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Introduction

m We are interested in low-energy effective action of type IIB
superstring theory.

Lepr ~ R+ o FO (MR + o5 FP (1)d* R

m Good understanding on the modular functions of the
coefficient of R*, d*R* and d®R*. see Michael’s talk.

m We want to extend our understanding for general BPS-terms.
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m Brief review on the known results.

m Derive these results from a different point of view: Using
constraints from the consistency of superamplitudes.

m This allows us to extend the results to more general BPS
interactions

L) ~ FR0 df PR (e,

where i denotes a possible degeneracy.
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Review on non-holomorphic modular forms

m Non-holomorphic modular forms are functions of 7:
FP (7) = (er +d)" (c7 + d)" FP) ()

under SL(2,Z) transformation

ar + b
— .
ct+d

m Covariant derivatives

DuFL,(7) = (im0e + 5) RO ) = FPl (),
DW/F( P) (1) = (_17‘28 + > F(p) () = Fp)l wi1(T) -

m We will only consider the cases with w’ = —w
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Examples: Eisenstein series

m Well-known examples: non-holomorphic Eisenstein series

m+ n7\" TS
HCED D (o R
(mmzo) \M T/ m+ar]
It has weight (w, —w).

m Satisfies Laplace equation,
AME, (s,7) :=4Dy_1D_Ep(s,7)
=(s—w)(s+w—1)E,(s,7)
or
AYE,(s,7) :==4D_y_1DyEp(s,7)
=(s+w)(s—w—1)E,(s,7)
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| R4 and d4 R4 [Green, Gutperle + Vanhove][Green, Sethi][Basu][Pioline][Berkovits, Vafa]......
4 4 p4
Eo(3,7)RY, Eo(3,7)d"R

m Perturbative expansions in large T agree with explicit
computations

_1
2

3
Eo(3,7) =2((3)75 +4((2)7, * + instantons

m The coefficient of d®R* satisfies an inhomogeneous Laplace
€q uation [Green, Vanhove][Yin, Wang]

(89 - 12) AP (r) = ~Bo(3,7)?

as a consequence of first-order differential equations we will
derive.
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200

On-shell amplitudes and fluctuations

m To compute scattering amplitudes, we expand the effective
action around a fixed background 7°.

F(r° + 67) = F(7°) — 2im20, F(7°)# + 2im0; F(7°)F
— 273 02F(1°)8? — 2R 2F (%) 7% + - -
here # := ié7/(279).

m Example: if Féo)(’TO + 07) is the coefficient of R*, the
expansion generates five and higher-point interactions:
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000

SL(2,7Z) covariant derivatives

m Each vertex from expansion is in the form of simple
derivatives instead of SL(2,7Z) covariant derivatives:

m The fluctuation 7 does not transform properly under U(1).

m Two-derivative classical action, when expanded around 70
contains infinity set of U(1)-violating vertices. e.g.

O, TOHT

2 = OO F (14207 4+ 7) +3(77 + 277+ 77) + )
T2

they are all vanishing on-shell, no U(1)-violating amplitudes in
type IIB supergravity.
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Conclusion and remarks

SL(2,7Z) covariant derivatives

m The 2-derivative U(1)-violating vertices do contribute to

higher-derivative amplitudes, by attaching them to
higher-derivative vertices: R*7 etc.

These additional contributions precisely make the simple
derivatives to be covariant derivatives.
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00

Field redefinitions

m A systematics: A field redefinition that removes all these
on-shell vanishing vertices:

A 0
T T T
B_ j—

1—-7 7—-70

the normal coordinate of the sigma model G/H. Used
in schwarz, 831 for SU(1, 1) formulation of the classical theory.
m The field B kills two birds with one stone:

m The B field transforms linearly

=0
et 4+ d
B—-|——]B.
(CTO + d)
m Removes all U(1)-violating (on-shell vanishing) vertices in the
classical action.

10/28
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000

Field redefinition and covariant derivatives

m Expanded in terms of B fields:

F(r° + 67) = F(7°) = 2in0, F (%)% — 2r302F (°)#% + O(#°)
= F(7°) — 2in0, F(°)B +
+2 [-1302F(7°) + im0, F(7%)] B> + O(B)

Now each term is covariant derivatives

iT20, F(7°) = Do F(7°)
—722872.1:(7'0) + iTzaTF(TO) = D1D0F(TO)

11/28
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00e

Field redefinition: other fields

m Similar field redefinition for other fields in theory.
m Example: a fermionic term

. = _ 0,1
Ny (0, + ignQu)Na,  with Q= 2“721 .

The redefined field

A= A (1_,5_;>q/\/2.
277 \1-B

12/28
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Superamplitudes

m Summary: All interactions are manifestly SL(2,7Z) invariant,
with appropriate choices of the fluctuation fields.
m Ready to study scattering amplitudes:

m 10D spinor helicity and type 1IB SUSY:  [Boels and 0'Connell]
massless momentum

pPA = (1)BA p, = AB\A
A=1,...,16 is the spinor of SO(9,1) and a=1,...,8 the
S0(8) little group index.
m Supercharges

n n
= 0
Q= Nani, Q:\ZEZAIA’Qan?'
i=1 i=1 !

13/28
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Superamplitudes

m The on-shell massless states:

1 1 .
®(n) = B+n°Ny + ™0 bap + - + g1 (M°B.

qB:_2)q/\g:_%)"'7qh207"'aqé:21 and qn:*%-

m The super amplitudes

Ay =Y <Zpr> 3°(Qn) An(n,A),  with  QAx(n,\) =0,

r=1

U(1)-conserved amplitudes A, ~ 7*("=4).

14 /28
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Superamplitudes: maximal U(1)-violating

m Maximal U(1)-violating amplitudes [soel
ALY = 2 i(1)6(Q) AN si)
where i/ denotes a possible degeneracy.
m The maximal U(1)-violating amplitudes have no poles.

m Therefore /2\51’,’,.)(5,-1-) is a degree-p symmetric polynomial of s;;.
They are super vertices.

m In 4D, they are KLT of MHV ® MHV.

15/28
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Superamplitudes: maximal U(1)-violating

m Higher-point amplitudes are related to the lower-point ones by
soft limits.

m The coefficients are related by covariant derivatives,

Ffsli)4,i(7) ~ Dn75FISIi)5,i(T)

m The kinematics are related by soft limits (soft B field)

N

APV (s, o = AP i (s3)

m Covariant derivative is a result of combination of soft dilaton
(7'287—2/4,7) [Di Vecchia][Di Vecchia, Marotta, Mojaza, Nohle] and soft axion limit

(w22i RiAn).

16 /28
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Superamplitudes: maximal U(1)-violating

] AE,O,)(SU) = 1 is for dimension-8 interactions, related to R*,
(no degeneracy)

F,E(i)4(7—) ~Dp_5-- 'DOE(%?T) ~ En—4(%77)

] A£;2,)(5u) =D i 55 is for dimension-12 interactions, related to
d*R*, (no degeneracy)

F,52_)4(7—) ~ Dn—5 o 'DOE(%7T) ~ En—4(%77_)

17/28
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Superamplitudes: maximal U(1)-violating

| AS??(SU) ~ sg for dimension-14 interactions are genuinely new:

two independent kinematics (or interaction terms) for n > 6:

Oé?l) = 10253—1—3 Z 53-,(,

i<j i<j<k
(3) _ 3 3
Opr =2 Z S — Z Sijk ™~ Z 512534556 ;
i<j i<j<k P

| O((fl) appears at tree-level [schiotere], and goes to (’)é3) in the

soft.
n O((fz) is constructed to vanish in soft limit, it starts at one
loop. Soft implies no “naked”r, i.e. only appears as 0,7.

18 /28
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Superamplitudes: constraints and differential egs.

m The coefficient of Og’% is then 5531) ~ Dlé’{?’). (5§3)
coefficient of d®R*B).

] 5{3) ~ DOS(()3) (853) coefficient of d®R*) .

m The coefficients are constrained from the consistency of
superamplitudes:
m Consider six-point amplitude, e.g. As(h, h, h, h, B, B).

m The corresponding superamplitude (with < p'*) cannot have a
contact term, so it's uniquely determined by factorizations.

m Implies a linear relation among the coefficient of contact
diagram and those of factorization diagrams of the component
amplitude.[Yin, Wang]2 [Chen, Huang, C.W ]

19/28
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Superamplitudes: constraints and differential egs.

m Contributions to the Ag(h, h, h, h, B, B) at order p'*

B
pel® B &l B Eo(3) Eo(3)
= B ~ P4 )
(or' BB 5 A5 R4 5 R R

m The absence of supersymmetric contact terms requires

755{3) + Clgés) + C2E0(%)E0(%) =0.

20/28
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Superamplitudes: constraints and differential egs.

m The constants ¢, ¢; are in principle computable from
superamplitude, or use known perturbation results:

c = -3, CQ:Z.

m The first-order equation leads to the well-known
inhomogeneous Laplace equation [Green, vanhove]

(89— 12) &) = ~E( 7P,
and for 5:{3)(7')
1
(82 - 12) £(r) = -5 E(2) Bol3).

21/28
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Superamplitudes: constraints and differential egs.

m To study 55,31, 5532) of Oé?l), Oé?z), consider the seven-point

)

Az(h, h,h,h,B, B, B) at order p*

B
B
DY
lewpp B
@ ®
B B B
B
& B () ()
B
© @

22/28
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Superamplitudes: constraints and differential egs.

m Now, the super-amplitude constraint is
DE) + 36D + a2 E0(3)E1(3) = 0,
95(3) +b01E®) 4+ b Ey(2)EL(2) = 0.

Two independent equations due to two independent kinematics.

3)

m We actually know 5271 ~ D1€£3), so ai, a» are known
1
D~ 268 + B (E() =0,

m The equation for E( ) is more interesting.

23 /28
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Superamplitudes: constraints and differential egs.

m No tree-level term in S§

3 .
2) fixes one constant:

- 1
Del) + of (£ - HEMDE®D) =0

and an inhomogeneous Laplace equation
2 3
(4% —10) £ = a1 (B()EE) - BRER)) -

m ¢; can be determined by the 7-point superamplitude, or
6-point string amplitude at one loop.

m Explicit solution: perturbative terms:

E22(r) ~ (NI — 0P + 2¢O+ (€77).

24 /28
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Higher-point BPS terms

m There are two sets of dimension-14 terms: (’)( % and (’)( %

5 1
Og,{:3—2 28-3m)> s2+3 > sk | .

i<j i<j<k
Of?%— (n—4 Zsu Z sgk.
i<j i<j<k
m They are constructed such that
0513% pn—s0 " 0513—)1,1
01(1) pns0 " 513—)1,2

25/28
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Higher-point BPS terms

(] (’)S’% is related to d®R* via soft limits. The coefficients are
related by covariant derivatives: they are all determined.

m (95733 is related to Oé32) via soft limits. We know all the
coefficients, up to, one constant.

m The constant can be fixed either by a one-loop six-point
computation in type IIB string theory or the unique
seven-point superamplitude (Az(h, h, h, h, B, B, B)).

26 /28
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Conclusion and remarks

m In general, interactions can be separated into different sets.
These of the same set are related by soft limits and covariant
derivative D, .

m Consistency of superamplitudes imposes first-order D,, eqs.
on the modular forms of BPS terms.

m Interesting predictions for 11B superstring amplitudes, e.g.

m s, appears at one loop but vanishes at tree level.

m 01 ~ d°R*B? has tree and 1,3 loops, but not 2 loops.

27 /28



Conclusion and remarks

Thank you!

28/28
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