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What is string field
theory?
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In the conventional world-sheet approach to string theory, the
scattering amplitudes with n external states take the form:∑

g≥0

(gs)2g
∫

Mg,n

Ig,n

Mg,n: Moduli space of genus g Riemann surface with n punctures

Ig,n: an appropriate correlation function of vertex operators and
other operators (ghosts, PCOs) on a genus g Riemann surface.
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String field theory is a quantum field theory with infinite number
of fields in which perturbative amplitudes are computed by
summing over Feynman diagrams.

Each Feynman diagram can be formally represented as an
integral over the moduli space of a Riemann surface with

– the correct integrand Ig,n (as in world-sheet description)

– but only a limited range of integration.

Sum over all Feynman diagrams reproduces the integration over
the whole moduli space Mg,n.
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Why should we study string field theory?

Original motivation: Use string field theory to give a
non-perturbative definition of string theory.

In this talk the focus will be to use string field theory to better
understand string perturbation theory

– address the ‘infra-red issues’ to make perturbation theory
well-defined.

In the rest of the talk we shall focus on closed string field
theories.

Review: arXiv:1703.06410
Corinne de Lacroix, Harold Erbin, Sitender Pratap Kashyap, A.S., Mritunjay Verma
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General structure of
string field theory
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Begin with classical closed bosonic string field theory
Saadi, Zwiebach; Kugo, Suehiro; Sonoda, Zwiebach; Zwiebach; · · ·

A string field ψ is an element of some vector space H.

H is a subspace of the full Hilbert space of matter and ghost
world-sheet CFT, defined by the constraints:

b−0 |ψ〉 = 0, L−0 |ψ〉 = 0, ng|ψ〉 = 2|ψ〉

b±0 = b0 ± b̄0, L±0 = L0 ± L̄0, c±0 =
1
2

(c0 ± c̄0)

ng = ghost number

Matter CFT: Any CFT with c=26.

Note: No physical state constraint on |ψ〉
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If {|φr〉} is a basis in H, then we can expand |ψ〉 as

|ψ〉 =
∑

r

ψr|φr〉

ψr are the dynamical degrees of freedom

– path integral ≡ integration over the ψr ’s

∑
r includes integration over momenta along non-compact

directions

⇒ makes ψr into fields (in momentum space)
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Classical action (setting gs = 1):

S =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}

QB: BRST charge

For |Ai〉 ∈ H, {A1 · · ·An} is constructed from correlation
functions of the vertex operators Ai on the sphere, integrated
over a subspace S of the moduli space M0,n.

1. Since Ai’s are off-shell, the correlation function depends on
the choice of world-sheet metric, or equivalently the choice of
local coordinate system z in which the metric = |dz|2 locally.

2. The subspace S avoids all degenerations, and its choice is
correlated with the choice of local coordinates in step 1.

Different choices (z, S) give equivalent string field theories
related by field redefinition
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S =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}

This action has infinite parameter gauge invariance of the form

δ|ψ〉 = QB|λ〉+ · · ·

|λ〉 represents gauge transformation parameter.

This theory can be quantized using Batalin-Vilkovisky (BV)
formalism

– introduces ghosts and anti-fields

10



Net result: Relax the constraint on the ghost number of |ψ〉.

The action has similar structure:

SBV =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}

But now {A1 · · ·An} contains contribution from integrals over
subspaces of Mg,n for all g

The higher genus contributions are needed to cancel gauge
non-invariance of the path integral measure.

Note: We shall continue to use the symbols

H for this extended Hilbert space carrying arbitrary ng

|ψ〉 for the extended string field ∈ H

{A1 · · ·An} for the new, quantum corrected product.
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In Siegel gauge b+
0 |ψ〉 = 0, the action takes the form:

Sgf =
1
2
〈ψ|c−0 c+

0 L+
0 |ψ〉+

∑
n

1
n!
{ψn}

Propagator:

b+
0 b−0

1
L+

0
δL−0

= b+
0 b−0

1
2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθe−iθ L−0

Second step is valid only for L+
0 > 0.

Once we have the propagator we can compute amplitudes using
Feynman diagrams.
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Each Feynman diagram has vertices and propagators.

We have some integrals from the vertices (integration over
subspaces of Mg′,n′ ).

g′,n′ refer to individual vertices

We also have two integrals from each propagator (s, θ)

Together the total set of integrals can be interpreted as integral
over a subspace of Mg,n with the correct integrand

(g,n) refer to the full amplitude

Sum over all Feynman diagrams generate integration over the
full moduli space Mg,n with the correct integrand
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Instead of summing over all Feynman diagrams, one could sum
over only one particle irreducible (1PI) diagrams

– gives 1PI effective action

S1PI =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}1PI

The definition of {A1 · · ·An}1PI remains similar to that of
{A1 · · ·An}, except that the subspace of Mg,n that we integrate
over is larger

– includes boundaries of the moduli space that are
non-separating type

(degenerating cycle that does not split the Riemann surface into
two disconnected parts.)
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Separating Non-separating

Note: For bosonic string theory, the 1PI effective action is a
formal object due to tachyons propagating in the loop.

But there will be no such problem in heterotic and type II
theories.
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Heterotic string theory:

World-sheet theory contains β, γ ghosts and associated ξ, η, φ
system after bosonization

β = ∂ξ e−φ, γ = η eφ

Hilbert space H splits into direct sum ⊕nHn

n: picture number

– integer for NS sector, integer + 1/2 for R sector

Picture changing operator (PCO) Friedan, Martinec, Shenker; Knizhnik

X (z) = {QB, ξ(z)}
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Heterotic string field theory: A.S.

Introduce a pair of string fields

|ψ〉 ∈ H−1 +H−1/2, |φ〉 ∈ H−1 +H−3/2

Action

S = 〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

G=Identity in NS sector, G = X0 ≡
∮

dz z−1 X (z) in R sector
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S = 〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

{A1 · · ·An} is defined as in bosonic string theory, with the extra
ingredient that we have to insert certain number of PCO’s to
conserve picture number

Total picture no: (2g-2) on a genus g Riemann surface

Different string field theory actions, associated with different
choices of PCO locations, are related by field redefinition.
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〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

Note: We have doubled the number of degrees of freedom (|φ〉
and |ψ〉)

However since |φ〉 enters the action at most quadratically, it
describes free field degrees of freedom

– completely decouples from the interacting part of the theory
described by |ψ〉

– has no observable effects.

Quantization of this theory proceeds in the same way as in
bosonic string theory.
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For type II string theory the structure of the theory is similar.

|ψ〉 ∈ H−1,−1 ⊕H−1,−1/2 ⊕H−1/2,−1 ⊕H−1/2,−1/2

|φ〉 ∈ H−1,−1 ⊕H−1,−3/2 ⊕H−3/2,−1 ⊕H−3/2,−3/2

S = 〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

G: identity in NSNS sector, X0 in NSR sector,

X̄0 in RNS sector, X0X̄0 in RR sector

20



The tree level ψ-ψ propagator has standard form in the ‘Siegel
gauge’

(L0 + L̄0)−1 b+
0 b−0 G δL0,L̄0

We could (formally) represent this as

b+
0 b−0 G

1
2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0

and (formally) recover the usual representation of amplitudes as
integrals over Mg,n.

But we could also regard string field theory as a field theory with
infinite number of fields and momentum space propagator

(k2 + M2)−1 × polynomial in momentum

The polynomial comes from matrix element of b+
0 b−0 G.
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k1 k2

k3kn · · ·

Vertices are accompanied by a suppression factor of

exp

[
−A

2

∑
i

(k2
i + m2

i )

]

A: a positive constant whose precise value depends on the
choice of coordinate system used to define the off-shell vertex.

Hata, Zwiebach

This makes

– momentum integrals UV finite (almost)

– sum over intermediate states converge
22



Momentum dependence of vertex includes

exp

[
−A

2

∑
i

(k2
i + m2

i )

]
= exp

[
−A

2

∑
i

(~k
2

i + m2
i ) +

A
2

(k0
i )2

]

Integration over ~ki converges for large |~ki|, but integration over
k0

i diverges at large |k0
i |.

The spatial components of loop momenta can be integrated
along the real axis, but we have to treat integration over loop
energies more carefully.
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Resolution: Need to have the ends of loop energy integrals
approach ±i∞.

In the interior the contour may have to be deformed away from
the imaginary axis to avoid poles from the propagators.

Complex k0-plane

×
×

We shall now describe how to choose the loop energy
integration contour.
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General procedure: Pius, A.S.

1. Begin with a configuration of off-shell external momenta
where all energies are imaginary and all spatial momenta are
real.

2. In this case we can take all loop energy contours to lie along
the imaginary axis without encountering any singularity.

3. Now deform the energies to real values (Wick rotation)

4. If some pole of a propagator approaches the loop energy
integration contours, deform the contours away from the pole,
keeping their ends at ±i∞.

Result: Such deformations are always possible

– the loop energy contours do not get pinched by poles from two
sides during this deformation.
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Applications
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Momentum space integrals vs integrals over Mg,n:

Key link:

1
L+

0
δL−0

=
1

2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0

1. For L+
0 < 0 the left hand side is finite but the right hand side is

divergent (as s→∞)

2. For L+
0 = 0 both sides are divergent.

All divergences appearing in the world-sheet description have
their origin in one of these two cases.

– divergences appearing at the boundary of Mg,n where the
Riemann surface degenerates
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1
L+

0
δL−0

=
1

2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0

For L+
0 < 0 the left hand side is finite

⇒ string field theory gives perfectly finite result even though
integral over Mg,n diverges

For L+
0 = 0 both sides are divergent

But in string field theory these are associated with some internal
propagator going on-shell

⇒ field theory intuition tells us how to handle them

28



Applications of string field theory:

1. Non-essential cases: String field theory is helpful but not
essential (L+

0 < 0 cases)

2. Possibly non-essential cases: String field theory is the only
one that is successful at present, but world-sheet methods may
work (L+

0 ≤ 0 cases).

3. Essential cases: String field theory is necessary (L+
0 = 0

cases)

Note: All calculations in string field theory eventually are
expressed in terms of integrals over (subspaces of) Mg,n

The role of string field theory is to tell us what to do near
degeneration when we encounter divergences.
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Example of a non-essential case:

Consider N tachyon amplitude in bosonic string theory

∝
∫ N∏

i=4

d2zi

∏
i<j

|zi − zj|pi.pj

This integral diverges if pi.pj < −2 for any pair (i,j).

– needs to be defined via analytic continuation.

Not very useful for numerical evaluation.

Witten’s iε prescription treats Re(ln zi) and Im(ln zi) as complex
variables and turns the Re(ln zi) contours into complex plane.

Makes divergent integrals into oscillatory integrals, but we still
need to apply some numerical trick to evaluate the integrals.
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In string field theory these divergences can be associated with
L+

0 < 0 states propagating in the internal line.

We need to represent the propagator by 1/L+
0 instead of using

Schwinger parametrization.

This suggests a specific procedure.

1. Remove all regions where 2 or more zi’s approach each other

– gives a finite integral.

2. The missing regions are compensated for by adding boundary
terms.

Also need additional boundary terms where two boundaries
intersect etc.

The boundary terms correspond to Feynman diagrams with one
or more internal propagators.

The bulk term corresponds to the elementary N-string vertex. 31



Examples of possibly non-essential cases:

1. Proof of unitarity

2. Finding the domain of analyticity of the S-matrix
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Unitarity: Mercus; Amano, Tsuchiya; Sundborg; Berera; D’Hoker, Phong; Iengo, Russo; Witten

String theory amplitudes, written as integrals over Mg,n, are
always formally hermitian (T− T† = 0)

– apparently violates unitarity

However one finds by examining the integrals over Mg,n that the
integrals diverge whenever the external momenta go above the
threshold of production of intermediate states

– related to the fact that some particle propagating in the loop
has L+

0 < 0.

Therefore the apparent reality is only formal, and one has to
define the integral by analytic continuation.
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Witten’s iε prescription gives a way to define these integrals in a
way that makes them manifestly finite but complex.

But to construct a direct proof that the amplitudes defined this
way satisfy the Cutkosky rules is hard.

String field theory can be used to solve this problem. Pius, A.S.

Since string field theory defines the loop amplitudes as
momentum integrals in complex momentum space, it
automatically comes with some ‘iε prescription’.

1. One can give a direct proof of Cutkosky rules using Feynman
diagram analysis.

2. One can show that this agrees with Witten’s iε prescription.
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Domain of analyticity:

Consider a general amplitude characterized by a set of
Mandelstam variables:

sij = −(pi + pj)
2

In which domain in the complex sij plane is the S-matrix
analytic?

– related to the question of crossing symmetry (ability to
analytically continue from one physical channel to another)

– believed to be related to the question of locality
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In principle this question can be addressed without going
off-shell but at present this seems to be hard.

The generalization of Witten’s iε prescription for complex
external momenta is not known yet.
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String field theory allows us to use an old approach in
(axiomatic) quantum field theory.

Jost, Lehmann; Dyson; Bros, Messiah, Stora; Bros, Epstein, Glaser

1. Use the locality of the position space Green’s function to
prove analyticity of the off-shell momentum space Green’s
functions in certain primitive domain.

2. Then extend the domain using general properties of functions
of many complex variables.

3. Study the intersection of this domain with the mass-shell.

This has been generalized to string field theory. de Lacroix, Erbin, A.S.

Non-trivial step is step 1 since we do not have analog of position
space Green’s function on which we impose locality.

Instead we analyze momentum space Feynman diagrams
directly to find the primitive domain. 37



Examples of essential cases: Pius, Rudra, A.S.; A.S.

1. Vacuum shift

2. Mass renormalization
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For a given amplitude, the usual world-sheet description of
string perturbation theory gives one term at every loop order

– usually considered an advantage, but this may not always be
the case

e.g. in a quantum field theory, self energy insertions on external
legs need special treatment.

ll l
Steps required:

1. Separate graphs with self-energy insertions on external lines

2. Resum to compute off-shell 2-point function

3. Look for pole positions
39



In the usual world-sheet approach we do not do any of this.

Result: integration over Mg,n diverges from the separating type
degeneration.

×
×

×
×

40



Vacuum shift:

Suppose we have massless φ3 theory in which one loop
correction generates a term linear in φ:

V = A g−2
s φ3 − Bφ

A,B: constants, gs: coupling constant

Naive perturbation theory diverges.

Correct procedure: Expand the action around the minimum at
φ = gs

√
B/3A and derive new Feynman rules.

Not possible in usual string perturbation theory since we do not
have separate tadpole graphs. 41



Result: Tadpole divergence in integration over Mg,n.

×

×
×

In contrast, in string field theory we can deal with mass
renormalization and vacuum shift by following the standard
procedure in quantum field theory.
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Vacuum shift and mass renormalization in string field theory

Step 1. Construct the 1PI effective action

{A1 · · ·AN}1PI: 1PI amplitude of states A1, · · · ,AN computed from
the string field theory

{A1 · · ·AN}1PI =
∑

g

(gS)2g
∫
Rg,N

〈· · ·A1 · · ·AN〉g,N

Rg,N: a subspace of Mg,N corresponding to sum of 1PI diagrams

S1PI =
1

g2
S

[
−1

2
〈φ|c−0 QB G|φ〉+ 〈φ|c−0 QB|ψ〉+

∞∑
N=1

1
N!
{ψN}1PI

]
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Step 2: Derive equations of motion from S1PI

QB(G|φ〉 − |ψ〉) = 0

QB|φ〉+
∞∑

N=0

1
N!

[ψN] = 0

[A1 · · ·AN] ∈ H is defined via:

〈A|c−0 [A1 · · ·AN]〉 = {A A1 · · ·AN}1PI

Combine two equations to get the interacting field equation:

QB|ψ〉+
∞∑

N=0

1
N!

G [ψN] = 0

Systematically construct the vacuum solution in the zero
momentum sector in power series in gs:

QB|ψv〉+
∞∑

N=0

1
N!

G [ψN
v ] = 0
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Step 3. Define
|χ〉 = |ψ〉 − |ψv〉

and expand the action in powers of |χ〉 to derive new Feynman
rules.

For mass renormalization, analyze linearized equations of
motion of |χ〉 in the background |ψv〉.

Result:

QB|χ〉+
∞∑

N=0

1
N!

G [ψN
v χ] = 0

Solve this equation systematically in a power series in gs

If the solution exists at p2 + M2 = 0 then M is the renormalized
mass.

Solutions which exist for all p are pure gauge 45



Details of the iterative construction of the vacuum solution:

Suppose |ψk〉 is the solution to order gs
k. (|ψ0〉 = 0)

P: projection operator to L+
0 ≡ L0+L̄0 = 0 states.

Then

|ψk+1〉 = −
b+

0

L+
0

k+1∑
N=0

1
N!

(1− P) G [ψN
k ] + |ξk+1〉 ,

|ξk+1〉 is an L+
0 = 0 state satisfying

QB|ξk+1〉 = −
k+1∑
N=0

1
N!

P G [ψN
k ] +O(gs

k+2) .
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|ψk+1〉 = −
b+

0

L+
0

k+1∑
N=0

1
N!

(1− P) G [ψN
k ] + |ξk+1〉 ,

QB|ξk+1〉 = −
k+1∑
N=0

1
N!

P G [ψN
k ] +O(gs

k+2) .

Possible obstruction to solving these arise from the second
equation.

rhs could contain a component along a non-trivial element of
BRST cohomology.

– reflects the existence of zero momentum massless tadpoles in
perturbation theory.

Unless this equation can be solved we have to declare the
vacuum inconsistent.
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|ψk+1〉 = −
b+

0

L+
0

k+1∑
N=0

1
N!

(1− P) G [ψN
k ] + |ξk+1〉 ,

QB|ξk+1〉 = −
k+1∑
N=0

1
N!

P G [ψN
k ] +O(gs

k+2) .

Once these equations have been solved, we do not encounter
any further tadpole divergence in perturbation theory.

Note: The full solution |ψv〉 is |ψ∞〉, but in practice we shall stop
at some fixed order in gs.

Similar iterative procedure can be used to solve linearized
equations for fluctuations around the vacuum and hence the
renormalized masses.
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This also allows us to deal with the cases involving multiple
solutions, e.g. when a scalar field χ in low energy theory has
potential

c g−2
s (χ2 − K gs

2)2 .

At order gs we have three solutions χ = 0,±gs
√

K.

In 1PI effective string field theory this will be reflected in the
existence of multiple solutions for |ψ1〉.

The solution corresponding to χ = 0 will have non-zero dilaton
one point function at higher order

⇒ an obstruction to extending the corresponding 1PI effective
field theory solution to higher order.

The solutions corresponding to χ = ±gs
√

K will not encounter
such obstructions.
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This situation arises in SO(32) heterotic string compactification
on Calabi-Yau manifolds.

String field theory analysis reproduces all the results expected
from supersymmetry.

1. Existence of multiple solutions at low order.

2. Correct one loop renormalized scalar and fermion masses,
both at the maximum and the minimum of the potential.

3. Correct value of two loop dilaton tadpole at the maximum.

4. Vanishing dilaton tadpole at the minimum.
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Similar iterative approach can also be used to construct
solutions in string field theory corresponding to marginal
deformations by NSNS or RR fields. Cho, Collier, Yin
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Practical difficulties in pushing this to higher order:

Construction of 1PI effective action requires choosing local
coordinates on the world-sheet and PCO locations to define the
1PI vertices.

It is hard to find an explicit systematic procedure for making
these choices.

Final result is known to be independent of these choices but we
have to make these choices to do computation

Once a systematic procedure for making these choices is found
then one could make this into an automated procedure.
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So far there are two concrete proposals based on minimal area
metric and constant negative curvature metric.

Zwiebach; Moosavian, Pius

Requires more effort to make them into useful computational
tools.

Alternative approach: Try to develop a formalism where the
independence of physical quantities on the choice of local
coordinates and PCO locations is manifest all through the
computation.
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Conclusion

String field theory was originally designed to study
non-perturbative aspects of string theory.

However it is also a useful tool for making perturbation theory
well defined.

When the world-sheet approach works fine, we do not need
string field theory.

When in doubt, we can invoke string field theory.
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