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@ Multiloop string amplitudes provide useful insight into the
structure of terms in the effective action of string theory,
which encodes the dynamics of the massless modes of the
theory.

@ It yields S—matrix elements which contain terms both
analytic as well as non—analytic in the external momenta of
the particles.

@ Terms analytic in the external momenta arise from the
integration over the interior of the moduli space of the
Riemann surface.

@ Terms non—analytic in the external momenta arise from the
boundary of moduli space.
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Brief introduction

@ Calculating amplitudes becomes progressively difficult as
one considers higher genus string amplitudes.

@ Beyond tree level, one has to integrate over the geometric
moduli of the Riemann surface which is non—trivial.

@ At genus one, in order to calculate the analytic terms in the
low momentum expansion, it is very useful to obtain
eigenvalue equations which the modular invariant
integrand satisfies.

@ This helps us not only to have an understanding of the
detailed structure of the integrand, but also to calculate the
integral over moduli space.
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Brief introduction

@ At every genus if one considers the analytic terms, the
integrand at a fixed order in the derivative expansion can
be described diagrammatically by graphs, referred to as
modular graph functions.

@ Roughly, the vertices of the graphs are the positions of
insertions of the vertex operators on the worldsheet, while
the links are given by the scalar Green function connecting
the vertices.

@ These graphs depend on the moduli of the worldsheet and
transform with fixed weights under Sp(2g, Z)
transformations for the genus g Riemann surface, such
that the integrand is Sp(2g, Z) invariant.
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Brief introduction

@ Our aim is to understand certain properties of some
graphs at genus two.

@ We shall consider the low momentum expansion of the
genus two four graviton amplitude in type Il superstring
theory. The integrand is simpler than other string theories,
thanks to the maximal supersymmetry the type Il theory
enjoys.
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Brief introduction

@ Do these graphs satisfy some eigenvalue equation(s) on
moduli space?

@ The answer to this question generalizes in several ways
the structure of the eigenvalue equations obtained in other

cases.
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The genus two four graviton amplitude in type Il string theory

@ The genus two four graviton amplitude is the same in type
IIA and IIB string theory (Green,Kwon,Vanhove).

@ ltis given by (D’Hoker,Phong;Berkovits;Berkovits,Mafra)
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where | now define the various quantities.
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The genus two four graviton amplitude in type Il string theory

@ 2x%, = (2m) ™.
@ The period matrix is given by Q = X + iY, where X, Y are
matrices with real entries.

@ The measure is

‘dSQ|2 = H idQuy A dQ/J.
1<J

@ The integral is over My, the fundamental domain of
Sp(4,7).



The genus two four graviton amplitude in type Il string theory

@ The dynamics is contained in

06 _ VIP o> kkGlznz))2

where each factor of ¥ represents an integral over the
genus two worldsheet.



The genus two four graviton amplitude in type Il string theory

@ The string Green function is given by

w w

a)(im ")

where Y,;' = (Y~"),, E(z, w) is the prime form and w,
(I =1,2) are the abelian differential one forms.

G(z.w) = —In[E(z,w)P + 27 Y}, (m /
V4
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@ Finally,

3V = (t—u)A(1,2) AA(3,4) + (s — t)A(1,3) A A(4,2)
+(u—8)A(1,4) A A(2,3),

where the bi—holomorphic form is given by
A(i,j) = A(Z,', Zj)dZ,' A de = E/J(.U[(Zj) A WJ(Zj).
@ The Mandelstam variables are given by s =

—o(ky + k2)2/4, t=—-d (ki + k4)2/4, u=—ao(ky+ k3)2/4,
where Y, k; = 0 and k? = 0.



The genus two four graviton amplitude in type Il string theory

@ The amplitude is conformally invariant, as it is invariant
under
G(z,w) — G(z,w) + ¢(z) + c(w)

even though the string Green function G(z, w) is not.
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@ To consider the analytic terms in the low momentum
expansion, define

> P
B(s.t,u;2,Q) = Y BPI(Q,Q) leg?
p,q=0 P-q:

where
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@ To consider the analytic terms in the low momentum
expansion, define

o0 p
Bs.tu0.0)= Y Beo(©,0)72%
p.q=0 Pra

where
op=8"+1t"+u".
@ Thus B(P9)(Q, Q) is a sum of various graphs with distinct
topologies. Each of them involves factors of G(z, w) in the

integrand and hence is not generically conformally
invariant, even though it is modular invariant.
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The genus two four graviton amplitude in type Il string theory

@ Of course, the total contribution from all the graphs is
conformally invariant.

@ It is natural to consider contributions coming from graphs
each of which is conformally as well as modular invariant.



The genus two four graviton amplitude in type Il string theory

@ This is obtained by considering

A VP s kkG(z.2))2
Q,0)= [ AL g Eigkikd(az
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and performing the low energy expansion, where G(z, w) is
the conformally invariant Arakelov Green function.



The genus two four graviton amplitude in type Il string theory

@ To define the Arakelov Green function, consider the Kahler
form

1,4 o
m:Z TRZIEACD
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b

on using the Riemann bilinear relation

which satisfies

/U.)//\(.L)JZZY/J.
pN



The genus two four graviton amplitude in type Il string theory

@ The Arakelov Green function is defined by
G(z,w) = G(z,w) —~(2) = (W) +n,

where

and



The genus two four graviton amplitude in type Il string theory

@ Defining the dressing factor

(21,2Z2) = Y wi(21)wa(22),

we obtain the useful relation

/ u(2)(z, w) =0,

z

where p(z) = (z2,2).



Modular graph functions for the D8R4 term

@ Let us consider the modular graphs that arise at low orders
in the momentum expansion.



Modular graph functions for the D8R4 term

@ The D*R* term is given by (D’Hoker,Gutperle,Phong)

1 [ |A(1,2) AA(B,4)2
1,0 _ ) _
BU9(Q,Q) = 2/24 etV =32




Modular graph functions for the D8R4 term

@ The DSR* term is given by

1 IA(1,2) A A(3,4) — A(1,4) AA(2,3))?

ONO. 0y = _—_
ERQ) = =3 [, (detY)?
< (9(21.22) + G(28, 24) — G(21,28) = U(22. 24))
2
— 16/ [[?z6(z1, 22)P(21, 22),
2
where

P(21,22) = (21, 22)(22, 7).



Modular graph functions for the D8R4 term

@ This graph is given by the Kawazumi—Zhang invariant and
satisfies an eigenvalue equation.
(D’Hoker,Green,Pioline,Russo)



Modular graph functions for the D8R4 term

@ This graph is given by the Kawazumi—Zhang invariant and
satisfies an eigenvalue equation.
(D’Hoker,Green,Pioline,Russo)

@ All modular graphs are given by skeleton graphs with links
given by Arakelov Green function, along with dressing
factors involving the integrated vertices.



Modular graph functions for the D8R4 term

@ The D8R* term is given by

BED@Q.0) = 7 /24 (detY)?

X <9(21 ,24) + G(22,23) — G(21, 23) — G(22, Z4)>2-



Modular graph functions for the D8R4 term

@ Thus there are modular graph functions of three distinct
topologies involving two factors of the Arakelov Green
function, with skeleton graphs depicted by

0 L

® (ii) (iii)
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Modular graph functions for the D8R4 term

@ We denote

3
B29(Q,0) =Y B82Y(0.0),
i=1

where we define sz’o)(Q, Q) next.



Modular graph functions for the D8R4 term

@ We have that

- A(1,2) A A(3,4)?
0@ — [ BEAAEE e 2

2
_ 4/2Hd2z,-g(z1,z2)2o1(z1,z2),
i

where
Q1(21, 22) = p(21)(22).



Modular graph functions for the D8R4 term

@ We have that

i} A(1,2) A A3, 4)2
00 - -2 [ SR o 2002

3
- 4/2 [ #26(21, 22)G(21, 25)11(21) P(22, 23).

3
i=1



Modular graph functions for the D8R4 term

@ We have that

_ A(1,2) A A(3,4)2
Béz)o)(Q’Q) — /24 ’ ( (()kgty)g )’ g(Z17Z4)g(22a23)

4
= /Hd22i9(21,Z4)g(22723)P(Z1722)P(23,Z4)-
5

4
i=1
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Varying the Beltrami differentials

@ Our aim is to obtain eigenvalue equation(s) satisfied by
genus two modular graphs on moduli space.

@ Variations of the moduli are captured by variations of the
Beltrami differentials.

@ The holomorphic deformation with respect to the Beltrami
differential 1 is given by

1
S = P /z AWl Sy
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Varying the Beltrami differentials

@ We shall obtain the eigenvalue equation by first performing
holomorphic and then anti-holomorphic variations with
respect to the the Beltrami differentials of each modular
graph.

@ The relevant formulae can be derived using the known
relations for the variations of the abelian differentials,
period matrix and the prime form.
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Varying the Beltrami differentials

@ We also use the formulae

Ow0:G(z,w) = 2m0%(z — w) — n(z, W),
0,0,G(z,w) = —2m6%(z—w)+ gu(z)

very often.



Varying the Beltrami differentials

@ For the holomorphic variations, we use
SuwwG(21,22) = —0wG(W, 21)0wG(W, 22)
1 _
~3 [ Putw 00uG(w. 1)ou(9(u.21) + 6(u. 2)).
>



Varying the Beltrami differentials

@ For the anti-holomorphic variations, we also use

SuuOwG(w,z) = w(w,U)(éug(u,z)—%a,g(u,w))

+Z/Zdzx(x,u)(W,X)aug(Uax)-



Varying the Beltrami differentials

@ For the anti-holomorphic variations, we also use

Bu0uG(w.2) = m(w.0)(3,6(u.2) - 50u6(u. W)
+Z/Zdzx(x,u)(W,X)aug(Uax)-

@ This leads to manifestly conformally covariant expressions.
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@ By varying the Beltrami differentials, we perform the mixed
variation for each of the three modular graphs.
@ For each graph B,(z’o), we obtain contributions involving

four, two and zero derivatives (B$2’0) has no contribution
involving zero derivatives).

@ They act on the Arakelov Green functions.
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The eigenvalue equation for some modular graphs

@ Schematically, the contributions with four derivatives are of
the form 925, 929,0; + h.c., and 8ydudz, 0z + h.c. .
@ The contributions with two derivatives are of the form 9,,0,,.

@ Hermitian conjugation means w «> U in the various
expressions as well.
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The eigenvalue equation for some modular graphs

@ First let us consider the terms involving four derivatives
that arise from the mixed variations of the graphs [552’0).

@ We shall consider the terms involving two and no
derivatives later.
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@ Varying 652,0), we get that

1
85uu5wa Z ¢1 o

@ Varying 8(2 9 we get that

1

E
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The eigenvalue equation for some modular graphs

@ Varying 652,0), we get that

1
85uu5wa Z ¢1 o

@ Varying 8(2 9 we get that

E
1_
_géuu(;WWBéz’O) = z_: bo o +
@ Varying 3(2 0 , We get that
15 B Z ®
D) uu9Oww 3a



The eigenvalue equation for some modular graphs

@ Here ¢, (a« = A, B, C, D, E) involves the various
contributions with four derivatives, and we have ignored
other contributions.



The eigenvalue equation for some modular graphs

@ Here ¢, (a« = A, B, C, D, E) involves the various
contributions with four derivatives, and we have ignored
other contributions.

@ ltis very useful to denote the various contributions by
skeleton graphs. We do not include the dressing factors for
the sake of brevity.



The eigenvalue equation for some modular graphs

@ The skeleton graphs for (i)®4 4, (ii)®2 4 and (iii)®3 4 are
given by

@) (ii) (iii)
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The eigenvalue equation for some modular graphs

@ For example,

Pra = / H dZZ,‘Q1(Z1,22)awg(W7 21)0wG(W, 22)
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on including the dressing factor.



The eigenvalue equation for some modular graphs

@ For example,

Pra = / H dZZ,‘Q1(Z1,22)awg(W7 21)0wG(W, 22)
y2

i=1,2
x9uG (U, 21)0uG (U, Z5)
on including the dressing factor.

=2
@ These graphs are of the form 92,9,,.



The eigenvalue equation for some modular graphs

@ The skeleton graphs for (/)®4 g and (if)®3 g are given by

(i) (i1)

along with their hermitian conjugates.
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The eigenvalue equation for some modular graphs

@ The skeleton graphs for (/)®3 ¢, (ii)®3 p and (iif)®3 £ are
given by

Anirban Basu



The eigenvalue equation for some modular graphs

@ These graphs are of the form 9,,0,0,,9,, + h.c. .
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The eigenvalue equation for some modular graphs

@ Thus these terms that result from the mixed variations of
B,(Z’O) do not simplify by themselves.

@ However it is expected that certain linear combinations of
these terms involving different 852’0) can potentially
simplify, much like the analysis for genus one graphs.



The eigenvalue equation for some modular graphs
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varying Bgz,O) and Bf’o).



The eigenvalue equation for some modular graphs

@ Let us first consider the contributions that arise from
varying Bgz,O) and Bf’o).
@ These are the contributions that involve ®4 , and @, ,,.



The eigenvalue equation for some modular graphs

@ Consider the auxiliary graph given by

biop = / H dzz,-awg(w,z1)6wg(w,22)5ug(u,z1)
3

=123
x0uG (U, Z3)1(21)(22, 23)02,02,G(22, 23).

[o2]
(o7
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The eigenvalue equation for some modular graphs

@ Consider the auxiliary graph given by

UIPWIEES /zs H d?zi0wG(W, 21)0wG (W, 22)04G (U, 21)
=123
xOuG (U, 23)1(21)(22, 23)D2,02,G (22, Z3).

@ We denote it by the skeleton graph

S )

[o2]
(o7

Anirban Basu
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@ We get that
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The eigenvalue equation for some modular graphs

@ We get that
P14 =7(2P1 4+ P2 4).

@ For the other auxiliary graphs, we simply give the skeleton
graphs and ignore the dressing factors for brevity.



The eigenvalue equation for some modular graphs

@ From the auxiliary skeleton graph &4, g given by (along
with its hermitian conjugate)

(o7}

we get that
®12,8 = —m(201 5 + P2.B).
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The eigenvalue equation for some modular graphs

@ From the auxiliary skeleton graph &4, ¢ given by

we get that
Pip.c = (2P ¢ + Do 0).
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The eigenvalue equation for some modular graphs

@ From the auxiliary skeleton graph @45 p given by

we get that

®12,p = (21 p + P2,p).



The eigenvalue equation for some modular graphs

@ From the auxiliary skeleton graph ¢4, g given by

we get that

¢12,E = —47T(2¢1,E + ¢2,E)-
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proportional to
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The eigenvalue equation for some modular graphs

@ Crucially, we always end up with the expression
proportional to
2¢1,o¢ + ¢2,a-

@ Thus the mixed variation

— 1
Suwdn (BZ”) — 5B

can be expressed in terms of these auxiliary graphs, as
well as other contributions involving two or no derivatives.
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The eigenvalue equation for some modular graphs

@ What is special about these auxiliary graphs?

@ We can integrate a 9 and a 0 by parts in each such graph
to reduce it to contributions having only two derivatives.

@ Thus the mixed variation of 652,0) - Bgz’o)/z involves only
contributions having at most two derivatives.



The eigenvalue equation for some modular graphs

@ The contributions with derivatives are essentially given by
the skeleton graphs

(iv) (v)
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The eigenvalue equation for some modular graphs

@ Similar analysis shows that the mixed variation of

Béz’o) — B_g_z’o) /2 involves only contributions having at most
two derivatives.



The eigenvalue equation for some modular graphs

@ Similar analysis shows that the mixed variation of

Béz’o) — B_g_z’o) /2 involves only contributions having at most
two derivatives.

@ The skeleton graphs for the contributions with derivatives
are the same as above.
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The eigenvalue equation for some modular graphs

@ We can find a combination of the three modular graphs
whose mixed variation simplifies even further.

o This is given by BZ% — g9 4 p0),



The eigenvalue equation for some modular graphs

@ We have that

1_
Zéuuéww (652,0) — BéZ,O) + Bgz’o)> = <\U1 — WV, — \U3> + ®y.



The eigenvalue equation for some modular graphs

@ We have that

1_
Zéuuéww (652,0) — BéZ,O) + Bgz’o)> = <\U1 — WV, — \U3> + ®y.

@ V4, VW, and V3 involve two derivatives while ¢4 has no
derivatives.
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The eigenvalue equation for some modular graphs

@ Let us consider the contributions with derivatives.



The eigenvalue equation for some modular graphs

@ Including dressing factors, we have that

™

3
v = /23 HdZZ,'P(Zg,Z3)g(22,z3)8wg(wvz1 )gug(ua 21)
i=1

detY
xA(w, z1)A(u, zy).
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The eigenvalue equation for some modular graphs

@ Also, we have that

s

3
Y2 = _detY/ZSEdzzi(22721)(237U)Q(Zg,z3)823g(z17z3)

xOwG(w, z1)A(u, 22)A(w, zy),

along with its hermitian conjugate.



The eigenvalue equation for some modular graphs

@ This is given by the skeleton graph (along with its hermitian
conjugate)

d
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The eigenvalue equation for some modular graphs

@ Finally, we have that

Vs = detY /ZQHd 2i9(21, 22)0wG(W, 21)0u9 (U, 22) (22, Z1)

xA(w, z1)A(U, 22).



The eigenvalue equation for some modular graphs

@ This is given by the skeleton graph

o
|



The eigenvalue equation for some modular graphs

@ Let us consider the equation
1_
Z(Suuéww (Bszm - Bézm + 61(3270)> = <\U1 - Wz - \US) + ¢'0

once again.



The eigenvalue equation for some modular graphs

@ The right hand side has some terms which involve two
derivatives, which we would like to get rid of to get a simple
eigenvalue equation.



The eigenvalue equation for some modular graphs

@ The right hand side has some terms which involve two
derivatives, which we would like to get rid of to get a simple
eigenvalue equation.

@ We shall explain later why we want this.
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@ How to proceed to obtain such an equation? One
possibility is to consider more modular graphs which might
do the trick.



The eigenvalue equation for some modular graphs

@ How to proceed to obtain such an equation? One
possibility is to consider more modular graphs which might
do the trick.

@ Hence consider graphs with the same skeleton graphs as
before, but with different dressing factors.



The eigenvalue equation for some modular graphs

@ Recall that

0 L

® (ii) (iii)
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The eigenvalue equation for some modular graphs

@ We consider
8(20 —4/ Hd 7i6(zy, 2)°P(zy, 22)

which has the same skeleton graph as figure (i), but

different dressing factors compared to [552’0), and

3
BEY = 4/23 H d?2G(21,22)G(21, 23) (21, 22) (22, Z3) (23, Z7)
i1

which has the same skeleton graph as figure (ii), but
different dressing factors compared to 8(2 0)



The eigenvalue equation for some modular graphs

@ Also consider

4

BEY = /24 11 9?2i9(21, 24)G(22, z3) (21, Za) (24, Z5) (28, Z2) (22, Z7)
=1

and
4

BEY = /24 11 9?26(21, 24)5(22, 2)(21, 22) (22, Za) (24, Z5) (23, 1)
=1

which have the same skeleton graph as figure (iii), but
different dressing factors compared to Bgz’o).



The eigenvalue equation for some modular graphs

@ Including the dressing factors, we can denote them
graphically.



The eigenvalue equation for some modular graphs

e The graphs (i) B, (i) BE?, (i) BZY, (iv) BE?, (v)
Bgz’o), (vi) B(z 0) , and (vii) 8(2 0

lT:I
</>
=)

<
(i) (ii) (iii)
>
/ = /] \
~ [ IR,
{ S \ /
- ~— —<
(iv) ) (vi)
Af
(vii)
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The eigenvalue equation for some modular graphs

@ For the new graphs, we proceed as we had before for the
three graphs.
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@ For the new graphs, we proceed as we had before for the
three graphs.

@ We get that

1_

where ¢ has no derivatives.



The eigenvalue equation for some modular graphs

@ For the new graphs, we proceed as we had before for the
three graphs.

@ We get that

1_

where ¢ has no derivatives.

@ Strikingly, exactly the same set of terms with derivatives
arise in both the equations.



The eigenvalue equation for some modular graphs

@ Defining
2,0 2,0 2,0 2,0 2,0 2,0
B=(BEY - BE) - (BEO - BE) + (BEO - BEY),
we get that

1_



The eigenvalue equation for some modular graphs

@ Defining
2,0 2,0 2,0 2,0 2,0 2,0
B=(BEY - BE) - (BEO - BE) + (BEO - BEY),
we get that

1_

@ Thus there are no terms involving derivatives on the right
hand side of the equation.



The eigenvalue equation for some modular graphs

@ We are now in a position to obtain the eigenvalue equation
involving these modular graph functions.



The eigenvalue equation for some modular graphs

@ The left hand side of the equation is given by

1

ZS““(;WWg = m2w)(W)wy(W)wk (U)w, (U)01OKLB,

on using the expression for the partial derivative

1 0
= (1
o =5(1+) 50 a2y
in the composite index notation. This follows from the fact
that the holomorphic quadratic differential 6, ® for
arbitrary ¢ can be expanded in a basis of w;(w)wy(w) for
I < J, and similarly for the anti-holomorphic variation.



The eigenvalue equation for some modular graphs

@ Since there are no derivatives on the right hand side of the
equation, we can trivially pull out a factor of
wi(W)wy(w)wk (U)w (u) with coefficients that are
independent of w and u which follows from the structure of
the various terms.



The eigenvalue equation for some modular graphs

@ The terms involving derivatives have factors of 9 G(w, z)
and/or 9,G(u, Z') in the integrand, and hence this
simplification does not work.



The eigenvalue equation for some modular graphs

@ Thus expressing © as
© = 47w (W)wy(W)wk (U)wL (U)O:kL,
we have that
OwIKLB = Ok + Ouitk + Ourke + OurLk

on symmetrizing in /J and KL separately.



The eigenvalue equation for some modular graphs

@ Using the expressions for the Laplacian on moduli space
A=2 ( Yik Yoo+ Y YJK) OOk,

we get the equation

y
éAB = (YIK Yo+ Y YJK>@/J;KL.



The eigenvalue equation for some modular graphs

@ This gives us the desired eigenvalue equation
2,0 20\ 7 (20 2,0 2,0 2,0 2,0
2B =3(BE0 B30 ) 2B 140 14(BEO-BEY) -5

involving seven modular graph functions.



The eigenvalue equation for some modular graphs

@ Graphically
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The eigenvalue equation for some modular graphs

@ Similar manipulation of the D®R* term yields
ABOY = 550.1),

(D’Hoker,Green,Pioline,Russo)



The eigenvalue equation for some modular graphs

@ Similar manipulation of the D®R* term yields
ABOY = 550.1),

(D’Hoker,Green,Pioline,Russo)

@ This involves a modular graph which has only one factor of
the Green function.



The eigenvalue equation for some modular graphs

@ Similar manipulation of the D®R* term yields
ABOY = 550.1),

(D’Hoker,Green,Pioline,Russo)
@ This involves a modular graph which has only one factor of
the Green function.

@ Our analysis involves graphs with two factors of the
Arakelov Green function, with the extra factor of the Green
function in the integrand essentially leading to the need for
the involved analysis.



The eigenvalue equation for some modular graphs

@ Our analysis involves graphs beyond those that arise in the
four graviton amplitude upto this order in the derivative
expansion. We would like to know which amplitudes yield
them. Perhaps they arise in the low momentum expansion
of higher point amplitudes in the same theory.



The eigenvalue equation for some modular graphs

@ Our analysis involves graphs beyond those that arise in the
four graviton amplitude upto this order in the derivative
expansion. We would like to know which amplitudes yield
them. Perhaps they arise in the low momentum expansion
of higher point amplitudes in the same theory.

@ This procedure is general enough to be used at all orders
in the derivative expansion.



The eigenvalue equation for some modular graphs

@ We have obtained only one eigenvalue equation involving
several graphs. In order to integrate over moduli space, we
would like to obtain more differential equations involving
them. This, in general, would be quite interesting.



The eigenvalue equation for some modular graphs

@ Also interesting to analyse modular graphs in theories with
lesser supersymmetry, and in compactifications to lower
dimensions.
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