

Non-geometric Calabi-Yau backgrounds and heterotic/type II duality

Dan Israël, Univ. Sorbonne

GGI String Workshop, April 2019

- ★ Non-geometric Calabi-Yau Backgrounds and K3 automorphisms,
 - Chris Hull, D.I., Alessandra Sarti, arXiv:1710.00853, JHEP 1711 (2017) 084
- ★ Heterotic/type II duality and non-geometric compactifications
 - Yoan Gautier, Chris Hull and D.I., to appear

Introduction

- What are the generic (SUSY) string compactifications?
 - → One may expect that most are not of geometrical nature
- Non-geometric compactifications have few massless moduli
- Interesting underlying mathematics
- Only sporadic classes known ➤ T-folds,...

Many view-points on non-geometry

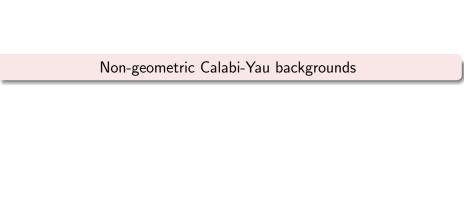
- Worldsheet: asymmetric 2d CFTs
- Quotient of geometric solutions with stringy symmetries
- Generalized geometry
- 4d supergravity
- String dualities
- ...

★ Motivations

- Genuine non-geometric string backgrounds apart from free-fields?
- How to construct *mirror-folds*?
- ullet General $\mathcal{N}=2$ vacua in 4d and string dualities

Scope of this presentation

- Supersymmetric vacua from non-geometric Calabi-Yau automorphisms
- Mathematical framework: Mirrored K3 automorphisms
- String backgrounds: Asymmetric $K3 \times T^2$ Gepner models
- New type of heterotic/type II duality
- Moduli spaces and quantum corrections



• String theory on compact manifolds: moduli space of vacua

$$\mathcal{M}=O(\Gamma)ackslash G/H$$
 $O(\Gamma)\subset G$ isometry group of a charge lattice Γ

- $O(\Gamma)$ contains "stringy" symmetries as T-dualities
- Those symmetries can appear in transition functions ➤ T-folds, U-folds,...
- Fibration over S^1 with (non-geometric) monodromy twist:

$$\phi(x^{\mu},y)=e^{\frac{Ny}{2\pi R}}\phi(x^{\mu})$$
 , $M=e^{N}\in O(\Gamma)$

- M of finite order ightharpoonup critical points with Minkowski vacuum
- Critical point corresponds to fixed points of $M \rightarrow$ orbifold CFTs

A simple toroidal model

$T^{\,2}$ compactification

$$ds^{2} = \frac{T_{2}}{U_{2}} |dx_{1} + U dx_{2}|^{2}, T_{1} = B_{12}$$

Moduli space:

$$\underbrace{\frac{SL(2,\mathbb{R})}{\underbrace{SL(2,\mathbb{Z})\times U(1)}}}_{\text{complex structure }U} \times \underbrace{\frac{SL(2,\mathbb{R})}{\underbrace{SL(2,\mathbb{Z})\times U(1)}}}_{\text{K\"{a}hler }T}$$

Order 4 automorphism

- $\bullet \ \sigma_4: \left\{ \begin{array}{ccc} x^1 & \mapsto -x^2 \\ x^2 & \mapsto x^1 \end{array} \right.$
- Induced $O(2,2;\mathbb{Z})$ action: $U\mapsto -1/U$
- Fixed point $U = i \leftrightarrow \text{square torus}$
- ullet Orbifold by $\langle \sigma_4
 angle$ breaks all ${
 m SUSY}$

Supersymmetric T-fold reduction

(Hellerman, Walcher '06)

• Fibration $T^2 \hookrightarrow \mathcal{M}_3 \to S^1$ with $O(2,2;\mathbb{Z})$ monodromy

$$(x_{\text{\tiny L}}^i, x_{\text{\tiny R}}^i; y) \sim (-x_{\text{\tiny L}}^i, x_{\text{\tiny R}}^i; y + 2\pi R)$$

- $\begin{tabular}{ll} \blacktriangleright & \mbox{Monodromy twist} & \left\{ \begin{array}{ll} U & \mapsto -1/U \\ T & \mapsto -1/T \end{array} \right.$
- Half-SUSY vacua with spacetime SUSY from right-movers

• Type IIA superstrings on $K3 \hookrightarrow \mathcal{M}_6 \to T^2$ fibrations with monodromy twists

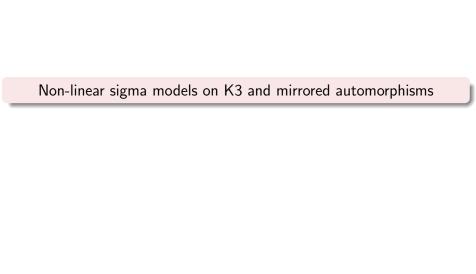
Low-energy limit of type IIA on $K3 \times T^2$

- \bullet $\mathcal{N}=4$ SUGRA in four dimensions
- Field content: SUGRA multiplet $(g_{\mu\nu}, \psi^i_{\mu}, A^{1,\dots,6}_{\mu}, \chi^i, \tau)$ 22 vector multiplets $(A^a_{\mu}, \lambda^a_i, \mathcal{M})$
- Scalars \mathcal{M} , τ take value in the coset $\frac{O(6,22)}{O(6)\times O(22)} \times \frac{SL(2)}{O(2)}$
- Moduli space of K3 compactifications $O(\Gamma_{4,20})\backslash O(4,20)/O(4)\times O(20)$
 - ightharpoonup Consider monodromies $\mathcal{M} \in O(\Gamma_{4,20}) \subset O(4,20)$
- Goal: $\mathcal{N}=4 \rightarrow \mathcal{N}=2$ spontaneous SUSY breaking

- \bullet $K3\times T^2$ with monodromy twists $M_i=e^{N_i}\in O(\Gamma_{4,20})$ along T^2
 - \blacktriangleright structure constants $\boxed{t_{iI}^{\ J} = N_{iI}^{\ J}}$ of $\mathcal{N}=4$ gauged supergravity
- ullet Potential and SUSY breaking mass terms computed from t_{MNP}

Vacua with spontaneous SUSY breaking $\mathcal{N}=4 \rightarrow \mathcal{N}=2$

- Gravitini transform in $(\mathbf{2},\mathbf{1},\mathbf{1}) \oplus (\mathbf{1},\mathbf{2},\mathbf{1})$ of $\{SU(2) \times SU(2) \cong SO(4)\} \times SO(20) \subset O(4,20)$
- Minkowski vacua from elliptic monodromies in $\{SO(4) \times SO(20)\} \cap O(\Gamma_{4,20}) \subset O(4,20)$
- Half-SUSY vacua from monodromies in $\{SU(2) \times SO(20)\} \cap O(\Gamma_{4,20}) \subset O(\Gamma_{20}) \subset O(4,20)$
- Such solutions, if any, are necessarily non-geometric (as K3 diffeos in $O(3,19) \subset O(4,20)$) \Longrightarrow mirror-folds?
- ullet Their construction relies on recent works on mirror symmetry of K3 surfaces



K3 surfaces: elementary facts

K3-surfaces

• K3 surface X: Kähler 2-fold with a nowhere vanishing holomorphic 2-form Ω

• Hodge diamond:
$$h^{1,0}_{1,0} h^{0,1}_{1,1} h^{0,2}_{1,2} = 1 \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 20 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- Inner product: $(\alpha, \beta) \in H^2(X, \mathbb{Z}) \times H^2(X, \mathbb{Z}) \mapsto \langle \alpha, \beta \rangle = \int_{\mathbb{Z}} \alpha \wedge \beta \in \mathbb{Z}$
- $H^2(X,\mathbb{Z})$ isomorphic to unique even, unimodular lattice of signature (3,19):

$$\Gamma_{3,19} \cong E_8 \oplus E_8 \oplus U \oplus U \oplus U$$
 , $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

• Lattice of total cohomology $H^*(X,\mathbb{Z})$: $\Gamma_{4,20} \cong E_8 \oplus E_8 \oplus U \oplus U \oplus U \oplus U \oplus U$

$$\Gamma_{4,20} \cong E_8 \oplus E_8 \oplus U \oplus U \oplus U \oplus U \oplus U$$

Moduli space of Ricci-flat metrics on K3

- Ricci-flat metric on $X \leftrightarrow$ space-like oriented 3-plane $\Sigma = (\Omega, J) \subset \mathbb{R}^{3,19} \cong H^2(X, \mathbb{R})$, modulo large diffeos
- $\bullet \mid \mathcal{M}_{KE} \cong O(\Gamma_{3,19}) \setminus O(3,19) / O(3) \times O(19) \times \mathbb{R}_{+}$

String theory compactifications on K3

Non-linear sigma-models on K3 surfaces

•
$$\int_{\Sigma} d^2z \left\{ g_{i\bar{j}} (\partial_z \phi^i \partial_{\bar{z}} \phi^{\bar{j}} + \partial_{\bar{z}} \phi^i \partial_z \phi^{\bar{j}}) + \frac{\mathbf{b}_{i\bar{j}}}{\mathbf{b}_{i\bar{j}}} (\partial_z \phi^i \partial_{\bar{z}} \phi^{\bar{j}} - \partial_{\bar{z}} \phi^i \partial_z \phi^{\bar{j}}) \right\}$$

- g Ricci-flat and $db = 0 \Rightarrow CFT$
- $\int_{\phi(\Sigma)} b \rightarrow 22$ real parameters

Moduli space of NLSMs

- ullet Choice of metric & B-field \leftrightarrow choice of space-like oriented 4-plane $\Pi \subset \mathbb{R}^{4,20}$
- $\bullet \ \boxed{\mathcal{M}_{\sigma} \cong O(\Gamma_{4,20}) \backslash O(4,20) \ / \ O(4) \times O(20)} \ \ \textit{(Seiberg, Aspinwall-Morrison)}$
- ullet $O(\Gamma_{4,20})$ contains non-geometric symmetries as mirror symmetry
- K3 surfaces hyper-Kähler
- what does mirror symmetry mean?
- how to define mirror-folds?

Lattice-polarized mirror symmetry

• Picard lattice $S(X) = H^2(X,\mathbb{Z}) \cap H^{1,1}(X) \subset \Gamma_{3,19}$ $ightharpoonup \operatorname{rank}
ho(X) \geqslant 1$ for an algebraic surface, signature $(1,\rho-1)$

Polarized K3 surfaces

- Lattice M of signature (1, r-1) with primitive embedding in S(X) $\longrightarrow M$ -polarized surface (X, M)
- Moduli space of complex structures compatible with polarization: $\mathcal{M}_M \cong O(M^{\perp}) \setminus O(2, 20 r) / O(2) \times O(20 r)$

Lattice-polarized mirror symmetry

(Dolgachev, Nikulin)

M-polarized surface (X,M) and $\tilde{M}\text{-polarized}$ surface (\tilde{X},\tilde{M}) LP-mirror if

$$\Gamma^{3,19} \cap M^{\perp} = U \oplus \tilde{M}$$

Greene-Plesser mirror symmetry

• Is lattice-polarized mirror symmetry related to "physicist's" mirror symmetry?

Example of Greene-Plesser construction

(Greene, Plesser '90)

- Hypersurface $w^2 + x^3 + y^8 + z^{24} = 0 \subset \mathbb{P}_{[12,8,3,1]}$
- ullet Greene-Plesser mirror surface: quotient of the same hypersurface by the group G of supersymmetry-preserving automorphisms
- Here $G \simeq \mathbb{Z}_2$ generated by $g: \left\{ \begin{array}{ccc} w & \mapsto & -w \\ y & \mapsto & -y \end{array} \right.$
- More general case (non-Fermat): Berglund-Hübsch

(Berglund-Hübsch '91)

• The key point, to compare both notions, is the choice of lattice polarization

- Non-symplectic order p automorphism σ_p : $\sigma_p^{\star}(\Omega) = e^{\frac{2i\pi}{p}}\Omega$
- Invariant sublattice of $\Gamma_{3,19}$: $S(\sigma_p) \subseteq S(X)$
- Orthogonal complement $T(\sigma_p) = S(\sigma_p)^{\perp} \cap \Gamma_{3,19}$

Previous example

- Hypersurface $w^2 + x^3 + y^8 + z^{24} = 0 \subset \mathbb{P}_{[12,8,3,1]}$
- Order 3 automorphism $\sigma_3: x \mapsto e^{2i\pi/3}x$
- Sub-lattices $S(\sigma_3) \cong E_6 \oplus U$ and $T(\sigma_3) \cong E_8 \oplus A_2 \oplus U \oplus U$

Greene-Plesser mirror surface

- Orbifold $\tilde{w}^2 + \tilde{x}^3 + \tilde{y}^8 + \tilde{z}^{24} = 0 \subset \mathbb{P}_{[12,8,3,1]} / \mathbb{Z}_2$
- Order 3 automorphism $\tilde{\sigma}_3: \tilde{x} \mapsto e^{2i\pi/3}\tilde{x}$
- Sub-lattices $S(\tilde{\sigma}_3) \cong E_8 \oplus A_2 \oplus U$ and $T(\sigma_3) \cong E_6 \oplus U \oplus U$
- Lattice-polarized mirror symmetry relates the first surface polarized by $S(\sigma_3)$ to the second surface polarized by $S(\tilde{\sigma}_3)$

The general story

Non-symplectic automorphisms and mirror symmetry

$$\bullet \ \textit{p-cyclic} \ \mathsf{K3} \ \mathsf{surface} \ X \colon \qquad \boxed{W = w^p + f(x,y,z)} \circlearrowleft \sigma_p : \ w \mapsto e^{\frac{2i\pi}{p}} w$$

- $\bullet \ \, \mathsf{Berglund-H\"ubsch} \ \, \mathsf{mirror} \ \, \tilde{X} \colon \middle| \ \, \tilde{W} = \tilde{w}^p + \tilde{f}(\tilde{x},\tilde{y},\tilde{z})/G \, \middle| \, \circlearrowleft \, \tilde{\sigma}_p : \, \tilde{w} \mapsto e^{\frac{2i\pi}{p}} \tilde{w}$
- Theorem (Artebani et al., Comparin et al., Bott et al.): The $S(\sigma_n)$ -polarized surface X and the $S(\tilde{\sigma}_n)$ -polarized surface X are lattice-polarized mirrors.

Corollary: lattice decomposition

(Hull, DI, Sarti)

• $T(\tilde{\sigma}_p)$ is the orthogonal complement of $T(\sigma_p)$ in $\Gamma_{4,20}$:

$$T(\tilde{\sigma}_p) \cong T(\sigma_p)^{\perp} \cap \Gamma_{4,20}$$
.

• Orthogonal decomposition over \mathbb{R} (and over \mathbb{Q}):

$$\left| \Gamma_{4,20} \otimes \mathbb{R} \right| \cong \left(T(\sigma_p) \oplus T(\tilde{\sigma}_p) \right) \otimes \mathbb{R}$$

Lattice definition

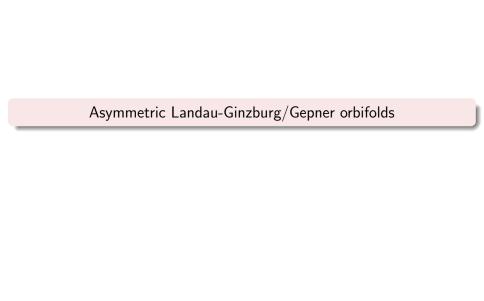
- ullet Let X be a p-cyclic K3 surface, and X its LP/BH mirror,
- One can extend the diagonal action of $(\sigma_p, \tilde{\sigma}_p)$ on $T(\sigma_p) \oplus T(\tilde{\sigma}_p)$ to an action on the whole lattice $\Gamma_{4,20}$.
- This defines a lattice isometry in $O(\Gamma_{4,20})$ associated with the action of a NLSM automorphism $\hat{\sigma}_p$, that we name mirrored automorphism.

Intrinsic definition

- Denoting by μ the BH/LP mirror involution, $\left|\hat{\sigma}_{p}:=\mu\circ\tilde{\sigma}_{p}\circ\mu\circ\sigma_{p}\right|$
- "Gluing" of a Calabi-Yau symmetry and of a symmetry of the mirror CY

Reduction with monodromy twists

- $T(\sigma_p)$ and $T(\tilde{\sigma}_p)$ of signatures (2,r) and (2,20-r).
- Action of $\hat{\sigma}_p \Longrightarrow$ diagonal space-like $O(2) \times O(2) \subset O(4,20)$ of order p
- Leads to $\mathcal{N}=2$ Minkowski vacua \blacktriangleright orbifold theories at the fixed points?



Gepner models/LG orbifolds for K3 surfaces

Landau-Ginzburg models

- ullet $\mathcal{N}=(2,2)$ QFTs in 2d, chiral multiplets Z_ℓ and superpotential $W(Z_\ell)$
- Quasi-homogeneous polynomial with an isolated critical point:

$$W(\lambda^{w_{\ell}} Z_{\ell}) = \lambda^d W(Z_{\ell})$$

ullet Flows to a (2,2) SCFT in the IR

LG orbifold model for K3 surfaces

- Quantum non-linear sigma-model on a K3 surface in small-volume limit
- ullet LG model $W=Z_1^{p_1}+Z_2^{p_2}+Z_3^{p_3}+Z_4^{p_4}$, $K=\operatorname{lcm}(p_1,\ldots,p_4)$
- GSO projection: diagonal \mathbb{Z}_K orbifold $j: \mathbb{Z}_\ell \mapsto e^{2i\pi/p_\ell} \mathbb{Z}_\ell$
 - ightharpoonup fields in twisted sectors $\gamma = 0, \dots, K-1$
- IR fixed point: $\mathcal{N}=(4,4)$ SCFT with $c=\bar{c}=6$ \blacktriangleright Gepner model

K3 Gepner/Landau-Ginzurg orbifolds

Symmetries of Gepner models

- $\bullet \ W = Z_1^{p_1} + \dots + Z_4^{p_4} \\ & \stackrel{}{\blacktriangleright} \text{ discrete symmetry group } \left(\mathbb{Z}_{p_1} \times \dots \times \mathbb{Z}_{p_4}\right) / \langle j \rangle$
- $Z_\ell\mapsto e^{\frac{2i\pi r_\ell}{p_\ell}}Z_\ell$ with $\sum_\ell \frac{r_\ell}{p_\ell}\in\mathbb{Z}$ \Longrightarrow SUSY-preserving symmetries
- \bullet Quantum symmetry of LG orbifold: $\left| \ \sigma_K^{\mathfrak{Q}} : \ \phi_\gamma \mapsto e^{2i\pi\gamma/K} \phi_\gamma \right|$

Orbifolds of Gepner models

- Supersymmetric orbifold of a K3 Gepner model
 - → other point in K3 NLSM moduli space
- Quotient by $\langle \sigma_{p_\ell} \rangle$, with $\sigma_{p_\ell}: Z_\ell \mapsto e^{2i\pi/p_\ell} Z_\ell$ for given ℓ
 - ➡ breaks all space-time SUSY

★Latter case: space-time SUSY can be partially restored using discrete torsion

Asymmetric K3 Gepner models

A simple class of asymmetric K3 Gepner models

(DI '15)

- $\sigma_{p_1}: Z_1 \mapsto e^{2i\pi/p_1}Z_1$ orbifold $\stackrel{\bullet}{\blacktriangleright}$ field $\sigma_{p_1}: Z_1 \mapsto e^{2i\pi/p_1}Z_1$ field $\sigma_{p_1}: Z_1 \mapsto e^{2i\pi/p_1}Z_1$
 - \blacktriangleright twisted sectors $r = 0, \ldots, p_1 1$
- ★ Project w.r.t. shifted \mathbb{Z}_{p_1} orbifold charge: $\hat{Q}_{p_1} = Q_{p_1} + \frac{\gamma}{p_1}$ discrete torsion ★ (diagonal $\mathbb{Z}_{\mathbb{K}}$ orbifold charge shifted by $-\frac{r}{p_1}$)
- Interpretation: order p subgroup of the quantum symmetry group

$$\sigma_{p_1}^{\mathfrak{Q}}:=(\sigma_K^{\mathfrak{Q}})^{K/p_1}$$
 $ightharpoonup$ γ -tw. sector field has charge $Q_{p_1}^{\mathfrak{Q}}\equiv rac{\gamma}{p_1}\mod 1$

Space-time supercharges from left-movers only

Related works

- Asymmetric models from simple currents
- I G orbifolds

(Schellekens & Yankielowicz 90)

(Intriligator & Vafa 90)

K3 fibrations with non-geometric monodromies

Asymmetric $K3 \times T^2$ Gepner models in type IIA

(DI, Thiéry '14)

- K3 Gepner model $\left(W=Z_1^{p_1}+Z_2^{p_2}+Z_3^{p_3}+Z_4^{p_4}\right)$ times \mathbb{R}^2 (x,y) in type IIA/B
- ullet Freely-acting $\mathbb{Z}_{p_1} imes \mathbb{Z}_{p_2}$ quotient with discrete torsion as above

$$\begin{cases} Z_1 & \mapsto e^{2i\pi/p_1} Z_1 \\ x & \mapsto x + 2\pi R_1 \end{cases}$$

$$\left\{ \begin{array}{ll} Z_2 & \mapsto e^{2i\pi/p_2} Z_2 \\ y & \mapsto y + 2\pi R_2 \end{array} \right.$$

Main features

Supersymmetry breaking

- No massless Ramond-Ramond states
- Spontaneous breaking $\mathcal{N}=4 \rightarrow \mathcal{N}=2$ in four dimensions

Moduli space

- ullet U and T moduli of the T^2 and axio-dilaton S always massless
- For about 50% of the models: all K3 moduli become massive

Low-energy 4d theory

- \bullet $\,\mathcal{N}=2$ vacua of $\mathcal{N}=4$ gauged SUGRA
- Axio-dilaton and torus moduli in vector multiplets $\blacktriangleright \mathcal{N} = 2 \ STU \ \mathsf{SUGRA}$
- Surviving K3 moduli (if any): hypermultiplets

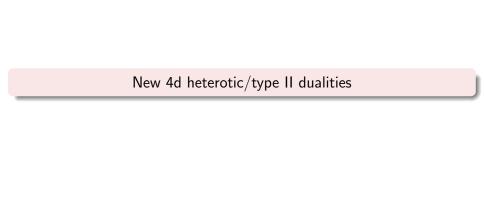
Mirrored K3 automorphisms vs. asymmetric Gepner models

Mirror symmetry and quantum symmetry of Gepner models

- In the Gepner model construction we have used:
 - lacktriangledown order p_1 symmetry group of the superpotential $Z_1\mapsto e^{2i\pi/p_1}Z_1$
 - $oldsymbol{0}$ order p_1 subgroup of the quantum sym. group generated by $\sigma_{p_1}^{\mathfrak{Q}}:=(\sigma^{\mathfrak{Q}})^{K/p_1}$
- These symmetries are exchanged by mirror symmetry $(\bar{Q}_R \mapsto -\bar{Q}_R)$

Non-geometric orbifolds from mirrored automorphisms

- K3 orbifold with discrete torsion \longrightarrow projection $Q_{p_1} + Q_{p_1}^{\mathfrak{Q}} \in \mathbb{Z}$
- Corresponds to the diagonal action of $(\sigma_{p_1}, \tilde{\sigma}_{p_1})$!
- ullet Therefore, a K3 bundle over T^2 with mirrored automorphisms twists gives at the fixed points an asymmetric $K3 \times T^2$ Gepner model



Heterotic/type II dualities in 4d

Six-dimensional duality

(Hull, Townsend '94)

- Type IIA on K3 \leftrightarrow Heterotic on T^4 , $\phi_{\text{IIA}} = -\phi_{\text{IIB}}$
- ullet $O(\Gamma_{4,20}) \setminus O(4,20) \ / \ O(4) \times O(20)$ as heterotic Narain moduli space
- Non-Abelian heterotic gauge groups ↔ non-perturbative IIA vacua

Four-dimensional $\mathcal{N}=4$ duality

- \bullet Type IIA/IIB on $K3\times T^2 \leftrightarrow$ Heterotic on T^6
- Moduli space $O(\Gamma_{6,22}) \setminus O(6,22) / O(4) \times O(20)$

Four-dimensional $\mathcal{N}=2$ dualities

- Type II $\mathcal{N}=2$ compactification on CY_3 manifold with K3 fibration
- Large base volume limit: apply the 6d duality fiberwise
 - adiabatic argument

(Vafa, Witten 95)

★Analoguous $\mathcal{N}=4$ models: type IIA duals of heterotic CHL (See

(Schwarz, Sen '95)

Example :FHSV construction

Enriques CY 3-fold

- There exists a unique non-symplectic involution σ_2 of K3 surfaces without fixed points \blacktriangleright Enriques involution
- Quotient of $K3 \times T^2$ by $(\sigma_2, \mathcal{I}_{T^2})$ \Longrightarrow freely acting orbifold
- ullet Calabi-Yau 3-fold with $SU(2) imes \mathbb{Z}_2$ holonomy

Heterotic dual

(Ferrara, Harvey, Strominger, Vafa 95)

- ullet Dual: Freely-acting orbifold of heterotic on $T^4 imes T^2$
- Heterotic modular invariance? \blacktriangleright winding shift along T^4 required
- Type IIA interpretation: discrete Wilson line for RR forms non-perturbative consistency condition!
- ★ General story: heterotic on $K3 \times T^2 \leftrightarrow IIA$ on K3-fibered CY₃

New $\mathcal{N}=2$ dualities from non-geometric backgrounds

The type IIA story

- $K3 \hookrightarrow \mathcal{M}_6 \to T^2$ fibration with mirrored automorphisms twists
- Free action on T^2 (translation)
- Monodromies $\hat{\sigma}_p \in O(\Gamma_{4,20})$ of K3 fiber
- \bullet $\mathcal{N}=2$ SUSY vacua, without BPS D-branes
- Dilaton sits in a *vector* multiplet

The heterotic story

(Gautier, Hull, DI '19)

- $\hat{\sigma}_p \in O(\Gamma_{4,20}) \leftrightarrow \text{order } p \text{ isometry of the}(4,20)$ Narain lattice
- Action on the T^4 left-movers (SUSY side): rotation of angles $(2\pi/p, -2\pi/p)$, $p \in \{2, \dots, 13\}, p \neq 11$
- Action on the 24 right-moving compact bosons: rotation leaving no sub-lattice invariant
 - unlike ordinary orbifolds, twist, not shift, in the gauge sector
- ullet Dual of IIA Gepner points have no enhanced gauge symmetry from T^4

Heterotic perturbative consistency

- Asymmetric orbifolds of heterotic on $T^4 \times T^2 \Longrightarrow$ level matching?
- Modular invariance of the partition function requires a winding shift along T^2 : Shift vector $\delta = \frac{1}{n}(1,0,1,0) \in \mathbb{R}^{2,2} \mod \Gamma_{2,2}$
- Invisible in large T^2 limit
 - → compatible with "adiabatic argument" of Vafa and Witten

Type IIA interpretation

 \bullet Fundamental heterotic wrapped on $S^1 \subset T^2$

↑ undamental neterotic wrapped on S ⊂ I

Type IIA NS5-brane wrapped on $S^1 \subset T^2$ and K3 fiber (Sen '95)

- wrapped
- Consistency condition found in heterotic becomes non-perturbative: wrapped NS5-branes charged under the mirrored automorphisms
- Is there a generalized non-perturbative concept of modular invariance?

Hypermultiplet moduli space (single monodromy)

- Hypermuliplets in type IIA frame: surviving K3 moduli (if any)
- Exact hypermultiplets moduli space determined from the heterotic description
- ullet Mirrored automorphism of order 2 : $\hat{\sigma}_2 = -\mathbb{I}_{24}$ hence no restriction
 - ightharpoonup as usual, choice of space-like 4-plane $\Pi_L(\Gamma_{4,20})$ into $\mathbb{R}^{4,20}$

$$\mathcal{M} \cong O(\Gamma_{4,20}) \backslash O(4,20) / O(4) \times O(20)$$

Mirrored automorphism of order p > 2

- There exists a basis of $\Pi_L(\Gamma_{4,20})\otimes \mathbb{C}$ with $\hat{\sigma}_p=(e^{2i\pi/p}\mathbb{I}_2,e^{-2i\pi/p}\mathbb{I}_2)$
- ullet Eigenspace for $e^{2i\pi/p}$ of dimension $24/\phi(p)$ (Euler's totient)
- ullet Freedom of choosing space-like complex plane into $\mathbb{C}^{24/\phi(p)}
 ightharpoonup ext{moduli space}$

$$\mathcal{T} \cong SU(2, \frac{24}{\phi(p)} - 2) / S[U(2) \times U(\frac{24}{\phi(p)} - 2)]$$

• Duality group: $\hat{\Gamma}_p = \{ \gamma \in O(\Gamma_{4,20}) | \gamma \otimes \hat{\sigma}_p^* = \hat{\sigma}_p^* \otimes \gamma \}$

Vector multiplet moduli space: type IIA

- Classical moduli space: $\mathcal{T} \cong \left(\frac{SL(2;\mathbb{R})}{U(1)}\right)_{\mathcal{S}} \times \left(\frac{SL(2;\mathbb{R})}{U(1)}\right)_{\mathcal{T}} \times \left(\frac{SL(2;\mathbb{R})}{U(1)}\right)_{\mathcal{T}}$
- Dilaton T in vector multiplet \rightarrow prepotential does receive quantum corrections

$$F(S,T,U) = STU + h_{II}^{1-loop}(S,U) + \mathcal{O}\left(e^{-T}\right)$$

• Perturbative dualities should preserve the shift vector $\delta_{II} = \frac{1}{n}(1,0,0,0)$

$$G_{\text{II}} = \{ \gamma \in O(\Gamma_{2,2}) | G_{\text{II}} \delta = \delta_{\text{II}} \mod \Gamma_{2,2} \}$$

- One finds $\Gamma_1(p)_S \times \Gamma_1(p)_U \subset G_U \subset SL(2;\mathbb{Z}) \times SL(2;\mathbb{Z})$
- ★ Congruence subgroup: $\Gamma_1(p) = \left\{ g = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod p \right\}$

Modular propreties of $h_{\text{\tiny II}}^{1-loop}(S,U)$

- **1** No enhanced gauge symmetry \rightarrow modular form of weight (-2, -2)(Antoniadis et al., de Wit et al. '95)
- Should vanish at the cusps (decompactification limits)

No negative weights modular form for congruence subgroups: $h_{II}^{1-loop}(S,U)=0$

$$h_{\text{II}}^{1-loop}(S,U) = 0$$

Vector multiplet moduli space: heterotic

•
$$F(S, T, U) = STU + h_{\text{HET}}^{1-loop}(T, U) + \mathcal{O}\left(e^{-S}\right)$$

• Perturbative dualities should preserve the shift vector $\delta_{\text{HET}} = \frac{1}{p}(1,0,1,0)$

$$G_{\text{HET}} = \{ \gamma \in O(\Gamma_{2,2}) | G_{\text{HET}} \delta = \delta_{\text{HET}} \mod \Gamma_{2,2} \} \cong SL(2;\mathbb{Z})_{\text{diag}} \times \Gamma(p) \ltimes \mathbb{Z}_2^{T \leftrightarrow -1/U}$$

• Congruence subgroup: $\Gamma(p)_T \times \Gamma(p)_U \subset G_{\operatorname{HET}}$ with $\Gamma(p) = \{g = \mathbb{I} \mod p\}$

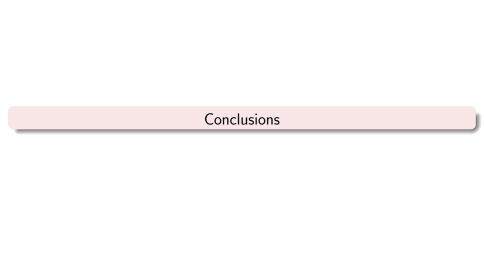
Modular propreties of $h_{\text{II}}^{1-loop}(S,U)$

• Enhanced SU(2) gauge symmetry for $T=U \mod G_{\text{HET}} \Longrightarrow \text{singularities}$

$$h_{\text{HET}}^{1-loop}(T,U) \sim -\frac{1}{16\pi^2} (T-U)^2 \log(T-U)^2$$

- $h^{\text{\tiny HET}}(T,U)$ not a modular form but $\partial_U^3 h^{\text{\tiny HET}}(T,U)$ and $\partial_T^3 h^{\text{\tiny HET}}(T,U)$ are
- Determined from $\Gamma(p) \times \Gamma(p)$ covariance, singularities & vanishing at cusps

★So far, exact form of $\partial^3 h^{1-loop}_{\text{HET}}(T,U)$ for p=2 with the expected singularities



- Non-geometric compactifications of superstring theory are likely the most generic ones yet poorly understood
- Large class of non-geometric compactifications based on Calabi-Yau rather than toroidal geometries first construction of "mirrorfolds"
 - Worldsheet CFT
- - Gauged SUGRA
 - Heterotic/type II duality
- ☐ New classes of symmetries of CY sigma-models: mirrored CY automorphisms
- \blacksquare Heterotic/type II duality: new $\mathcal{N}=2$ string dualities in 4d
- Some open questions:
 - Relation with the Mathieu moonshine?
 - 2 Insights on NS5-brane winding shifts in the type IIA frame
 - **3** CY₃-based constructions $\rightarrow \mathcal{N} = 1$ type II vacua without RR fluxes!
 - 4 How to get non-Abelian gauge groups in type II?

☐ First glimpse of a new continent inside the string landscape – or unicorn?

