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Introduction

We are interested in low-energy effective action of type IIB
superstring theory.

LEFT ∼ R + α′3F
(0)
0 (τ)R4 + α′5F

(2)
0 (τ)d4R4

+ α′6F
(3)
0 (τ)d6R4 + · · · · · ·

Good understanding on the modular functions of the
coefficient of R4, d4R4 and d6R4. see Michael’s talk.

We want to extend our understanding for general BPS-terms.
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Outline

Brief review on the known results.

Derive these results from a different point of view: Using
constraints from the consistency of superamplitudes.

This allows us to extend the results to more general BPS
interactions

L(p)
n i ∼ F

(p)
w i (τ) d2p

(i) P
(w)
n ({Φ}) ,

where i denotes a possible degeneracy.
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Review on non-holomorphic modular forms

Non-holomorphic modular forms are functions of τ :

F
(p)
w,w′(τ)→ (cτ + d)w (c τ̄ + d)w

′
F

(p)
w,w′(τ)

under SL(2,Z) transformation

τ → aτ + b

cτ + d
.

Covariant derivatives

DwF
(p)
w,w′(τ) :=

(
iτ2∂τ +

w

2

)
F

(p)
w,w′(τ) := F

(p)
w+1,w′−1(τ) ,

D̄w′F
(p)
w,w′(τ) :=

(
−iτ2∂τ̄ +

w ′

2

)
F

(p)
w,w′(τ) := F

(p)
w−1,w′+1(τ) .

We will only consider the cases with w ′ = −w
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Examples: Eisenstein series

Well-known examples: non-holomorphic Eisenstein series

Ew (s, τ) =
∑

(m,n) 6=(0,0)

(
m + nτ̄

m + nτ

)w τ s2
|m + nτ |2s

It has weight (w ,−w).

Satisfies Laplace equation,

∆
(w)
− Ew (s, τ) := 4Dw−1D̄−wEw (s, τ)

= (s − w)(s + w − 1)Ew (s, τ)

or

∆
(w)
+ Ew (s, τ) := 4D̄−w−1DwEw (s, τ)

= (s + w)(s − w − 1)Ew (s, τ)

5 / 28



Introduction Review known results Expansions of fluctuations Superamplitudes Conclusion and remarks

d2pR4 terms

R4 and d4R4
[Green, Gutperle + Vanhove][Green, Sethi][Basu][Pioline][Berkovits, Vafa]......

E0( 3
2
, τ)R4 , E0( 5

2
, τ)d4R4

Perturbative expansions in large τ2 agree with explicit
computations

E0( 3
2
, τ) = 2ζ(3)τ

3
2

2 + 4ζ(2)τ
− 1

2
2 + instantons

The coefficient of d6R4 satisfies an inhomogeneous Laplace
equation [Green, Vanhove][Yin, Wang](

∆
(0)
− − 12

)
F

(3)
0 (τ) = −E0( 3

2
, τ)2

as a consequence of first-order differential equations we will
derive.
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Fluctuations

On-shell amplitudes and fluctuations

To compute scattering amplitudes, we expand the effective
action around a fixed background τ0.

F (τ 0 + δτ) = F (τ 0)− 2iτ2∂τF (τ 0)τ̂ + 2iτ2∂τ̄F (τ 0)¯̂τ

− 2τ 2
2 ∂

2
τF (τ 0)τ̂ 2 − 2τ̄ 2

2 ∂
2
τ̄F (τ 0)¯̂τ 2 + · · ·

here τ̂ := iδτ/(2τ0
2 ).

Example: if F
(0)
0 (τ0 + δτ) is the coefficient of R4, the

expansion generates five and higher-point interactions:

τ̂

τ̂
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Fluctuations

SL(2,Z) covariant derivatives

Each vertex from expansion is in the form of simple
derivatives instead of SL(2,Z) covariant derivatives:

The fluctuation τ̂ does not transform properly under U(1).

Two-derivative classical action, when expanded around τ 0

contains infinity set of U(1)-violating vertices. e.g.

∂µτ∂
µτ̄

4τ2
= ∂µτ̂ ∂

µ ¯̂τ
(
1 + 2(τ̂ + ¯̂τ) + 3(τ̂ 2 + 2τ̂ ¯̂τ + ¯̂τ 2) + · · ·

)
they are all vanishing on-shell, no U(1)-violating amplitudes in
type IIB supergravity.
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Fluctuations

SL(2,Z) covariant derivatives

The 2-derivative U(1)-violating vertices do contribute to
higher-derivative amplitudes, by attaching them to
higher-derivative vertices: R4τ̂ etc.

τ̂

τ̂

These additional contributions precisely make the simple
derivatives to be covariant derivatives.
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Field redefinition

Field redefinitions

A systematics: A field redefinition that removes all these
on-shell vanishing vertices:

B = − τ̂

1− τ̂
=
τ − τ0

τ − τ̄0

the normal coordinate of the sigma model G/H. Used
in [Schwarz, 83’] for SU(1, 1) formulation of the classical theory.
The field B kills two birds with one stone:

The B field transforms linearly

B →
(
c τ̄ 0 + d

cτ 0 + d

)
B .

Removes all U(1)-violating (on-shell vanishing) vertices in the
classical action.

10 / 28



Introduction Review known results Expansions of fluctuations Superamplitudes Conclusion and remarks

Field redefinition

Field redefinition and covariant derivatives

Expanded in terms of B fields:

F (τ0 + δτ) = F (τ0)− 2iτ2∂τF (τ0)τ̂ − 2τ2
2∂

2
τF (τ0)τ̂2 +O(τ̂3)

= F (τ0)− 2iτ2∂τF (τ0)B +

+ 2
[
−τ2

2∂
2
τF (τ0) + iτ2∂τF (τ0)

]
B2 +O(B3)

Now each term is covariant derivatives

iτ2∂τF (τ0) = D0F (τ0)

−τ2
2∂

2
τF (τ0) + iτ2∂τF (τ0) = D1D0F (τ0)
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Field redefinition

Field redefinition: other fields

Similar field redefinition for other fields in theory.

Example: a fermionic term

Λaγµ(∂µ + iqΛQµ)Λ̄a, with Qµ =
∂µτ1

2τ2
.

The redefined field

Λ′a = Λa

(
1− B

1− B̄

)qΛ/2

.
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Superamplitudes

Summary: All interactions are manifestly SL(2,Z) invariant,
with appropriate choices of the fluctuation fields.

Ready to study scattering amplitudes:

10D spinor helicity and type IIB SUSY: [Boels and O’Connell]

massless momentum

pBA := (γµ)BA pµ = λBaλAa .

A = 1, . . . , 16 is the spinor of SO(9, 1) and a = 1, . . . , 8 the
SO(8) little group index.

Supercharges

QA
n =

n∑
i=1

λAi,a η
a
i , Q̄A

n =
n∑

i=1

λA,ai

∂

∂ηai
.
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Superamplitudes

The on-shell massless states:

Φ(η) = B + ηaΛ′a +
1

2!
ηaηbφab + · · ·+ 1

8!
(η)8B̄ .

qB = −2, qΛ′a = −3
2 , · · · , qh = 0, · · · , qB̄ = 2, and qη = −1

2 .

The super amplitudes

An = δ10

(
n∑

r=1

pr

)
δ16(Qn) Ân(η, λ) , with Q̄A

n Ân(η, λ) = 0 ,

U(1)-conserved amplitudes Ân ∼ η4(n−4).

14 / 28



Introduction Review known results Expansions of fluctuations Superamplitudes Conclusion and remarks

Superamplitudes: maximal U(1)-violating

Maximal U(1)-violating amplitudes [Boels]

A
(p)
n,i = F

(p)
n−4,i (τ)δ16(Qn) Â

(p)
n,i (sij) ,

where i denotes a possible degeneracy.

The maximal U(1)-violating amplitudes have no poles.

Therefore Â
(p)
n,i (sij) is a degree-p symmetric polynomial of sij .

They are super vertices.

In 4D, they are KLT of MHV ⊗MHV.
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Superamplitudes: maximal U(1)-violating

Higher-point amplitudes are related to the lower-point ones by
soft limits.

The coefficients are related by covariant derivatives,

F
(p)
n−4,i (τ) ∼ Dn−5F

(p)
n−5,i (τ)

The kinematics are related by soft limits (soft B field)

Â
(p)
n,i (sij)

∣∣
pn→0

→ Â
(p)
n−1,i (sij)

Covariant derivative is a result of combination of soft dilaton
(τ2∂τ2An) [Di Vecchia][Di Vecchia, Marotta, Mojaza, Nohle] and soft axion limit
(w
∑

i RiAn).
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Superamplitudes: maximal U(1)-violating

Â
(0)
n,i (sij) = 1 is for dimension-8 interactions, related to R4,

(no degeneracy)

F
(0)
n−4(τ) ∼ Dn−5 · · · D0E ( 3

2
, τ) ∼ En−4( 3

2
, τ)

Â
(2)
n,i (sij) =

∑
i<j s

2
ij is for dimension-12 interactions, related to

d4R4, (no degeneracy)

F
(2)
n−4(τ) ∼ Dn−5 · · · D0E ( 5

2
, τ) ∼ En−4( 5

2
, τ)
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Superamplitudes: maximal U(1)-violating

Â
(3)
n,i (sij) ∼ s3

ij for dimension-14 interactions are genuinely new:
two independent kinematics (or interaction terms) for n ≥ 6:

O(3)
6,1 = 10

∑
i<j

s3
ij + 3

∑
i<j<k

s3
ijk ,

O(3)
6,2 = 2

∑
i<j

s3
ij −

∑
i<j<k

s3
ijk ∼

∑
P

s12s34s56 ,

O(3)
6,1 appears at tree-level [Schlotterer], and goes to O(3)

5 in the
soft.

O(3)
6,2 is constructed to vanish in soft limit, it starts at one

loop. Soft implies no “naked”τ , i.e. only appears as ∂µτ .
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Superamplitudes: constraints and differential eqs.

The coefficient of O(3)
6,1 is then E(3)

2,1 ∼ D1E(3)
1 . (E(3)

1

coefficient of d6R4B).

E(3)
1 ∼ D0E(3)

0 (E(3)
0 coefficient of d6R4) .

The coefficients are constrained from the consistency of
superamplitudes:

Consider six-point amplitude, e.g. A6(h, h, h, h,B, B̄).

The corresponding superamplitude (with ≤ p14) cannot have a
contact term, so it’s uniquely determined by factorizations.

Implies a linear relation among the coefficient of contact
diagram and those of factorization diagrams of the component
amplitude.[Yin, Wang]2 [Chen, Huang, C.W.]
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Superamplitudes: constraints and differential eqs.

Contributions to the A6(h, h, h, h,B, B̄) at order p14

B

B̄

D̄ E(3)
1

d6R4BB̄

B̄

B

E(3)
0

d6R4

B̄

B

E0( 3
2 ) E0( 3

2 )

R4∼ R4

The absence of supersymmetric contact terms requires

D̄E(3)
1 + c1E(3)

0 + c2E0( 3
2
)E0( 3

2
) = 0 .
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Superamplitudes: constraints and differential eqs.

The constants c1, c2 are in principle computable from
superamplitude, or use known perturbation results:

c1 = −3, c2 =
1

4
.

The first-order equation leads to the well-known
inhomogeneous Laplace equation [Green, Vanhove](

∆
(0)
− − 12

)
E(3)

0 (τ) = −E ( 3
2
, τ)2 ,

and for E(3)
1 (τ)(

∆
(1)
− − 12

)
E(3)

1 (τ) = −1

2
E1( 3

2
)E0( 3

2
) .
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Superamplitudes: constraints and differential eqs.

To study E(3)
2,1 , E

(3)
2,2 of O(3)

6,1, O
(3)
6,2, consider the seven-point

A7(h, h, h, h,B,B, B̄) at order p14

B̄

B

B

D̄ E(3)
2,1

d6R4B2B̄

(a)

B̄

B

B

D̄ E(3)
2,2

O(3)
6,2B̄

(b)

E(3)
1

B

B

B̄

(c)

E
(0)
0 ( 3

2 )

B̄

E
(0)
1 ( 3

2 )

BB

(d)
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Superamplitudes: constraints and differential eqs.

Now, the super-amplitude constraint is

D̄E(3)
2,1 + a1E(3)

1 + a2E0( 3
2
)E1( 3

2
) = 0 ,

D̄E(3)
2,2 + b1E(3)

1 + b2E0( 3
2
)E1( 3

2
) = 0 .

Two independent equations due to two independent kinematics.

We actually know E(3)
2,1 ∼ D1E(3)

1 , so a1, a2 are known

D̄E(3)
2,1 −

1

2
E(3)

1 +
1

40
E0( 3

2
)E1( 3

2
) = 0 .

The equation for E(3)
2,2 is more interesting.
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Superamplitudes: constraints and differential eqs.

No tree-level term in E(3)
2,2 fixes one constant:

D̄E(3)
2,2 + c ′1

(
E(3)

1 − 1

12
E0( 3

2
)E1( 3

2
)

)
= 0 ,

and an inhomogeneous Laplace equation(
∆

(2)
− − 10

)
E(3)

2,2 = −c1 (E0( 3
2
)E2( 3

2
)− E1( 3

2
)E1( 3

2
)) .

c1 can be determined by the 7-point superamplitude, or
6-point string amplitude at one loop.

Explicit solution: perturbative terms:

E2,2(τ) ∼ ζ(2)ζ(3)τ2 −
4

15
ζ(2)2τ−1

2 +
1

15
ζ(6)τ−3

2 + (e−2πτ2 ) .
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Higher-point BPS terms

There are two sets of dimension-14 terms: O(3)
n,1 and O(3)

n,2

O(3)
n,1 =

1

32

(28− 3n)
∑
i<j

s3
ij + 3

∑
i<j<k

s3
ijk

 ,

O(3)
n,2 = (n − 4)

∑
i<j

s3
ij −

∑
i<j<k

s3
ijk .

They are constructed such that

O(3)
n,1

∣∣
pn→0

→ O(3)
n−1,1

O(3)
n,2

∣∣
pn→0

→ O(3)
n−1,2
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Higher-point BPS terms

O(3)
n,1 is related to d6R4 via soft limits. The coefficients are

related by covariant derivatives: they are all determined.

O(3)
n,2 is related to O(3)

6,2 via soft limits. We know all the
coefficients, up to, one constant.

The constant can be fixed either by a one-loop six-point
computation in type IIB string theory or the unique
seven-point superamplitude (A7(h, h, h, h,B,B, B̄)).
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Conclusion and remarks

In general, interactions can be separated into different sets.
These of the same set are related by soft limits and covariant
derivative Dw .

Consistency of superamplitudes imposes first-order D̄w eqs.
on the modular forms of BPS terms.

Interesting predictions for IIB superstring amplitudes, e.g.

O6,2 appears at one loop but vanishes at tree level.

O6,1 ∼ d6R4B2 has tree and 1, 3 loops, but not 2 loops.
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Thank you!
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