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A partial preview of the
results

Alok Laddha, A.S. arXiv:1806.01872

Biswajit Sahoo, A.S. arXiv:1808.03288

+ earlier papers
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Consider an explosion in space

D

A bound system at rest breaks apart into fragments
carrying four momenta p1,p2, · · · with

p2
a + m2

a = 0, a = 1,2, · · · , p2
a ≡ −(p0

a)2 + ~p2
a

This process emits gravitational waves

Detector D placed far away detects hµν ≡ (gµν − ηµν)/2

Physical components: hTT
ij (transverse, traceless)
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We shall be interested in the late time tail of the radiation –
the radiation at a large time u after the passage of the peak

It has the form

hTT
ij = ATT

ij +
1
u

BTT
ij + · · ·

Aµν = −2 G
R

∑
a

pµapνa
pa.n

, u.v = −u0v0 + ~u.~v

Bµν =
2 G2

R

[
2
∑
a,b

n.pb

n.pa
pµa pνa

+
∑

a,b
b6=a

nρp
(ν
a

pa.n
(pµ)a pρb − pµ)b pρa)

pb.pa

{(pb.pa)2 −m2
am2

b}3/2

{
2(pb.pa)2 − 3m2

am2
b
}]

n=(1, n̂), n̂: unit vector towards the detector

R: distance to detector, G: Newton’s constant
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hij = ATT
ij +

1
u

BTT
ij , for large u

Aµν = −2 G
R

∑
a

pµa pνa
pa.n

Bµν =
2 G2

R

[
2
∑
a,b

n.pb

n.pa
pµa pνa

+
∑

a,b
b6=a

nρp
(ν
a

pa.n
(pµ)a pρb − pµ)b pρa)

pb.pa

{(pb.pa)2 −m2
am2

b}3/2

{
2(pb.pa)2 − 3m2

am2
b
}]

Note: The result is given completely in terms of the
momenta of final state particles without knowing what
caused the explosion or how the particles moved during
the explosion

– consequence of soft graviton theorem (a result for
quantum S-matrix)
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hij = ATT
ij +

1
u

BTT
ij , for large u

Aij: memory term

– a permanent change in the state of the detector after the
passage of gravitational waves

Zeldovich, Polnarev; Braginsky, Grishchuk; Braginsky, Thorne; · · ·

– connected to leading soft theorem Strominger; · · ·

Bij: tail term

– connected to logarithmic terms in the subleading soft
theorem Laddha, A.S.
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A similar result exists for a general scattering process

– gives the gravitational wave-form h̃ij at low frequency in terms
of momenta of incoming and outgoing particles.

h̃
TT
ij (~x, ω) = CTT

ij (ω)

Cµν =
2 G
i R

∑
a

ηa
pµa pνa
pa.k

1 + 2 i G ln(ω−1R−1)
∑

b,ηb=−1

k.pb


+2

G2

R
lnω−1

∑
a

∑
b6=i

ηaηb=1

kρp
(ν
a

pa.k
(pµ)a pρb − pµ)b pρa)

× pb.pa

{(pb.pa)2 −m2
am2

b}3/2

{
2(pb.pa)2 − 3m2

am2
b
}

+ finite .

k = −ω
(
1, ~x/|~x|

)
, ηa: +1 if a is incoming, −1 if a is outgoing.

– Matches explicit results in special cases
Peters; Ciafaloni, Colferai, Veneziano; Addazi, Bianchi, Veneziano 7



In the rest of the talk we shall try to explain the origin of
this result from soft graviton theorem

– combination of logic + guesswork + test

Units: ~ = c = 8πG = 1

Some earlier references:

Weinberg; . . .

White; Cachazo, Strominger; Bern, Davies, Di Vecchia, Nohle; Elvang, Jones, Naculich; . . .

Klose, McLoughlin, Nandan, Plefka, Travaglini; Saha

Bianchi, Guerrieri; Di Vecchia, Marotta, Mojaza; . . .

Strominger; He, Lysov, Mitra, Strominger; Strominger, Zhiboedov; Campiglia, Laddha; . . .

Bern, Davies, Nohle; Cachazo, Yuan; He, Kapec, Raclariu, Strominger

8



What is soft graviton theorem?

Take a general coordinate invariant quantum theory of
gravity coupled to matter fields

Consider an S-matrix element involving

– arbitrary number N of external particles of finite
momentum p1, · · ·pN

– M external gravitons carrying small momentum k1, · · · kM.

Soft graviton theorem: Expansion of this amplitude in
power series in k1, · · · kM in terms of the amplitude without
the soft gravitons.
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Under some assumptions one can give a completely
general derivation of soft graviton theorem

A.S.; Laddha, A.S.; Chakrabarti, Kashyap, Sahoo, A.S., Verma

– generic theory (including string theory)

– generic number of dimensions

– arbitrary mass and spin of elementary / composite finite
momentum external states

e.g. gravitons, photons, electrons, massive string states,
nuclei, molecules, planets, stars, black holes

Main ingredient: Graviton coupling with zero or one
derivative is fixed completely by general coordinate
invariance. 10



Assumptions

1. The scattering is described by a general coordinate
invariant one particle irreducible (1PI) effective action

– tree amplitudes computed from this give the full quantum
results

2. The vertices do not contribute powers of soft
momentum in the denominator

– breaks down in D=4

Work in D > 4 for now

– to be rectified at the end
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Result:

Let Γ be the scattering amplitude of any set of finite energy
(hard) particles.

Scattering amplitude of the same set of states with M
additional soft gravitons of polarization {εr} and
momentum {kr} (1 ≤ r ≤ M) takes the form

S({εr}, {kr}) Γ

up to subleading order in expansion in powers of soft
momentum.

S({εr}, {kr}): Known, universal operator, involving
derivatives with respect to momenta of hard particles and
matrices acting on the polarization of the hard particles.
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Classical limit Laddha, A.S.

We take the limit in which

1. Energy of each hard particle becomes large (compared
to Mpl)

–represented by wave-packets with sharply peaked
distribution of position, momentum, spin etc.

2. The total energy carried by the soft particles should be
small compared to the energies of the hard particles

– a necessary criterion for how small the momenta should
be so as to be declared soft.
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In this limit the multiple soft theorem takes the form{
M∏

r=1

Sgr(εr,kr)

}
Γ, Sgr = S(0) + S(1) + · · ·

S(0)(ε,k) ≡
N∑

a=1

(pa · k)−1 εµν pµa pνa

S(1)(ε,k) = i
N∑

a=1

(pa · k)−1 εµν pµa kρ Jρνa

Jµνa : classical angular momentum of the a-th hard particle

All (angular) momenta are counted positive if ingoing.

If in the far past / future the object has trajectory

xµa = cµa + m−1
a pµa τ

then

Jµνa = (xµa pνa − xνapµa ) + spin = (cµa pνa − cνapµa ) + spin

Sgr is large in the classical limit since pa and Jµνa are large. 14



Amplitude: Γsoft ≡
{∏M

r=1 Sgr(εr,kr)
}

Γ

Probability of producing M soft gravitons of

• polarisation ε,

• energy between ω and ω(1 + δ)

• within a small solid angle Ω around a unit vector n̂

1
M!
|Γsoft|2 ×

{
1

(2π)D−1
1

2ω
ωD−2 (ω δ) Ω

}M

= |Γ|2 AM/M! ,

A ≡ |Sgr(ε,k)|2 1
(2π)D−1

1
2ω

ωD−2 (ω δ) Ω , k = −ω(1, n̂)

Note: A is large in the classical limit
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|Γ|2 AM/M!

is maximised at

∂

∂M
ln
{
|Γ|2 AM/M!

}
= 0

Assuming that M is large,

⇒ ∂

∂M
(M ln A−M ln M + M) = 0

⇒ M = A

In the classical limit M is large since A is large

Probability distribution of M is sharply peaked

Note: the value of M does not change if we allow soft
radiation in other bins. 16



no. of gravitons = A =
1

2DπD−1 |Sgr(ε,k)|2ωD−2 Ω δ

Total energy radiated in this bin

Aω =
1

2DπD−1 |Sgr(ε,k)|2ωD−1 Ω δ

This can be related to the radiative part of the metric field

⇒ gives a prediction for the low frequency radiative part of the
metric field during classical scattering (up to overall phase and
gauge transformation)

(hµν(~x, ω))TT =
1

2ω2

( ω

2πiR

)(D−2)/2 N∑
a=1

(pa · n)−1
[
pµa pνa − iω nρ Jρ(νa pµ)a

]TT

n =
(
1, ~x/|~x|

)
, R = |~x|

– tested in many explicit examples involving classical scattering
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D=4

The S-matrix suffers from IR divergence, making soft
factor ill-defined.

However we can still use the radiative part of the
gravitational field during classical scattering to define soft
factor.

Naive guess: Soft factor defined this way is still given by
the same formulæ:

S(0) ≡
N∑

a=1

(pa · k)−1 εµν pµa pνa

S(1) = i
N∑

a=1

(pa · k)−1 εµν pµa kρ Jρνa
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Problem: Due to long range force on the initial / final
trajectories due to other particles, the trajectory of the a-th
particle takes the form:

xµa = cµa + m−1
a pµa τ + bµa ln |τ |

for some constants bµa .

Jµνa = (xµapνa − xνapµa) = (cµapνa − cνapµa) + (bµapνa − bνapµa) ln |τ |

Due to the ln |τ | term, the soft factors do not have well
defined |τ | → ∞ limit
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Next guess: The soft expansion has a lnω−1 term at the
subleading order, given by S(1) with ln |τ | replaced by lnω−1.

ω ≡ k0

S(1) = i
N∑

a=1

(pa · k)−1 εµν pµa kρ Jρνa

= i
N∑

i=1

(pa · k)−1 εµν pµa kρ (bρapνa − bνapρa) lnω−1

+ finite

This has been tested by studying explicit examples of
gravitational radiation during scattering in D=4

– perfect agreement with all the cases studied.
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Assuming the validity of the ln |τ | ⇒ lnω−1 rule, we can
write down the metric deformation up to gauge
transformation:

h̃
µν

=
2 G
i R

∑
a

ηa
pµapνa
pa.k

1 + 2 i G ln(ω−1R−1)
∑

b,ηb=−1

k.pb


+2

G2

R
lnω−1

∑
a

∑
b6=i

ηaηb=1

kρp
(ν
a

pa.k
(pµ)a pρb − pµ)b pρa)

× pb.pa

{(pb.pa)2 −m2
am2

b}3/2

{
2(pb.pa)2 − 3m2

am2
b

}
+ finite .

ηa: +1 if a is incoming, −1 if a is outgoing.

k = −ω
(
1, ~x/|~x|

)
Sahoo, A.S.
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In the special case when there is only one object in the
initial state, Fourier transform of this gives us back the
result described at the beginning of the talk.

For a core collapse supernova explosion in our galaxy, the
magnitudes of these terms are near the edge of LIGO
detection limits.
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Summary

1. Up to subleading order we have universal soft graviton
theorem in all dimensions > 4, for all mass and spin of
external states.

2. Classical limit of soft theorem determines the low
frequency radiative part of the gravitational field during
classical scattering

3. The ‘classical soft theorem’ is valid also in D=4, but at
the subleading order there is a term ∝ the log of the soft
energy, determined from soft theorem

– produces a tail term to the memory effect
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