite.	The	
massless	spectrum	doesn’t	control	finiteness,	and	in	any	case	it	doesn’t	resemble	any	
known	field	theory	with	a	UV	fixed	point.	

B)	Yes!	(WeEerich)	String	theory	has	only	one	dimensionful	parameter	(which	goes	into	
defining	the	units	by	which	we	measure	energy).	A	second	energy	scale	is	needed	to	
observe	scale	violaDon.	This	could	be	the	Planck	scale,	or	the	dynamical	scale	of	some	field	
theory.	But	well	above	the	physics	at	which	this	second	scale	is	generated,	the	theory	
should	return	to	scale	invariance(a.k.a.	a	UV	fixed	point	for	operators)			
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It	would	be	interesHng	to	know	if	it	is	B)	and	if	so	how	string	theory	does	it.	



to the computation of the string beta function carried out in ref[2]. This method for evaluating beta functions in string theory,
which became the classic technique, gets around the fact that the string theory is defined only on-shell by inserting an IR cut-off
into the one-loop integral and using that as the renormalization scale. This works as long as the cut-off is below the string scale,
so that it sensibly divides the integral into effective modes and stringy UV modes. However it will not allow us to consider the
deep UV, and in addition such a cut-off breaks modular invariance. So, the two-point function is not quite what we want for
string theory, but it allows us to show how the beta function can be extracted from branch-cuts in the s-plane of amplitudes in
a renormalizable field theory.

We will evaluate the two-point amplitude for the classical gauge-field background with suitably adjusted couplings and
propagators, in an arbitrary gauge. At the end of the calculation one can for example take the Landau gauge ⇠ ! 0, at which
point the divergences in ⇠ magically cancel, leaving an amplitude that we can interpret as a contribution to the effective potential:
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Let us recall the typical extraction of the beta function. Introducing 2Ns complex scalars of mass ms and Nf Dirac fermions of
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where the ellipsis refers to logarithms of either p2 or m2
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f
. From this we deduce that the beta function coefficient is given by

the singularity in ✏.
This technique is perfectly adequate in a Wilsonian setting, when there is a set number of states in the theory that are

considered to be part of an effective theory all much lighter than µ. But what do we do when, as in string theory or in a
Kaluza-Klein theory, there is an infinite spectrum and the situation is not Wilsonian? To see how one can proceed consider the
contributions to the beta fuction from the massive states. Defining p2 = s, in the two point function the contributions take the
Lorentz-invariant form (up to constants appearing in the brackets)
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where the massless gauge contribution contains a term coming from the ghost loop, and where ⇤(s;mf ,mf ) is the part of the
Passarino-Veltman B0 function containing the s-plane branch cut. The latter is a book-keeping device to count the number
of degrees of freedom in the beta function. The usual procedure of counting the poles in ✏of course gives the correct answer
because it inevitably accompanies the logµ2 term, which is what we want. However there is another way one can determined
the beta function which incorporates mass-dependence. It is obvious from the fact that when the fields in the loop are massless,
there is a log(�s) contribution. Hence there is an imaginary contribution to the amplitude which grows to i⇡ in the limit that
s � 4m2. This is precisely the origin of the branch-cut which appears along the s-axis in the amplitude, for every state with a
mass m <

p
s/2. Hence one way of extracting an s dependent beta function is
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(2)(s)

�
. (6)

Note that

I0(p,m) =

ˆ
d4k

(2⇡)4
1

(k2 �m2)((k + p)2 �m2)

=
1

16⇡2

✓
1

✏
� �E + log 4⇡ + log

µ2

m2
s

+ ⇤(s;ms,ms)

◆
. (7)

2

IR	cut-off

Interested	in	s	dependence	at	a	parDcular	mu.	Normally	count	UV	divergences

• A	meaningful	RG	procedure	with	a	messy	UV:	aIempt	1)	
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(2)(s)

�
. (6)

Note that

I0(p,m) =

ˆ
d4k

(2⇡)4
1

(k2 �m2)((k + p)2 �m2)

=
1

16⇡2

✓
1

✏
� �E + log 4⇡ + log

µ2

m2
s

+ ⇤(s;ms,ms)

◆
. (7)

2

Instead	count	branch	cuts	as	a	funcDon	of	s

The	most	physical	picture:	Total	s	branch	cuts	just	tell	us	how	many	states	
above	threshold	(s	>	4m^2)	(but	hard	to	get	without	doing	the	actual	
integral)

• A	meaningful	RG	procedure	with	a	messy	UV:	aIempt	1)	
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(2)(s)

�
. (6)

Note that

I0(p,m) =

ˆ
d4k

(2⇡)4
1

(k2 �m2)((k + p)2 �m2)

=
1

16⇡2

✓
1

✏
� �E + log 4⇡ + log

µ2

m2
s

+ ⇤(s;ms,ms)

◆
. (7)

2



to the computation of the string beta function carried out in ref[2]. This method for evaluating beta functions in string theory,
which became the classic technique, gets around the fact that the string theory is defined only on-shell by inserting an IR cut-off
into the one-loop integral and using that as the renormalization scale. This works as long as the cut-off is below the string scale,
so that it sensibly divides the integral into effective modes and stringy UV modes. However it will not allow us to consider the
deep UV, and in addition such a cut-off breaks modular invariance. So, the two-point function is not quite what we want for
string theory, but it allows us to show how the beta function can be extracted from branch-cuts in the s-plane of amplitudes in
a renormalizable field theory.

We will evaluate the two-point amplitude for the classical gauge-field background with suitably adjusted couplings and
propagators, in an arbitrary gauge. At the end of the calculation one can for example take the Landau gauge ⇠ ! 0, at which
point the divergences in ⇠ magically cancel, leaving an amplitude that we can interpret as a contribution to the effective potential:

�L = �
1

4g2
Fµ⌫F

µ⌫ . (1)

The dimensionless parameter C̃1 yields the beta function, as

�g =
g

2

@C̃1

@ logµ
. (2)

Let us recall the typical extraction of the beta function. Introducing 2Ns complex scalars of mass ms and Nf Dirac fermions of
mass mf , we find in 4� 2✏ dimensions that

16⇡2

g2
iC̃1(p

2, µ2, ✏) = �
1

3
(22CA � 4Nf + 2Ns)

✓
1

✏
� �E + log 4⇡ + log µ2 + . . .

◆
(3)

where the ellipsis refers to logarithms of either p2 or m2
s
,m2

f
. From this we deduce that the beta function coefficient is given by

the singularity in ✏.
This technique is perfectly adequate in a Wilsonian setting, when there is a set number of states in the theory that are

considered to be part of an effective theory all much lighter than µ. But what do we do when, as in string theory or in a
Kaluza-Klein theory, there is an infinite spectrum and the situation is not Wilsonian? To see how one can proceed consider the
contributions to the beta fuction from the massive states. Defining p2 = s, in the two point function the contributions take the
Lorentz-invariant form (up to constants appearing in the brackets)

16⇡2

g2
A

(2)
gauge(s) = �

22CA

3
(pµp⌫ � p2gµ⌫)

✓
1

✏
� �E + log 4⇡ + log

✓
�
µ2

s

◆◆
,

16⇡2

g2
A

(2)
ferm(s) =

4Nf

3
(pµp⌫ � p2gµ⌫)

 
1

✏
� �E + log 4⇡ + log

µ2

m2
f

+

✓
1 +

2m2
s

s

◆
⇤(s;mf ,mf )

!
,

16⇡2

g2
A

(2)
scalar(s) =

2Ns

3
(pµp⌫ � p2gµ⌫)

✓
1

✏
� �E + log 4⇡ + log

µ2

m2
s

+

✓
1�

4m2
s

s

◆
⇤(s;ms,ms)

◆
, (4)

where the massless gauge contribution contains a term coming from the ghost loop, and where ⇤(s;mf ,mf ) is the part of the
Passarino-Veltman B0 function containing the s-plane branch cut. The latter is a book-keeping device to count the number
of degrees of freedom in the beta function. The usual procedure of counting the poles in ✏of course gives the correct answer
because it inevitably accompanies the logµ2 term, which is what we want. However there is another way one can determined
the beta function which incorporates mass-dependence. It is obvious from the fact that when the fields in the loop are massless,
there is a log(�s) contribution. Hence there is an imaginary contribution to the amplitude which grows to i⇡ in the limit that
s � 4m2. This is precisely the origin of the branch-cut which appears along the s-axis in the amplitude, for every state with a
mass m <

p
s/2. Hence one way of extracting an s dependent beta function is

�g(s) =
g

⇡

g2

16⇡2
Im

16⇡2

g2
Ã
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(2)(s)

�
. (6)

Note that

I0(p,m) =

ˆ
d4k

(2⇡)4
1

(k2 �m2)((k + p)2 �m2)

=
1

16⇡2

✓
1

✏
� �E + log 4⇡ + log

µ2

m2
s

+ ⇤(s;ms,ms)

◆
. (7)

2

Or	impose	IR	cut-off	on	Schwinger	integral:	equivalent	to	deep	Euclidean	s,	and	then..	
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is another prescription, where we impose reality on the beta function. These are not quite the same prescription: I think the
former is more physically meaningful but the latter is simpler to work with. However the latter gives non-sensical answers when
s < 4m2.

Let us recast ⇤. We note that

I0(p,m) =

Z
d4k

(2⇡)4
1

(k2 �m2)((k + p)2 �m2)

=
1

16⇡2

✓
1

✏
� �E + log 4⇡ + log

µ2

m2
s

+ ⇤(s;ms,ms)

◆
. (8)

Thus the definition in (6) is entirely physical and can’t depend on any scheme. On the other hand the value of 1/g2 itself is given
by the integral of the beta function (which is essentially the real part of Ã(2)), and it is scheme dependent. To make contact
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Next we choose variables in which the parameter y1 + y2 plays the role of ⌧ , while y2 is a separate variable. Let ⌧ = y1 + y2 and
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This is the form of contribution we expect to see in the string theory. However the simpler calculation is to use Feynman
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It is interesting to consider what happens with this definition when there is an infinite tower. Suppose we have KK modes of
bosons m2 = ~m·~m

R2 where ~m is a d-dimensional vector of KK numbers. Then we would have
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We are perfectly entitled to Poisson resum this expression at large R, (essentially as long as s � 1/R2) using
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All but the zero modes are exponentially suppressed and the result can be obtained by placing a cut-off on the integral and
expanding:
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/�(d/2+1) is the volume of a Euclidean ball of radius

p
s in units of 1/R. An interesting aspect

of this calculation is that the answer does not depend on Scherk-Schwarz shifts in the momentum. That is the resummation
formula with KK towers shifted by m2

KK = (~m+~a)·(~m+~a)
R2 gets a phase proportional to e�2⇡i~̀·~a, which is trivial for for leading

~̀= ~0 terms. The effect is therefore exponentially suppressed.
The simplest way of determining the beta function is by instead performing a contour integral to determine the branch-cut

structure. Consider for example the contribution
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It is interesting to consider what happens with this definition when there is an infinite tower. Suppose we have KK modes of
bosons m2 = ~m·~m
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All but the zero modes are exponentially suppressed and the result can be obtained by placing a cut-off on the integral and
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where Vd (R
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/�(d/2+1) is the volume of a Euclidean ball of radius

p
s in units of 1/R. An interesting aspect

of this calculation is that the answer does not depend on Scherk-Schwarz shifts in the momentum. That is the resummation
formula with KK towers shifted by m2

KK = (~m+~a)·(~m+~a)
R2 gets a phase proportional to e�2⇡i~̀·~a, which is trivial for for leading
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It is interesting to consider what happens with this definition when there is an infinite tower. Suppose we have KK modes of
bosons m2 = ~m·~m

R2 where ~m is a d-dimensional vector of KK numbers. Then we would have
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All but the zero modes are exponentially suppressed and the result can be obtained by placing a cut-off on the integral and
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of this calculation is that the answer does not depend on Scherk-Schwarz shifts in the momentum. That is the resummation
formula with KK towers shifted by m2

KK = (~m+~a)·(~m+~a)
R2 gets a phase proportional to e�2⇡i~̀·~a, which is trivial for for leading
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It is interesting to consider what happens with this definition when there is an infinite tower. Suppose we have KK modes of
bosons m2 = ~m·~m

R2 where ~m is a d-dimensional vector of KK numbers. Then we would have
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We are perfectly entitled to Poisson resum this expression at large R, (essentially as long as s � 1/R2) using
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All but the zero modes are exponentially suppressed and the result can be obtained by placing a cut-off on the integral and
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of this calculation is that the answer does not depend on Scherk-Schwarz shifts in the momentum. That is the resummation
formula with KK towers shifted by m2

KK = (~m+~a)·(~m+~a)
R2 gets a phase proportional to e�2⇡i~̀·~a, which is trivial for for leading
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We are perfectly entitled to Poisson resum this expression at large R, (essentially as long as s � 1/R2) using
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All but the zero modes are exponentially suppressed and the result can be obtained by placing a cut-off on the integral and
expanding:
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where Vd (R
p
s) = ⇡d/2 (R

p
s)

d
/�(d/2+1) is the volume of a Euclidean ball of radius

p
s in units of 1/R. An interesting aspect

of this calculation is that the answer does not depend on Scherk-Schwarz shifts in the momentum. That is the resummation
formula with KK towers shifted by m2

KK = (~m+~a)·(~m+~a)
R2 gets a phase proportional to e�2⇡i~̀·~a, which is trivial for for leading

~̀= ~0 terms. The effect is therefore exponentially suppressed.
The simplest way of determining the beta function is by instead performing a contour integral to determine the branch-cut

structure. Consider for example the contribution

Im(I) = Im
Z 1

0

Z 1

0
d⌧dx

1

⌧1+
d
2

�bRd⇡d/2
X

~̀

exp

 
⌧s x(1� x)�

~̀ · ~̀

⌧
⇡2R2

!
. (24)

3



• Toy	example:	KK	theory

m/R

Note	that	the	answer	averages	over	the	UV	states	and	is	not	the	same	as	a	naive	
rigid	cut-off	at	the	scale	s.	(e.g.	can	introduce	Scherk-Schwarz	splikng	of	N=4	
theory	—	the	KK	modes	sDll	give	zero,				even	though	the	naive	beta	funcDon	
would	oscillate	as								~	+-																			)	

Figure 1: Contour in ⌧ for evaluating imaginary part of Amplitude.

This integral diverges for ⌧A = ⌧
h
s x(1� x)�

~̀·~̀
⌧2 ⇡2R2

i
> 0, and indeed the branch cut in s comes precidely from the divergent

part. In detail suppose we consider s = |s|(1 + i✏). Then one can evaluate the integral by performing the ⌧ contour-integral as
shown in Figure 1 in the upper half-plane at fixed x, and then performing the x integral.

The integral of interest is the positive branch of I2 which by Cauchy’s theorem is

I ⌘ I+2 = 0� I3 � I�2 � I1. (25)

Putting a cut-off |⌧ | < ⌧IRThe integral I3 becomes
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which goes to zero because sin ✓ > 0. Conversely if s = |s|(1 � i✏) one must take the contour in the lower half plane, while in
either case I�2 is convergent and therefore entirely real. Hence the branch cut in s is given by the I1 integrals, which is in turn
given by gives the residue: that is if I =

R 1
0 dx

R1
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Im(I) ⌘ ⇡

Z 1

0
dxResJ. (27)

Considering the example above when ` = 0 we have
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as required. The interesting thing about this approach is that it is much easier to consider the ` 6= 0 parts which are clearly also
divergent when ⌧ > ⇡2R2/x(1� x). Hence one must perform the exact same procedure, and at very large s for the inner circle

one would take a saddle-point approximation with saddle at ⌧s =
q

~̀·~̀
sx(1�x)⇡R, giving a factor Im(I) ⇠ e�2

p
~̀·~̀⇡R

p
sx(1�x).

I didn’t do the massive gauge boson yet (it is a bit of a pain) but (given the Kaplunovsky paper) we can reasonably suppose
that the leading behaviour is similar. It is then quite simple to set up a spectrum that has no volume dependence in the beta
function by simply splitting an N = 4 multiplet. Such models are known from the days of string model building – and the
decompactification problem. There are papers by Antoniadis and Bachas on this. However it has not been appreciated that this
is the same thing as asymptotic safety.

Of course a full N = 4 theory is not required. Suppose for example you have a single higher dimensional SU(Nc) theory.
Then the gauge multiplets come with adjoint scalars (for the extra dimension) so each KK gauge mode contributes

�(gauge)
KK =

✓
�
11

3
+ 1/3

◆
C(G) = �

10

3
Nc. (29)

So then I can simple add Nf = 2Nc KK fermions and Ns = 2Nc scalars, split however I want in the tower, and it will be
asymptotically safe. Note that this configuration includes the N = 2 supersymmetric theory with Nf = 2Nc flavours of quark
supermultiplets, but of course the prescription can be as general as we like.

The point we would like to make though is to get beyond the well trodden KK part of the spectrum to see the truly stringy
behaviour.
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• Kaplunovsky	+	\inOy	…	calculate	threshold	correc(ons	by	doing	the	same	diagram:	
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String Phenomenology Steven Abel

The full action therefore combines the bosonic and supersymmetric actions. In the conformal and

light-cone gauges

SLC = −
T

2

∫

d2σ
(

ηab∂aX
j∂bX

j + iΨ
j

+ρ
a∂aΨ

j
+ + iλ

J

−ρ
a∂aλ

J
−

)

(6.3)

where J= 1 . . .16 counts the complex right-moving fermions, and j= 1 . . .8 counts the left-moving

transverse degrees of freedom. It is not hard to see that the appropriate constraint equations Tab =

Ga = 0 must be the sum of the bosonic contribution from the right movers and the supersymmetric

contribution from the left movers.

The technique of constructing the string models with all the additional degrees of freedom

expressed as world-sheet fermions is known as the fermionic formulation. It was developed in

refs.[7, 8, 9]. In this discussion I shall use the notation of ref.[8]. It is important to realize that the

consistent models in 10-D are of course independent of the formalism (i.e. fermionic or bosonic)

used to derive them. The fermionic formulation can also be used to develop 4-D models and this

in fact was the point of the original papers. There it gives a slightly unusual viewpoint for model

building; it disgards the geometrical interpretation of the 4-D models as compactified 10-D models,

and regards the world-sheet fermions simply as extra degrees of freedom thrown in to cancel the

conformal anomaly. Later I shall return to the 4-D models in this formalism, but for the moment

let us concentrate on our task of finding the consistent models in 10 dimensions.

6.1 Modular Invariance - the tool to tell us which models are consistent

We now turn to the question that I alluded to at the end of the previous section, namely how

to determine the consistent models. The trick is to start doing some perturbation theory. If we go

to complicated enough diagrams, some putative model will give inconsistent answers (for example

more than one answer for the same physical amplitude) whereupon it can be discarded. In fact

we only need to go as far as vacuum→vacuum amplitudes (one loop partition functions) with no
vertex operators to determine all the consistent 10 dimensional models. The relevant diagram are

shown below.

Z0= trivial Z1 Constrains model Z2..Minor additional constraints

r

r

1

2

The reason that the one loop diagram is so constraining is that it must be modular invariant.

Consider the one loop diagram for a particular shape (i.e. given by the length of the two cycles)

of torus. First recall that going to the conformal gauge (γab = eφηab) leaves a Weyl invariance in

the metric (since there is no φ dependence). This allows one by a suitable rescaling to go to a flat

metric. Now consider the integration region itself: this is now planar, so the world sheet integral is

over the region shown in the diagram

29
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where the spin structure is that of the World-sheet fermions corresponding to the decompact
space-time dimensions appearing in the vertex operators with non-zero kµ.

Fixing one vertex at 0 and replacing the z2 integral with the volume (i.e. ⌧2), we then find
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Assuming that ⌧2 � 1 in the IR region where we require the s cut-off, we may neglect the other
terms for the �-function and use

e�shXXi ⇠ e�⇡s⌧2 . (1.9)
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⇧µ⌫ ⇡ g2
YM

16⇡2
�ab(kµ1 k

⌫

2 � k1.k2⌘
µ⌫)

Z

F

d2⌧

⌧2

e�⇡s⌧2

4⇡2|⌘(⌧)|4
X

↵,�,Z2

ZZ2
Bint

Z↵,�,Z2

F
(1.10)

⇥
✓
4⇡i@⌧ log(

#ab(0|⌧)
⌘(⌧)

◆
Tr


� 1

4⇡⌧2
+Q2

�
.

At large ⌧2 we need retain only the massless states and the term is effectively
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and using the asymptotic approximations to #0s and ⌘ we find
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where ⌃ is the spin, which is the usual result. Finally we can make the identification with the
effective field theory coupling and determine the threshold correction. Setting s = 2µ2, and
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where ⌃ is the spin, which is the usual result. Finally we can make the identification with the
effective field theory coupling and determine the threshold correction. Setting s = 2µ2, and

• Can	we	do	the	same	thing	in	a	string	theory?
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where ⌃ is the spin, which is the usual result. Finally we can make the identification with the
effective field theory coupling and determine the threshold correction. Setting s = 2µ2, and

1 On Higgs mass contributions 3

where the spin structure is that of the World-sheet fermions corresponding to the decompact
space-time dimensions appearing in the vertex operators with non-zero kµ.

Fixing one vertex at 0 and replacing the z2 integral with the volume (i.e. ⌧2), we then find

⇧µ⌫ ⇡ g2
YM

16⇡2
(kµ1 k

⌫

2 � k1.k2⌘
µ⌫)

Z

F

d2⌧

⌧2

1

4⇡2|⌘(⌧)|4
X

↵,�,Z2

ZZ2
Bint

Z↵,�,Z2

F
(1.7)

⇥
Z

d2z

⌧2

✓
4⇡i@⌧ log(

#↵�(0|⌧)
⌘(⌧)

◆
|#1(z)|2k1.k2 exp


�k1.k2

2⇡

⌧2
=(z)2

�
�abTr


k

4⇡2
@2
z̄
log #1(z̄) +Q2

�

where obviously we have not yet used the mass-shell condition which would be k1.k2 = 0 for a
massless state. In fact we may keep this as an IR regulator, and expand in s = k1.k2 so that

|#1(z)|2k1.k2 exp


�k1.k2

2⇡

⌧2
=(z)2

�
= e�shXXi

⇡ exp


�⇡s⌧2 + s log | sin⇡z|2 � s

2⇡

⌧2
=(z)2

�
. (1.8)

Assuming that ⌧2 � 1 in the IR region where we require the s cut-off, we may neglect the other
terms for the �-function and use

e�shXXi ⇠ e�⇡s⌧2 . (1.9)

The z-integrals may then be done:

⇧µ⌫ ⇡ g2
YM

16⇡2
�ab(kµ1 k

⌫

2 � k1.k2⌘
µ⌫)

Z

F

d2⌧

⌧2

e�⇡s⌧2

4⇡2|⌘(⌧)|4
X

↵,�,Z2

ZZ2
Bint

Z↵,�,Z2

F
(1.10)

⇥
✓
4⇡i@⌧ log(

#ab(0|⌧)
⌘(⌧)

◆
Tr


� 1

4⇡⌧2
+Q2

�
.

At large ⌧2 we need retain only the massless states and the term is effectively

⇧µ⌫ ⇡ g2
YM

16⇡2
�ab(kµ1 k

⌫

2 � k1.k2⌘
µ⌫)

Z
d⌧2
⌧2

e�⇡s⌧2
1

4⇡2
Tr

✓
4⇡i@⌧ log

#↵�(0|⌧)
⌘(⌧)


� 1

4⇡⌧2
+Q2

�◆
.

and using the asymptotic approximations to #0s and ⌘ we find

⇧µ⌫ ⇡ g2
c
�ab(kµ1 k

⌫

2 � k1.k2⌘
µ⌫)

Z
d⌧2
⌧2

e�⇡s⌧2STr
⇥
1/12� ⌃2

⇤
,

where ⌃ is the spin, which is the usual result. Finally we can make the identification with the
effective field theory coupling and determine the threshold correction. Setting s = 2µ2, and

This	is	the	scale	s	—	the	answer	will	go	like	log(s)	—	so	this	gives	the	correct	
running	in	the	field	theory	limit	(s	<<	1)	where	the	cut-off	is	at	tau_2	>>	1.			
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The	parDcle	limit	of	the	world-sheet	Green’s	funcDon	gives	a	natural	cut-off	in	s:	
This	is	the	one	you	want:	

to the Green’s function in 9910056 by a factor of 1/4.
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where C(⌧) is the zero mode.

A subtlety with the series representations is that they are only conditionally convergent (ie will change on how

you take the partial series’ limit). The above expressions are correct when the limits are taken (schematically) asP
n := limM!1

PM
n=�M (called ‘Eisenstein (or Kronecker?) limits’).

Should add an appendix with more details. For now, see the other document, but be careful - it is riddled with

mistakes!
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where CX
T 2 is the vacuum amplitude2 We will drop the momentum conservation (2⇡)d�(d)(

P
i ki) from now on, and

remove the �CX
T 2 into the partition function.

Like D’Hoker and Phong, we define

sij = �(ki + kj)
2 . (1.26)

2
See Polchinski’s eqn 7.2.4 - note it is converted into our notation - see above for more, in particular z = w/2⇡ and use ↵0

= 2 to

match D’Hoker and Phong.
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Note	the	importance	of	 e�k1·k2G12 ⌘ e�sG12/2 �! e�⇡⌧2s



The	parDcle	limit	of	the	world-sheet	Green’s	funcDon	gives	a	natural	cut-off	in	s:	
This	is	the	one	you	want:	

to the Green’s function in 9910056 by a factor of 1/4.
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Takes	the	form	of	the	one-loop	world-line	Green’s	funcDon	+	stringy	correcDons.

e⌧(sx(1�x)�m2)c.f.	the	the	factor																																							that	appeared	in	the	field	theory	two-point	fn.

Note	the	importance	of	 e�k1·k2G12 ⌘ e�sG12/2 �! e�⇡⌧2s



However:	string	theory	is	defined	on-shell	—	can	use	tricks	but	probably	not	
very	meaningful	at	scales	well	above	s>>1.



Instead	focus	on	amplitudes	we	can	calculate	on-shell:	4pt	gluon	amplitude	in	the	
Euclidean	region	s>>1,	t,u<0	and	add	contribuDons	from	t	channel	and	u	channel.	
Also	gives	correcDons	to	the	Yang-Mills	acDon,	but	can	now	put	gluons	on-shell.	

• A	meaningful	RG	procedure	with	a	messy	UV:	aIempt	2)	



In	field	theory:	in	principle	we	need	to	calculate	about	1000	diagrams.	However	
can	use	various	tricks	to	extract	the	divergences,	or	branch-cuts.	e.g.	only	need	to	
populate	these	topologies	…		

Adding	the	diagrams	in	s,t,u	channel		
gives	correct	answer!	

Instead	focus	on	amplitudes	we	can	calculate	on-shell:	4pt	gluon	amplitude	in	the	
Euclidean	region	s>>1,	t,u<0	and	add	contribuDons	from	t	channel	and	u	channel.	
Also	gives	correcDons	to	the	Yang-Mills	acDon,	but	can	now	put	gluons	on-shell.	

• A	meaningful	RG	procedure	with	a	messy	UV:	aIempt	2)	



In	string	theory:	The	fixed	angle	scaXering	amplitude	and	region	of	phase	space	
was	done	by	Gross-Mende:	dominated	by	saddle	at		
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Instead	focus	on	amplitudes	we	can	calculate	on-shell:	4pt	gluon	amplitude	in	the	
Euclidean	region	s>>1,	t,u<0	and	add	contribuDons	from	t	channel	and	u	channel.	
Also	gives	correcDons	to	the	Yang-Mills	acDon,	but	can	now	put	gluons	on-shell.	

• A	meaningful	RG	procedure	with	a	messy	UV:	aIempt	2)	



Figure 4.1: The fundamental U -modulus domain for a maximally twisted Scherk-Schwarz theory has a
supersymmetric cusp at iU = 1.

any U in a maximally twisted Scherk-Schwarz theory can be mapped to the fundamental domain shown in
figure 4.1. As well as the cusp at infinity, there is a single supersymmetric cusp at iU = 1. For non-maximal
Scherk-Schwarz twists, the fundamental domain will contain more cusps, and there will be several genuinely
distinct supersymmetric vacua (again, see ref.[13] for details). The Casimir energy will ultimately have to
respect this symmetry.

To complete this part of the discussion, we will also need an understanding of the one-loop gauge thresh-
olds. Their volume dependence (neglecting the effects of extra charged massless states) can be written [13]

∆QCD = −CQCD log
(

T2U2|η(iT )|4|η(iU)|4
)

+ (CQCD − bQCD) log
(

T2U2|ϑ4(iT )|4|ϑ2(iU)|4
)

, (4.27)

where bQCD = 16π2β is the beta function coefficients for the entire massless theory, CQCD = 16π2βN=2 is
the N = 2 coefficient, and η are the usual Dedekind eta functions. The modular functions in this expression
are also invariant under transformations of the congruence subgroup; denoting SL(2,Z)U operations by
SU ≡ iU → −1/iU and TU ≡ iU → iU + 1, we have

TU : U2|ϑ2(iU)|4 −→ U2|ϑ2(iU)|4 (4.28)

SU : U2|ϑ2,4(iU)|4 −→ U2|ϑ4,2(iU)|4 . (4.29)

Therefore ∆QCD is invariant under any number of TU moves, but only an even number of SU moves, in
accord with the congruence condition.

Following refs.[21, 33, 34], the above allows us to identify the holomorphic gauge kinetic function of the
SQCD (assuming henceforth a Kac-Moody level k = 1 for the gauge group).

fQCD = S − CQCD

8π2
log η(iT )2η(iU)2 +

CQCD − bQCD

8π2
log

(

ϑ4(iT )
2ϑ2(iU)2

)

, (4.30)

with the gauge coupling being given by

2

g2
= Y = 2ℜ(f)− bQCD

8π2
log(µ2)−

(

bQCD

8π2
+ δGS

)

log(4T2U2) . (4.31)

Note that it is the N = 1 beta function appearing here (i.e. bQCD = −3N +F in SU(N) gauge theories with
N = 1 SQCD and F flavours) due to the additional universal terms, and not CQCD.
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s - channel

t - channel

u - channel
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F (12 ,
1
2 ; 1; sin

2(�/2))
(6.19)

which is the ratio of two elliptic integrals of the first kind. This has a branch cut at when � = 0. Indeed

⌧̂(� = 0+)� ⌧̂(� = 0�) = i/2� (�i/2) = i . (6.20)

The Hessian and its determinant: We start with

"(⌧, z1, z2, z3) =
X

i<j

pi · pjG(zij) =
1

2

X

i<j

(sij + 16)
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����
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����
2
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2
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����
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2

����
2

+
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2
(u+ 16) log

����
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✓01(0)
2

����
2

+ · · ·

+
⇡

⌧2
((s+ 16)(y212 + y23) + (t+ 16)(y213 + y22) + (u+ 16)(y214 + y223))

=
1

2
(s+ 16) log

����
✓1(z12)✓1(z3)

✓01(0)
2

����
2

+
1

2
(t+ 16) log
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����
2
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(6.21)
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in	the	zero	angle	limit	logarithmically	…⌧̂ ! i1

1.2 The Di↵erent Regions:

In the above we assumed 0  y1  y2  y3  1. The amplitude consists of an integral over this region and its

permutations. Let us call the regions:

Rijk : 0  yi  yj  yk  1 (1.11)

The saddle point for R123 is then as above: y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(ŷi) =
P

i<j sij(y
2
ij � |yij |) =

�
st
2u . Similarly,

R123 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
st

2u
(1.12)

R231 : y1 = 1/2� u/2s, y2 = �u/2s, y3 = 1/2, f(yi) = �
tu

2s
(1.13)

R312 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
su

2t
(1.14)

R213 : y1 = 1/2, y2 = �u/2t, y3 = 1/2� u/2t, f(yi) = �
su

2t
(1.15)

R132 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
tu

2s
(1.16)

R321 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
st

2u
(1.17)

ie the regions Rijk ⇠ Rkji and R231 ⇠ R123(s ! t, t ! u, u ! s), R312 ⇠ R123(s ! s, t ! u, u ! t).

Really we should sum over all regions. However, all is not lost! Assuming (!need to check!) there is a saddle

point in each region (there is in the yi as above), and we are interested in just the limit t ! 0, since the integral goes

like e⇡⌧2sij(y
2
ij�|yij |)+exp

⇠ e⇡⌧2f(yi)+exp
, and s > 0, t, u < 0 so that f(yi) < 0 in all regions, the dominant contributions

are where |f(yi)| is small, ie regions R123, R231 and their ‘doubles’. We get the same saddle points - in R231, we have

I231 ⇠ exp(�⇡⌧2
tu

2s
+ 4ue�2⇡⌧2|u/2s|) = exp(�⇡⌧2

tu

2s
+ 4ue⇡⌧2u/s) (1.18)

which has extremum when exp(⇡⌧̂2u/s) =
t
8u (which has correct sign!). Replacing to leading order u ⇠ �s this

becomes

exp(�⇡⌧̂2) = �
t

s
. (1.19)

This is precisely the value Gross and Mende have.

Let me repeat for R123. Then

I123 ⇠ exp(�⇡⌧2
st

2u
+ 4te�2⇡⌧2|t/2u|) ⇠ exp(�⇡⌧2

st

2u
+ 4te�⇡⌧2t/u) . (1.20)

This would have an extremum when exp(�⇡⌧̂2t/u) = �
s
8t . But that the right hand side is positive and greater than

1 so that this has no solution. This exponential falls essentially linearly for very small t, starting from a value ever

closer to 0 as t ! 0. I think this is the region that would dominate in the s ! 0 region.

Note also that in R231 we get the correct behaviour of the saddle points, replacing u ⇠ �s we get y1 ⇠ 1 ⌘ 0

(by periodicity), y2 ⇠
1
2 and y3 ⇠

1
2 . These are precisely what we expect from the Gross Mende paper (see below).

The Relation to Gross-Mende: The Gross-Mende have z saddle-points at

z1 =
1

2
, z2 =

⌧

2
, z3 =

1 + ⌧

2
, z4 = 0 , (1.21)

and for t ! 0, q = ei⇡⌧ ⇠ �t/s. Since y = =(z)/⌧2, we expect the y1 = 0, y2 = y3 =
1
2 , y4 = 0. Beware the mistake

in Gross-Mende - they confuse t and s!! They write q ⇠ �t/s, which is immediate from their 3.9. This is correct if

t = �s223 but the wrong way round as compared to the start of the paper where they define t = �s213.

4

If	we	add	the	s,t,u	parts	equally,	the	definiDon	is	modular	invariant		

• A	meaningful	RG	procedure	with	a	messy	UV:	aIempt	2)	



The	integrand	has	a	well	defined	saddle	point	which	gives	the	amplitude	

• A	meaningful	RG	procedure	with	a	messy	UV:	aIempt	2)	

and so on in the more general case in d dimensions. Note that one can make the above modular invariant by replacing ∂τ by
∂τ − w

τ2
where w is the weight of the modular form the derivative acts on. [THIS SHOULD BE NATURAL? I THINK SO, but

can’t be precise.] Actually is the above correct? The derivative brings a QaQaQbQb down, not QaQaQaQa?
To summarise so far, we have the integrand of Πµνρσ

abcd (s, t) at large τ2 to be

dabcd

4π2

1

2
(ηµνηρσ + (ν ↔ ρ) + (ν↔σ))e2πτ2(su1u3+tu2u4)

ˆ 1/2

−1/2
dτ1Trint(Q

4)ZBZF +O(pµ), (120)

The order pµ-terms come from contractions between ∂Xµ and eip·X terms, as well as fermionic contractions. The former give
pµi p

ν
j type factors, whereas the latter give a mixture of pµi p

ν
j and pi · pj terms.

An alternative for the current correlators: Following (and in places copying) 1811.02548 one can also write the currents
in the fermionic form in which case it is immediate that

⟨Ja1(z1)J
a2(z2)J

a3(z3)J
a4(z4)⟩τν =

↔
Tr(T a1T a2T a3T a4)Sν(z12, τ)Sν(z23, τ)Sν(z34, τ)Sν(z41, τ)

+ Tr(T a1T a2)Tr(T a3T a4)Sν(z12, τ)Sν(z34, τ)Sν(z43, τ) + cyc(2, 3, 4),

where
↔
Tr(T a1 · · ·T an) := Tr(T a1T a2 · · ·T an) + (−1)nTr(T an · · ·T a2T a1).

One then has
⟨Ja1(z1)J

a2(z2)J
a3(z3)J

a4(z4)⟩τ =
∑

ν

Zhet
ν (τ)⟨Ja1 (z1)J

a2(z2)J
a3(z3)J

a4(z4)⟩τν

The cyclic Szego factors have nice relations, such as

Sν(z12)Sν(z21) = V2(1, 2) + eν

Sν(z12)Sν(z23)Sν(z34)Sν(z41) = V4(1, 2, 3, 4) + eνV2(1, 2, 3, 4) + e2ν − 6G4

I leave it to the 1811.02548 to complete the story: they only do it for ν = 2, 3, 4 and d = 10.

7 The saddle point approximation of the beta function

We now turn to the Gross Mende saddle point computation to extract the same data in the high energy limit. According to [10]
the one-loop saddle point approximation is given by

g4210π−24(stu)−8/3e−(s log s+t log t+u log u)/8

∣

∣

∣

∣

∣

4
∏

α=2

ϑ′′α
ϑα

(

ϑ′′α
ϑα

+
2π

ℑ(τ̂ )

)

∣

∣

∣

∣

∣

− 1
2

ℑ(τ̂ )−13

(

ϑ′1
π

)40/3

, (121)

multiplying some Q4 factors that ultimately we should check continue to give the right tensor structure. The important aspect
of this expression is that the integrand is not an analytic function. Therefore although the saddle point approximation works in
principle, one has to beware of branch cuts. Let us consider the branch cut in s. In terms of the fixed angles and working in the
C.o.M. frame so the incoming particles to be arriving head-on, φ12 = π, this is given by

t = 2k1 · k4 = 2(−1 + cosφ14) = −s sin2 (φ14/2)

u = 2k1 · (−k1 − k2 − k4) = −s+ s sin2 (φ14/2) = −s cos2 (φ14/2) .

But since s+ u+ t = 0 the exponent becomes

−(s log s+ t log t+ u log u) = −siπ + s sin2 (φ14/2) log sin
2 (φ14/2) + s cos2 (φ14/2) log cos

2 (φ14/2) , (122)

representing a huge exponential suppression. The identification of this exponent at the saddle point is not affected by the
branch-cut structure of s. However the value of τs itself is. Namely we find that

τs = i
K(−u/s)

K(−t/s)
, (123)

where K is the complete elliptic integral of the first kind. Assuming real u, t < 0, this function has a branch cut in s,
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Adding	the	3	channels	we	get	a	“beta	funcDon”	that	goes	to	zero	in	the	UV:		
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As	we	saw	the	saddle	point	obeys			

• So	what	just	happened?	How	does	string	theory	quench	amplitudes	in	the	UV?

1.2 The Di↵erent Regions:

In the above we assumed 0  y1  y2  y3  1. The amplitude consists of an integral over this region and its

permutations. Let us call the regions:

Rijk : 0  yi  yj  yk  1 (1.11)

The saddle point for R123 is then as above: y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(ŷi) =
P

i<j sij(y
2
ij � |yij |) =

�
st
2u . Similarly,

R123 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
st

2u
(1.12)

R231 : y1 = 1/2� u/2s, y2 = �u/2s, y3 = 1/2, f(yi) = �
tu

2s
(1.13)

R312 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
su

2t
(1.14)

R213 : y1 = 1/2, y2 = �u/2t, y3 = 1/2� u/2t, f(yi) = �
su

2t
(1.15)

R132 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
tu

2s
(1.16)

R321 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
st

2u
(1.17)

ie the regions Rijk ⇠ Rkji and R231 ⇠ R123(s ! t, t ! u, u ! s), R312 ⇠ R123(s ! s, t ! u, u ! t).

Really we should sum over all regions. However, all is not lost! Assuming (!need to check!) there is a saddle

point in each region (there is in the yi as above), and we are interested in just the limit t ! 0, since the integral goes

like e⇡⌧2sij(y
2
ij�|yij |)+exp

⇠ e⇡⌧2f(yi)+exp
, and s > 0, t, u < 0 so that f(yi) < 0 in all regions, the dominant contributions

are where |f(yi)| is small, ie regions R123, R231 and their ‘doubles’. We get the same saddle points - in R231, we have

I231 ⇠ exp(�⇡⌧2
tu

2s
+ 4ue�2⇡⌧2|u/2s|) = exp(�⇡⌧2

tu

2s
+ 4ue⇡⌧2u/s) (1.18)

which has extremum when exp(⇡⌧̂2u/s) =
t
8u (which has correct sign!). Replacing to leading order u ⇠ �s this

becomes

exp(�⇡⌧̂2) = �
t

s
. (1.19)

This is precisely the value Gross and Mende have.

Let me repeat for R123. Then

I123 ⇠ exp(�⇡⌧2
st

2u
+ 4te�2⇡⌧2|t/2u|) ⇠ exp(�⇡⌧2

st

2u
+ 4te�⇡⌧2t/u) . (1.20)

This would have an extremum when exp(�⇡⌧̂2t/u) = �
s
8t . But that the right hand side is positive and greater than

1 so that this has no solution. This exponential falls essentially linearly for very small t, starting from a value ever

closer to 0 as t ! 0. I think this is the region that would dominate in the s ! 0 region.

Note also that in R231 we get the correct behaviour of the saddle points, replacing u ⇠ �s we get y1 ⇠ 1 ⌘ 0

(by periodicity), y2 ⇠
1
2 and y3 ⇠

1
2 . These are precisely what we expect from the Gross Mende paper (see below).

The Relation to Gross-Mende: The Gross-Mende have z saddle-points at

z1 =
1

2
, z2 =

⌧

2
, z3 =

1 + ⌧

2
, z4 = 0 , (1.21)

and for t ! 0, q = ei⇡⌧ ⇠ �t/s. Since y = =(z)/⌧2, we expect the y1 = 0, y2 = y3 =
1
2 , y4 = 0. Beware the mistake

in Gross-Mende - they confuse t and s!! They write q ⇠ �t/s, which is immediate from their 3.9. This is correct if

t = �s223 but the wrong way round as compared to the start of the paper where they define t = �s213.

4

But	small	angles	is	the	parDcle	limit.	So	we	could	have	just	used	the	modified	
world-line	Green’s	funcDon:		the	saddle	in	the	vertex	posiDons	is	en6rely	
determined	by	the	unmodified	Green’s	funcDon.	Then	you	are	let	with	a	factor	in	
the	one-loop	integrand	of		

1.2 The Di↵erent Regions:

In the above we assumed 0  y1  y2  y3  1. The amplitude consists of an integral over this region and its

permutations. Let us call the regions:

Rijk : 0  yi  yj  yk  1 (1.11)

The saddle point for R123 is then as above: y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(ŷi) =
P

i<j sij(y
2
ij � |yij |) =

�
st
2u . Similarly,

R123 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
st

2u
(1.12)

R231 : y1 = 1/2� u/2s, y2 = �u/2s, y3 = 1/2, f(yi) = �
tu

2s
(1.13)

R312 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
su

2t
(1.14)

R213 : y1 = 1/2, y2 = �u/2t, y3 = 1/2� u/2t, f(yi) = �
su

2t
(1.15)

R132 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
tu

2s
(1.16)

R321 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
st

2u
(1.17)

ie the regions Rijk ⇠ Rkji and R231 ⇠ R123(s ! t, t ! u, u ! s), R312 ⇠ R123(s ! s, t ! u, u ! t).

Really we should sum over all regions. However, all is not lost! Assuming (!need to check!) there is a saddle

point in each region (there is in the yi as above), and we are interested in just the limit t ! 0, since the integral goes

like e⇡⌧2sij(y
2
ij�|yij |)+exp

⇠ e⇡⌧2f(yi)+exp
, and s > 0, t, u < 0 so that f(yi) < 0 in all regions, the dominant contributions

are where |f(yi)| is small, ie regions R123, R231 and their ‘doubles’. We get the same saddle points - in R231, we have

I231 ⇠ exp(�⇡⌧2
tu

2s
+ 4ue�2⇡⌧2|u/2s|) = exp(�⇡⌧2

tu

2s
+ 4ue⇡⌧2u/s) (1.18)

which has extremum when exp(⇡⌧̂2u/s) =
t
8u (which has correct sign!). Replacing to leading order u ⇠ �s this

becomes

exp(�⇡⌧̂2) = �
t

s
. (1.19)

This is precisely the value Gross and Mende have.

Let me repeat for R123. Then

I123 ⇠ exp(�⇡⌧2
st

2u
+ 4te�2⇡⌧2|t/2u|) ⇠ exp(�⇡⌧2

st

2u
+ 4te�⇡⌧2t/u) . (1.20)

This would have an extremum when exp(�⇡⌧̂2t/u) = �
s
8t . But that the right hand side is positive and greater than

1 so that this has no solution. This exponential falls essentially linearly for very small t, starting from a value ever

closer to 0 as t ! 0. I think this is the region that would dominate in the s ! 0 region.

Note also that in R231 we get the correct behaviour of the saddle points, replacing u ⇠ �s we get y1 ⇠ 1 ⌘ 0

(by periodicity), y2 ⇠
1
2 and y3 ⇠

1
2 . These are precisely what we expect from the Gross Mende paper (see below).

The Relation to Gross-Mende: The Gross-Mende have z saddle-points at

z1 =
1

2
, z2 =

⌧

2
, z3 =

1 + ⌧

2
, z4 = 0 , (1.21)

and for t ! 0, q = ei⇡⌧ ⇠ �t/s. Since y = =(z)/⌧2, we expect the y1 = 0, y2 = y3 =
1
2 , y4 = 0. Beware the mistake

in Gross-Mende - they confuse t and s!! They write q ⇠ �t/s, which is immediate from their 3.9. This is correct if

t = �s223 but the wrong way round as compared to the start of the paper where they define t = �s213.
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Replacing																									this	gives	the	correct	saddle	

1.2 The Di↵erent Regions:

In the above we assumed 0  y1  y2  y3  1. The amplitude consists of an integral over this region and its

permutations. Let us call the regions:

Rijk : 0  yi  yj  yk  1 (1.11)

The saddle point for R123 is then as above: y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(ŷi) =
P

i<j sij(y
2
ij � |yij |) =

�
st
2u . Similarly,

R123 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
st

2u
(1.12)

R231 : y1 = 1/2� u/2s, y2 = �u/2s, y3 = 1/2, f(yi) = �
tu

2s
(1.13)

R312 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
su

2t
(1.14)

R213 : y1 = 1/2, y2 = �u/2t, y3 = 1/2� u/2t, f(yi) = �
su

2t
(1.15)

R132 : y1 = �t/2u, y2 = 1/2, y3 = 1/2� t/2u, f(yi) = �
tu

2s
(1.16)

R321 : y1 = 1/2, y2 = 1/2� s/2t, y3 = �s/2t, f(yi) = �
st

2u
(1.17)

ie the regions Rijk ⇠ Rkji and R231 ⇠ R123(s ! t, t ! u, u ! s), R312 ⇠ R123(s ! s, t ! u, u ! t).

Really we should sum over all regions. However, all is not lost! Assuming (!need to check!) there is a saddle

point in each region (there is in the yi as above), and we are interested in just the limit t ! 0, since the integral goes

like e⇡⌧2sij(y
2
ij�|yij |)+exp

⇠ e⇡⌧2f(yi)+exp
, and s > 0, t, u < 0 so that f(yi) < 0 in all regions, the dominant contributions

are where |f(yi)| is small, ie regions R123, R231 and their ‘doubles’. We get the same saddle points - in R231, we have

I231 ⇠ exp(�⇡⌧2
tu

2s
+ 4ue�2⇡⌧2|u/2s|) = exp(�⇡⌧2

tu

2s
+ 4ue⇡⌧2u/s) (1.18)

which has extremum when exp(⇡⌧̂2u/s) =
t
8u (which has correct sign!). Replacing to leading order u ⇠ �s this

becomes

exp(�⇡⌧̂2) = �
t

s
. (1.19)

This is precisely the value Gross and Mende have.

Let me repeat for R123. Then

I123 ⇠ exp(�⇡⌧2
st

2u
+ 4te�2⇡⌧2|t/2u|) ⇠ exp(�⇡⌧2

st

2u
+ 4te�⇡⌧2t/u) . (1.20)

This would have an extremum when exp(�⇡⌧̂2t/u) = �
s
8t . But that the right hand side is positive and greater than

1 so that this has no solution. This exponential falls essentially linearly for very small t, starting from a value ever

closer to 0 as t ! 0. I think this is the region that would dominate in the s ! 0 region.

Note also that in R231 we get the correct behaviour of the saddle points, replacing u ⇠ �s we get y1 ⇠ 1 ⌘ 0

(by periodicity), y2 ⇠
1
2 and y3 ⇠

1
2 . These are precisely what we expect from the Gross Mende paper (see below).

The Relation to Gross-Mende: The Gross-Mende have z saddle-points at

z1 =
1

2
, z2 =

⌧

2
, z3 =

1 + ⌧

2
, z4 = 0 , (1.21)

and for t ! 0, q = ei⇡⌧ ⇠ �t/s. Since y = =(z)/⌧2, we expect the y1 = 0, y2 = y3 =
1
2 , y4 = 0. Beware the mistake

in Gross-Mende - they confuse t and s!! They write q ⇠ �t/s, which is immediate from their 3.9. This is correct if

t = �s223 but the wrong way round as compared to the start of the paper where they define t = �s213.
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Conclusion:	string	theory	amplitudes	can	be	mimicked	by	adding	the	leading	exponenDal	
term	into	the	world-line	propagator!		

This	was	the	only	work	string	theory	had	to	do



Although	the	WL	formalism	emerges	in	the	parDcle	limit	of	string	theory,	a	first	
quanDsed	parDcle	theory	can	be	built	from	the	boXom	up.	

• Conversely:	contemplate	simply	defining	a	world-line	theory	with	a	G	that	has	
similar	proper(es.

	Normally	would	have	e.g.	the	tree-level	propagator	in	a	scalar	theory:		

Feynman;	
Affleck,	Alvarez,	Manton;	
Bern,	Kosower;	
Strassler;		
Schmidt,	Schubert		
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(Dated: April 2, 2019)

I. OVERVIEW AND RELATION TO INFINITE DERIVATIVE FIELD THEORY

The remarkable finiteness of string theory can be attributed to two features. First, due to

modular symmetry, the ultra-violet (UV) region of the integral over the modular parameter is

excised from the fundamental domain of one-loop diagrams. Similar excisions occur at higher

loops. Therefore modular invariant integrals cannot generate UV divergences. A somewhat different

perspective is provided by the behaviour of the world-sheet Green’s functions at short distances.

Even at tree-level they yield amplitudes that are exponentially suppressed at high momentum (see

for example [10, 21]). The effect can be understood as a dressing of the physical propagators with

an exponential suppression factor e�⇤/M2
s , where Ms is the fundamental scale, as exemplified in

[11, 20, 21]. Equivalently by a field redefinition such suppression can be attributed to the cubic

string field interactions (see for example [12]). Either way amplitudes are dramatically attenuated

in the UV above the scale Ms.

Motivated by these properties of string theory, the purpose of this paper is to propose a particle

framework that has the same benefits, built from the ground up. Our approach is to work within

the world-line formalism [13–18], which allows us most closely to mimic the first quantised string

set-up. (For reviews of the world-line formalism see [19].)

As a starting point, consider the Schwinger parameterised scalar particle propagator,

�(p2) =
1

p2 +m2
=

Z 1

0
dTe�T (p2+m2) , (1)

where T is the real Schwinger proper time (suitably Euclideanised). Such a propagator naturally

appears in the “particle limits” of string theory. In a one-loop integral for example one finds that the

role of T is played by the imaginary part, ⌧2, of the modular parameter in the infra-red (IR) where

it gets large. However modular invariance dictates that as one approaches the UV cusp at very

Here	T	is	the	Schwinger	proper-Dme	—	essenDally	G(T)	
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1 On Higgs mass contributions 3

where the spin structure is that of the World-sheet fermions corresponding to the decompact
space-time dimensions appearing in the vertex operators with non-zero kµ.

Fixing one vertex at 0 and replacing the z2 integral with the volume (i.e. ⌧2), we then find
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where obviously we have not yet used the mass-shell condition which would be k1.k2 = 0 for a
massless state. In fact we may keep this as an IR regulator, and expand in s = k1.k2 so that

|#1(z)|2k1.k2 exp
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�
. (1.8)

Assuming that ⌧2 � 1 in the IR region where we require the s cut-off, we may neglect the other
terms for the �-function and use

e�shXXi ⇠ e�⇡s⌧2 . (1.9)

The z-integrals may then be done:
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At large ⌧2 we need retain only the massless states and the term is effectively
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and using the asymptotic approximations to #0s and ⌘ we find

⇧µ⌫ ⇡ g2
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where ⌃ is the spin, which is the usual result. Finally we can make the identification with the
effective field theory coupling and determine the threshold correction. Setting s = 2µ2, and



	To	mimic	string	amplitudes,	copy	the	only	Moebius	transformaDon	that	maXers:	

2

small ⌧2 the exponent goes like 1/⌧2 (since this region can always be mapped back to large ⌧2 by a

⌧2 ! 1/⌧2 Möbius transformation). In the particle context, one is tempted to mimic this behaviour

by modifying the propagator so that it is written as an integral over the single real parameter t as

follows:

�(p2) =

Z 1

0
dt e�T (t)(p2+m2) , (2)

where the proper time is some function of t that is symmetric under the only relevant remnant of

the Möbius transformations 1:

T (t) = T (t�1) ,

T (t)
⌧!1�! t . (3)

Let us consider the simplest option,

T = t+ t�1 , (4)

where we henceforth set the fundamental scale to one. Performing the integral we find the propa-

gator to be

�(p2) = 2K1(2(p
2 +m2)) , (5)

where K1 is the modified Bessel function of the second kind. It has the following asymptotic

behaviour:

�(p2) �!

8
><

>:

1
p2+m2 ; p2 ⌧ 1 ,
p
⇡e�2(p2+m2)p

p2+m2
; p2 � 1 .

(6)

As well as exhibiting the desirable exponential suppression at momenta above the fundamental

scale, �(p2) has the interesting property that it possesses only the single physical pole near the

origin, because zK1(z) is an entire function, so a theory with such a propagator must be ghost-free.

The modification in (2) can thus be thought of as a means of generating the infinite-derivative,

ghost-free and finite field theories of refs.[21–24].

1
Note that as we integrate over the whole of ⌧ we do not need to make the measure invariant.
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Importantly	only	single	pole:	ghost-free	(c.f.	siegel	et	al.	exponenDally	dressed	props.)

Siegel;	
Biswas,	Mazumdar,		
Gerwick,	Koivisto	
Buoninfante,	Lambiase	

	To	mimic	string	amplitudes,	copy	the	only	Moebius	transformaDon	that	maXers:	



Th’m:	Any	theory	for	which																					is	en6re	is	ghost-free	(at	tree-level)

e.g.	the	trivial	case																																gives	precisely	the	Siegel	et	al	theory:

3

Indeed, dropping the symmetry requirement in (6), it is straightforward to prove that:

Any T (t) for which tT (t�1) is entire generates a ghost-free infinite-derivative theory.

The trivial example of such a function is T (t) = t + 1 which gives the commonly adopted expo-

nentially suppressed propagator, �(p2) = e�(p2+m2)/(p2 +m2). But there are an infinite number

of ghost-free theories that can be generated this way2 . It is also easy to see that (4) is the only

t ! 1/t symmetric possibility. We will henceforth focus on this case.

Of course it is always possible to make a change of coordinates to bring the propagator back to

its original form as an integral over T , whereupon we find an interpretation as minimum proper

time:

�(p2) =

Z 1

T0

dT
1

T 0 e
�T (p2+m2) ,

=

Z 1

2
dT T 2�2+T

p
T 2�4

T 2�4+T
p
T 2�4

e�T (p2+m2) , (7)

with the second line being specific to the example of (4), where we choose the positive branch in

order to satisfy (3). In other words, our prescription is equivalent to introducing a weighting on

sums over histories which diverges as an inverse square-root at some (cut-off) value of T , and that

tends to one at large T .

To consolidate this picture, it is interesting to take the Fourier transform to obtain the propagator

in target-space:

�(x, y) =

Z
ddp

(2⇡)d
e�ip(x�y)

Z 1

0
dt e�T (t)(p2+m2)

=

Z 1

0
dt

1

(4⇡T )d/2
e
�

(x�y)2

4T +Tm2

�

. (8)

As usual for m = 0 we find an integral over Gaussian solutions to the diffusion equation in d = 4

Euclidean dimensions. However the fact that T has a minimal value means that, as in string theory,

physics has now acquired a minimum length3.

2
We should add that of course the full string propagator does have an infinite number of physical poles, which the

exponentially suppressed single pole version approximates, via the Stirling formula.
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Our prescription is apparently also equivalent to adopting a time dependent diffusion coefficient, D(t) = (1�1/t2).
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	This	case	is	indisDnguishable	from	imposing	a	cut-off	on	proper	Dme	(by	reparam’n):	
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Our prescription is apparently also equivalent to adopting a time dependent diffusion coefficient, D(t) = (1�1/t2).

The	previous	case	corresponds	to	a	weighted	sum	over	paths	that	diverges	“nicely”	at	T=2
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e.g.	scalar	QED:	write	as	a	world-line	theory,	with	Wilson	line	for	photon	emission	

expand	photon	as	plane	waves:																																																							

Generic	trees:	wriIen	like	the	string	version	(or	rather	vice-versa)	

4

II. AMPLITUDES AT TREE-LEVEL

Evidently from the discussion of the previous section, the simplest case of an exponentially-

suppressed propagator is indistinguishable from just putting a lower cut-off on the proper time at

T = 1. But as we shall now see, the great advantage of the world-line prescription is that if T (t)

has a minimum, as in the simple example of (4), then many loop amplitudes become simple to

evaluate, because they are dominated by a saddle point.

Let us begin by considering trees. The fact that the procedure can be understood as a weighting

on the world-line integral, means that many results and techniques can be adopted wholesale (from

e.g. [19]), with the modification arising only at the end of the calculation.

Consider tree-level amplitudes in scalar QED. These can be obtained by covariantizing the

momenta, and using a path integral representation of the scalar propagator, in which the gauge

field Aµ appears as a Wilson line. In position space this gives

�(x, y) =

Z 1

0
dte�Tm2

Z x(T )=y

x(0)=x
Dxe�S[x,Aµ] ,

S[x,Aµ] =

Z T

0
d⌧

ẋ2

4
+ iq ẋ ·A(x) , (9)

where q is the charge of the scalar. From there one expands the gauge field as a sum of plane waves,

Aµ(x(⌧)) =
nX

i=1

"i,µe
iki·x ,

and extracts terms linear in all the polarization vectors. Passing back to momentum space one

finds:

A(n) = qn�4(p1 + p2 +
P

iki)

Z 1

0
dt e�T (p21+m2)

⇥
Z T

0
d⌧1 . . . d⌧n e

(p1�p2)·
P

i(�⌧iki�i"i)e(ki·kjGij�2i"i·kjĠij+"i·"jG̈ij) , (10)

where Gij =
1
2 |⌧i�⌧j | is the Green’s function on the line, p1 and p2 are the momenta of the incoming

and outgoing scalars, and one is instructed to extract the term in "1 . . . "n.

4

II. AMPLITUDES AT TREE-LEVEL

Evidently from the discussion of the previous section, the simplest case of an exponentially-

suppressed propagator is indistinguishable from just putting a lower cut-off on the proper time at

T = 1. But as we shall now see, the great advantage of the world-line prescription is that if T (t)

has a minimum, as in the simple example of (4), then many loop amplitudes become simple to

evaluate, because they are dominated by a saddle point.

Let us begin by considering trees. The fact that the procedure can be understood as a weighting

on the world-line integral, means that many results and techniques can be adopted wholesale (from

e.g. [19]), with the modification arising only at the end of the calculation.

Consider tree-level amplitudes in scalar QED. These can be obtained by covariantizing the

momenta, and using a path integral representation of the scalar propagator, in which the gauge

field Aµ appears as a Wilson line. In position space this gives

�(x, y) =

Z 1

0
dte�Tm2

Z x(T )=y

x(0)=x
Dxe�S[x,Aµ] ,

S[x,Aµ] =

Z T

0
d⌧

ẋ2
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with																																	,	and	extract	term	in	n-polarizaDon	vectors.
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e.g.	gauge	coupling	…

5

The n = 1 case for example gives

A(1) = � iq �4(p1 + p2 + k) " · (p1 � p2)

Z 1

0
dt e�T (p21+m2)

Z T

0
d⌧ e�⌧(p1�p2)·k,

= iq �4(p1 + p2 + k) " · (p1 � p2)
�12

p21 � p22
, (11)

where �12 = �(p21) ��(p22). As anticipated, up to this point we have not needed to consider the

details of the world-line prescription, however we can now insert the limits in (6) to find (note that

the external propagators have not yet been truncated)

�12

p21 � p22
!

8
>><

>>:

�1
(p21+m2)(p22+m2)

; p2 ⌧ 1,
p
⇡

p21�p22

✓
e�2(p21+m2)p

p21+m2
� e�2(p22+m2)p

p22+m2

◆
; p2 � 1,

(12)

showing the expected exponential suppression.

III. ONE-LOOP AMPLITUDES

In order to pass to one-loop amplitudes, we need to be careful in adapting the general results

outlined in [19], because the expressions cannot now be resummed into a single logarithmic “effective

potential”. The n-point amplitude can be presented in a generically stringy form:

A(n)
1` ({pi}) =

Z
dt e�m2T (t)

Z
Dx V [p1]...V [pn] e�S[x,0] , (13)

where the action is as in (9), we omit symmetry factors, the path integral is over paths with

x(0) = x(T ), and the V ’s are vertex operators: these take the form

V�[p] = V 00
Z T

0
d⌧eip·x ; VA[p] =

Z T

0
d⌧" · ẋ eip·x , (14)

for scalar and photon emission respectively. In order to correctly implement the world-line proce-

dure, by manipulating the ⌧ integrals the amplitude can be brought to a form that is democratic

for the propagators. The result for the scalars (dropping the V 00 coupling) can be written

A(n)
1` ({pi}) = �d(

X
pi)

Z Qn
i=1 dti

(
P

4⇡Ti)d/2
e
�

P
i(q

2
i +m2)Ti+

P
ij qi·qjTiTjP

Ti + perms. (15)
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A gauge invariant lagrangian for scalar electrodynamics is:

The Noether current is given by:

depends explicitly on the gauge field
 multiplied by e = electromagnetic current

New vertices:

154

external lines:

incoming selectron

outgoing selectron

vertex and the rest of the diagram

incoming spositron

outgoing spositron

Additional Feynman rules:

155

vertices:

incoming selectron outgoing selectron

156

Let’s use our rules to calculate the amplitude for                     :

and we use                             to calculate the amplitude-squared, ... 

157
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Generic	one-loop	diagrams	wriIen	like	the	string	version	(or	rather	vice-versa)	

	Can	always	rearrange	it	so	propagators	are	treated	democraDcally:	e.g.	2	point		
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where the qi are partial momentum sums:

qi =
iX

j=1

pj . (16)

Notice that due to momentum conservation qn = 0.

It is interesting to determine the basic one-loop effective potential from A(n)
1` ({0}). To evaluate

the quadratic term (a.k.a. the Higgs mass correction) we note that the integral for A(1)
1` is finite

with no IR (i.e large T ) divergences even if the state is massless. Reinstating Ms, setting d = 4

and including a symmetry factor of 1/2, as m ! 0 the integral can be done explicitly:

V1(0) =
1
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s V
00 . (17)

For the 2-pt function we must evaluate

V (2)(m2) =
(V 00)2
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Z
dt1 dt2

(T1 + T2)2
e�m2(T1+T2) . (18)

Again if m is large one can use the saddle approximation which we will revisit later. However the

interesting part is the fact that as m ! 0 the integral acquires a logarithmic IR divergence (just as

in usual field theory).

we use
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�(0)n , (19)

and integrate.

IV. THRESHOLD CORRECTIONS
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for N = 2 we get �1 = s2/4,�2 = �1. The saddle point is a good approximation for large s,
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N-loop	2	point	Sunset	diagram	—	(perturba(ve	control?)

is	sum	of	all	words	of	length	N-1	that	can	be	made	with	the	symbols

Aij,µ⌫ = 2�µ⌫Ãij = 2�µ⌫ [�ijti + tNOij ] , Bi,µ = �2tNPi,µ (45)

where Oij is a matrix with all entries 1 and Pi,µ is a vector in i space with all

entries pµ. It is possible to show that

detA = 2
(N�1)D

det Ã = 2
(N�1)D

NX

i

W
i
N�1 (46)

where
PN

i W
i
N�1 is the sum of all the words of lenght N � 1 that can be made

with the symbols {ti}i=1...N . These are exactly
� N
N�1

�
, and for example for

N = 5 we have

5X

i

W
i
4 = t1t2t3t4 + t1t2t3t5 + t1t2t5t4 + t1t5t3t4 + t5t2t3t4 (47)

Moreover, the product

1

2
B

T
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�1
B = t

2
N

X

ij,µ⌫

A
�1
ij,µ⌫Pi,µPj,⌫ = t

2
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X

ij

Ã
�1
ij (48)

turns out that the sum over all entries of the inverse matrix A amounts to

X

ij

Ã
�1
ij =

1

det Ã

N�1X

i

W
i 6=N
N�2 (49)

where
PN

i W
i 6=N
N�2 is the sum of all the words of lenght N � 2 that can be made

with the symbols {ti}i=1...N�1 so with tN excluded. These are exactly
�N�1
N�2

�
,

and for example for N = 5 we have

4X

i

W
i 6=N
3 = t1t2t3 + t1t2t4 + t1t4t3 + t4t2t3 (50)

Our amplitude amounts then to

As(p) =

Z NY

i
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(4⇡
PN

i W i
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�m2 PN
i ti�p2
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i Wi
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#

(51)

we can take the saddle point approximation then with ti ! ⌧i +
1
⌧i
, ⌧i = 1+ ✏i.

We can see that the leading exponential in large p
2
is

As(p) ⇠ e
�p2


2�4 2N�2(N�1)

2N�1N

�

⇠ e
�2p2/N

(52)

the part coming from the gaussian integral after saddle point approx is still

missing
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with the symbols {ti}i=1...N . These are exactly
� N
N�1

�
, and for example for

N = 5 we have

5X

i

W
i
4 = t1t2t3t4 + t1t2t3t5 + t1t2t5t4 + t1t5t3t4 + t5t2t3t4 (47)

Moreover, the product

1

2
B

T
A

�1
B = t

2
N

X

ij,µ⌫

A
�1
ij,µ⌫Pi,µPj,⌫ = t

2
Np

2
X

ij

Ã
�1
ij (48)

turns out that the sum over all entries of the inverse matrix A amounts to

X

ij

Ã
�1
ij =

1

det Ã

N�1X

i

W
i 6=N
N�2 (49)

where
PN

i W
i 6=N
N�2 is the sum of all the words of lenght N � 2 that can be made

with the symbols {ti}i=1...N�1 so with tN excluded. These are exactly
�N�1
N�2

�
,

and for example for N = 5 we have

4X

i

W
i 6=N
3 = t1t2t3 + t1t2t4 + t1t4t3 + t4t2t3 (50)

Our amplitude amounts then to

As(p) =

Z NY

i

dti
1

(4⇡
PN

i W i
N�1)

(N�1)D/2
e

�m2 PN
i ti�p2

"
tN�t2N

PN�1
i W

i 6=N
N�2PN

i Wi
N�1

#

(51)

we can take the saddle point approximation then with ti ! ⌧i +
1
⌧i
, ⌧i = 1+ ✏i.

We can see that the leading exponential in large p
2
is

As(p) ⇠ e
�p2


2�4 2N�2(N�1)

2N�1N

�

⇠ e
�2p2/N

(52)

the part coming from the gaussian integral after saddle point approx is still

missing

6

1

(16⇡2)NN !
e�2s/N
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Fig. 1. (a) A sunset diagram with three different masses m1, m2 and m3. (b) General topology of the class of
water melon diagrams. (c) One half of a cut n = 6 water melon diagram in the Standard Model representing
the spectral function for the process q → qℓν̄ℓgZH. (d) An example of a water melon diagram with multiple
gluon radiation from internal lines.

subsets of diagrams in different regimes of their masses and their external momenta
is now an active field of research and often requires extensive use of direct numerical
methods [5].
Among the many two-loop topologies the two-loop sunset diagrams with different

values of internal masses as shown in Fig. 1a have been recently studied in some detail
(see, e.g., Refs. [6111] and references therein). In the present note we describe an
efficient method for computing and investigating a class of diagrams that generalizes
the sunset topology to any number of internal lines (massive propagators) in arbitrary
number of space-time dimensions. We call the class of diagrams with this topology
water melon diagrams. Fig. 1b shows a diagram with water melon topology. In our
opinion, the method presented in the paper completely solves the problem of computing
this class of diagrams. The method is simple and reduces the multiloop calculation of
a water melon diagram to a one-dimensional integral which includes only well known
special functions in the integrand for any values of internal masses. The technique is
universal and requires only minor technical modifications for additional tensor structure
of vertices or internal lines (propagators), i.e. tensor particles or/and fermions can be
added at no extra cost. The method can also handle form factor type processes at small
momentum transfer 1 the inclusion of lines of incoming/outgoing particles with vanish-
ing momenta and derivatives thereof with respect to their momenta is straightforward
and is done within the same calculational framework. Our final one-dimensional inte-
gral representation for water melon diagrams is well suited for any kind of asymptotic
estimates in masses and/or momentum. The principal aim of our paper is to work out
a practical tool for computing water melon diagrams. In the Euclidean domain the nu-



• The	behaviour	of	perturbaDve	amplitudes	(e.g.	Gross	Mende)	can	be	understood	
by	perturbing	world	line	Green’s	funcDons	without	string	theory	cluXer/beauty		

• The	lowest	correcDons	to	G	recovers	the	aXenuaDon	of	string	amplitudes	in	the	UV	

• Can	define	sensible	RG	at	scales	much	higher	Ms	in	terms	of	physical	amplitudes,	in	
which	string	theory	seems	to	have	a	Gaussian	UV	fixed	point	

• Inspired	by	this	to	look	at	new	class	of	UV-complete	world-line	theories		

• Correspond	to	infinite	derivaDve	field	theories,	but	much	nicer	properDes	—	e.g.	
amplitudes	dominated	by	saddle	points	

• Gravity?	Macrocausality?	Unitarity	at	level	of	S-matrix?		

Conclusions


