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Motivation

Compute the n-point open superstring correlator at one loop using
worldsheet methods
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Essential requirements

Correlator Kn(`) defined by:

An =
∑
top

Ctop

∫
Dtop

dτ dz2 dz3 . . . dzn

∫
dD` |In(`)| 〈Kn(`)〉

such that:

1 BRST invariant (ie susy and gauge invariant)

QKn(`) = 0

2 monodromy invariant
DKn(`) = 0
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Summary of results

Correlators built from:

1 kinematic factors in pure spinor superspace
2 worldsheet functions at genus one surface

Outcome: a beautiful Lie-polynomial structure

Kn(`) =
n−4∑
r=0

1

r !

(
VA1T

m1...mr
A2,...,Ar+4

Zm1...mr
A1,...,Ar+4

+
[
12 . . . n|A1, . . . ,Ar+4

])
+ corrections

Duality between BRST and monodromy operators (BRST invariants
vs generalized elliptic integrands)

Q ↔ D
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Examples

4 points (Berkovits 2004)

K4(`) = V1T2,3,4Z1,2,3,4

kinematic factor is BRST invariant

V1T2,3,4 ≡
1

3
(λA1)

(
(λγmW2)(λγmW3)F 4

mn + cyc(2, 3, 4)
)

QV1T2,3,4 = 0

worldsheet functions are monodromy invariant

Z1,2,3,4 ≡ 1
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5 point correlator

K5(`) = V1T
m
2,3,4,5Zm

1,2,3,4,5

+ V12T3,4,5Z12,3,4,5 + (2↔3, 4, 5)

+ V1T23,4,5Z1,23,4,5 + (2, 3|2, 3, 4, 5)

kinematic factors VATB,C ,D and VAT
m
B,C ,D,E in pure spinor

superspace with covariant BRST variations

one-loop worldsheet functions ZA,B,C ,D and Zm
A,B,C ,D,E from

Kronecker–Einsestein series and loop momentum with covariant
monodromy variations
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5pt BRST & monodromy invariance

There is a strong interplay between kinematics and worldsheet functions:

The 5-pt correlator is BRST invariant due to a total derivative:

QK5(`) = −V1V2T3,4,5

[
km2 Zm

1,2,3,4,5 +
[
s21Z21,3,4,5 + (1↔ 3, 4, 5)

]]
+ (2↔ 3, 4, 5) ∼= 0

The 5-pt correlator is single valued due to BRST cohomology ids
(BRST exact terms)

DK5(`) = Ω1

(
km1 V1T

m
2,3,4,5 +

[
V12T3,4,5 + 2↔ 3, 4, 5

])
+ Ω2

(
km2 V1T

m
2,3,4,5 + V21T3,4,5 +

[
V1T23,4,5 + 3↔ 4, 5

])
+ (2↔ 3, 4, 5) ∼= 0
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Examples

6 point correlator

K6(`) =
1

2
V1T

mn
2,3,4,5,6Zmn

1,2,3,4,5,6

+
[
V12T

m
3,4,5,6Zm

12,3,4,5,6 + (2↔ 3, 4, 5, 6)
]

+
[
V1T

m
23,4,5,6Zm

1,23,4,5,6 + (2, 3|2, 3, 4, 5, 6)
]

+
[
V123T4,5,6Z123,4,5,6 + V132T4,5,6Z132,4,5,6 + (2, 3|2, 3, 4, 5, 6)

]
+
[
(V12T34,5,6Z12,34,5,6 + cyc(2, 3, 4)) + (2, 3, 4|2, 3, 4, 5, 6)

]
+
[
(V1T2,34,56Z1,2,34,56 + cyc(3, 4, 5)) + (2↔ 3, 4, 5, 6)

]
+
[
V1T234,5,6Z1,234,5,6 + V1T243,5,6Z1,243,5,6 + (2, 3, 4|2, 3, 4, 5, 6)

]
Nice combinatorics of Stirling set and cycle numbers:

K6(`) =
2∑

r=0

1

r !

(
VA1T

m1...mr
A2,...,Ar+4

Zm1...mr
A2,...,Ar+4

+
[
12 . . . 6|A1, . . . ,Ar+4

])
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6pt anomaly cancellation (Green, Schwarz 84)

6pt correlator is not BRST invariant by itself

However BRST variation is a total derivative on moduli space

QK6(`) = −1

2
V1Y2,3,4,5,6Zmm

1,2,3,4,5,6 = −2πi V1Y2,3,4,5,6
∂

∂τ
log I6(`) ∼= 0 ,

where Y2,3,4,5,6 is the anomaly kinematic factor (CM, Berkovits 2006)

Y2,3,4,5,6 ≡
1

2
(λγmW2)(λγnW3)(λγpW4)(W5γmnpW6)

To show this need identities for τ derivatives of the
Kronecker-Eisenstein series, several BRST variations etc

So anomaly cancels after summing over one-loop topologies for
SO(32) (Green, Schwarz 84)
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Derivations
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Pure spinor amplitude prescription at one loop

A1 =

∫
moduli

〈
(µ, b)(PCs)V 1(0)

∫
dz U2 · · ·

∫
dz Un

〉

vertex operators using SYM superfields Aα(x , θ), Am(x , θ), W α(x , θ)
and Fmn(x , θ)

V = λαAα(x , θ),

U = ∂θαAα + AmΠm + dαW
α +

1

2
NmnFmn

CFT calculation: zero modes and OPEs

OPEs among vertices organized using multiparticle superfields with
covariant BRST variations (CM, Schlotterer ‘14)

b ghost and PCOs complications bypassed by completing the known
parts of the correlators from OPEs to BRST-invariant and
single-valued answers
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SYM description in 10D

Single-particle (i is particle label) (Witten’86)

Ki ∈ {Ai
α, A

m
i , W

α
i , F

mn
i }

Multiparticle (B is a “word” with particle labels)

KB ∈ {AB
α , A

m
B , W

α
B , F

mn
B }

Inspired by OPE computations and defined recursively, eg

W α
1 = W α

1

W α
12 =

1

4
(γmnW 2)αF 1

mn + W α
2 (k2 · A1)− (1↔ 2)

W α
123 = −(k12 · A3)W α

12 +
1

4
(γrsW 3)αF 12

rs − (12↔ 3)

+
1

2
(k1 · k2)

[
W α

2 (A1 · A3)− (1↔ 2)
]
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Generalized SYM equations of motion

Superfields in KB satisfy generalized SYM EOMs, eg

DαW
β
1 =

1

4
(γmn)α

βF 1
mn

DαW
β
12 =

1

4
(γmn)α

βF 12
mn

+ (k1 · k2)(A1
αW

β
2 − A2

αW
β
1 )

DαW
β
123 =

1

4
(γmn)α

βF 123
mn

+ (k1 · k2)
[
A1
αW

β
23 + A13

α W β
2 − (1↔ 2)

]
+ (k12 · k3)

[
A12
α W β

3 − (12↔ 3)
]
,

In general:

DαW
β
P =

1

4
(γmn)α

βFP
mn +

∑
P=XjY
Y=R�S

(kX · kj)
[
AXR
α W β

jS − AjR
α W β

XS

]
,

Similar EOMs for AB
α ,A

m
B ,F

mn
B
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Generalized Jacobi symmetries

The superfields KB satisfy generalized Jacobi symmetries

0 = K12 + K21,

0 = K123 + K231 + K312, (Jacobi identity)

0 = K1234 − K1243 + K3412 − K3421

0 = KA`(B) + KB`(A)

`(A) is the Dynkin operator (left-to-right nested brackets)

These are the same symmetries obeyed by nested commutators

K1234...p ≡ K`(P) = K[...[[[1,2],3],4],...,p]

BCJ identities/numerators are natural in this framework

BRST operator is λαDα so multiparticle superfields lead to (a rich)
BRST algebra, cohomology identities etc
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Zero-mode prescription and building blocks

An analysis of the PS prescription leads to a zero-mode contribution
of dαdβN

mn from the vertices (Berkovits ‘04)

Four points
K4 = 〈V1U2U3U4〉ddN = 〈V1T2,3,4〉

where

T2,3,4 =
1

3
(λγmW2)(λγmW3)Fmn

4 + cyc(2, 3, 4)

Higher points: multiparticle version (CM, Schlotterer ‘12)

TA,B,C =
1

3
(λγmWA)(λγmWB)Fmn

C + cyc(A,B,C )

at 5pts
V12T3,4,5, V1T23,4,5 + perm

Also tensorial generalization (VAT
mn...
B,C ,D,E ,...)
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One-loop superstring correlators
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Recalling: Lie polynomials

A Lie polynomial is an expression written in terms of nested commutators

Ree theorem

If ZP satisfies shuffle symmetries ZA�B = 0 and tpi are non-commutative
indeterminates then ∑

P

Zp1p2p3...t
p1tp2tp3 · · ·

is a Lie polynomial

Example: Z12 satisfies shuffle if it is antisymmetric, so

Z12t
1t2 + Z21t

2t1 = Z12[t1, t2]

is a Lie polynomial
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Lessons from tree-level (CM, Schlotterer, Stieberger 2011)

n-point disk correlator can be rewritten in a suggestive way:

Ktree
n =

∑
AB=23...n−2

(
Ztree
1A V1A

)(
Ztree
n−1,BVn−1,B

)
Vn + perm(23 . . . n − 2) .

1 Worldsheet functions satisfy shuffle symmetries

Ztree
123...p ≡

1

z12z23 . . . zp−1,p
−→ Ztree

A�B = 0

2 associated kinematics satisfy generalized Jacobi symmetries

VP ≡ λαAP
α −→ VA`(B) + VB`(A) = 0

This has the same structure of a Lie polynomial!∑
P

Ztree
P VP
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Ansatz for one-loop correlators

Tree-level reinterpretation key to unlock the one-loop correlators

1 Assume Lie-polynomial structure for one-loop correlators:

Kn →
∑
ZA,B,C ,DVATB,C ,D + · · ·

2 kinematic factors VATB,C ,D satisfying generalized Jacobi symmetries

3 one-loop worldsheet functions ZA,B,C ,... satisfying shuffle symmetries

Singular behaviour of ZA,B,... as vertices collide is known from OPEs

Unlike at tree-level, OPEs don’t determine the complete functions as
regular pieces are not fixed by singularities

The shuffle-symmetry requirement was very helpful in fixing the functions
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Elliptic Functions

Re(z)

Im(z)

•0

•
τ

•1

•τ+1
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Kronecker–Einsenstein series

The Kronecker–Eisenstein series is defined as

F (z , α, τ) ≡ θ′1(0, τ)θ1(z + α, τ)

θ1(α, τ)θ1(z , τ)
≡
∞∑
n=0

αn−1g (n)(z , τ) (1)

θ1(z , τ) is Jacobi odd theta function

Expansion in α defines meromorphic functions (Brown, Levin)

g (0)(z , τ) = 1

g (1)(z , τ) = ∂z ln θ1(z , τ)

2g (2)(z , τ) = (∂z ln θ1(z , τ))2 + ∂2z ln θ1(z , τ)− θ
′′′
1 (0, τ)

3θ′1(0, τ)

Notation: g
(n)
ij ≡ g (n)(zi − zj , τ)
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Kronecker-Eisenstein coefficient functions

g (1)(z , τ) = ∂ log θ1(z , τ) is the genus-one generalization of tree-level
1/z function

g (n)(z , τ) for n ≥ 2 have no singularities on the surface as z → 0

g (n)(z , τ) are single-valued around a-cycles

monodromies around b-cycles given by

Dg
(n)
ij = Ωijg

(n−1)
ij

where D is a monodromy operator

g
(n)
ij satisfy Fay identities, eg

g
(1)
12 g

(1)
23 + g

(2)
12 + cyc(1, 2, 3) = 0

can argue that D`m =
∑

i Ωik
m
i
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Shuffle symmetric functions

PS zero-mode rules and OPEs imply at low multiplicities

Z1,2,3,4 = 1

Z12,3,4,5 = g
(1)
12 , Zm

1,2,3,4,5 = `m

Z12,3,4,5 is antisymmetric in [12], so it obeys shuffle symmetry

Casting the 4 and 5-pt correlators in Lie-polynomial form we get

K4(`) = V1T2,3,4Z1,2,3,4

K5(`) = V1T
m
2,3,4,5Zm

1,2,3,4,5 +
[
V12T3,4,5Z12,3,4,5 + (2↔ 3, 4, 5)

]
+
[
V1T23,4,5Z1,23,4,5 + (2, 3|2, 3, 4, 5)

]
what about 6 points?
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One-loop correlators

We need a shuffle-symmetric one-loop counterpart of the tree-level

Ztree
123 =

1

z12z23

However, both

g
(1)
12 g

(1)
23 +

1

2
(g

(2)
12 + g

(2)
23 )

and
g
(1)
12 g

(1)
23 + g

(2)
12 + g

(2)
23 − g

(2)
13

satisfy shuffle symmetries in P = 123 (using Fay ids)

Which one to use at six points?

A new (double-copy) duality comes to the rescue! BRST invariants vs
elliptic functions
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BRST invariants
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Berends–Giele supercurrents

Defined from all planar binary trees dressed with propagators and KB

KB ∈ {AB
α ,Am

B ,Wα
B ,Fmn

B }

Satisfy simple EOMs

DαWβ
B = 1

4(γmn)α
βFB

mn +
∑

XY=B

(
AX
αW

β
Y −A

Y
αW

β
X

)
Berends-Giele supercurrents satisfy shuffle symmetries

KA�B = 0, ∀A,B 6= ∅
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Scalar BRST invariants

Define (λα is a pure spinor)

MB ≡ λαAα

MA,B,C ≡
1

3
(λγmWA)(λγnWB)Fmn

C + (C ↔ A,B) .

BRST variations (Q = λαDα)

QMB =
∑

XY=B

MXMY

QMA,B,C =
∑

XY=A

(
MXMY ,B,C −MYMX ,B,C

)
+ (A↔ B,C ) ,
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Scalar BRST invariants

BRST invariants: QC1|A,B,C = 0

Recursive construction (CM, Schlotterer’14)

C1|2,3,4 = M1M2,3,4

C1|23,4,5 = M1M23,4,5 + M12M3,4,5 −M13M2,4,5

C1|A,B,C = general formula known

Generalization for arbitrary tensor ranks (CM, Schlotterer 2014)

Simplest vector BRST invariant

Cm
1|2,3,4,5 = M1M

m
2,3,4,5 +

[
km2 M12M3,4,5 + (2↔ 3, 4, 5)

]
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BRST cohomology identities

BRST invariants satisfy BRST cohomology identities

Momentum contractions:

km2 Cm
1|2,3,4,5 +

[
s23C1|23,4,5 + (3↔ 4, 5)

]
= 0

Change of basis:

C2|34,1,5 = C1|34,2,5 + C1|23,4,5 − C1|24,3,5

C2|13,4,5 = −C1|23,4,5

Cm
2|1,3,4,5 = Cm

1|2,3,4,5 +
[
km3 C1|23,4,5 + (3↔ 4, 5)

]
Rich mathematical structure: free Lie algebra
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Worldsheet
functions/BRST-invariants duality
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Worldsheet function/BRST-invariants duality

A happy surprise!

One can show that

E1|23,4,5 = Z1,23,4,5 + Z12,3,4,5 −Z13,2,4,5

is is single valued, DE1|23,4,5 = 0

Seen this combinatoric pattern before: 5-pt BRST invariant

C1|23,4,5 = M1M23,4,5 + M12M3,4,5 −M13M2,4,5

satisfying QC1|23,4,5 = 0

Duality: elliptic functions vs BRST invariants (CM, Schlotterer ‘17)

E1|23,4,5 ←→ C1|23,4,5

DE1|23,4,5 = 0←→ QC1|23,4,5 = 0
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Worldsheet function/BRST invariant duality

Tensorial generalization (CM, Schlotterer ‘18)

Simplest example. From the BRST invariant

Cm
1|2,3,4,5 = M1M

m
2,3,4,5 +

[
km2 M12M3,4,5 + (2↔ 3, 4, 5)

]
satisfying QCm

1|2,3,4,5 = 0 one is led to define

Em
1|2,3,4,5 = Zm

1,2,3,4,5 +
[
km2 Z12,3,4,5 + (2↔ 3, 4, 5)

]
which happens to be single valued

DEm
1|2,3,4,5 = 0
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Worldsheet function/BRST invariant duality

Using the Jacobi theta functions and integration by parts can show

km2 Em
1|2,3,4,5 +

[
s23E1|23,4,5 + (3↔ 4, 5)

]
= 0

We have seen an identity of identical structure for the BRST
invariants:

km2 Cm
1|2,3,4,5 +

[
s23C1|23,4,5 + (3↔ 4, 5)

]
= 0

Similarly, identical symmetry relations hold for the GEIs

E2|34,1,5 = E1|34,2,5 + E1|23,4,5 − E1|24,3,5

E2|13,4,5 = −E1|23,4,5

Em
2|1,3,4,5 = Em

1|2,3,4,5 +
[
km3 E1|23,4,5 + (3↔ 4, 5)

]
,

Duality between elliptic functions and BRST invariants!
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Bootstraping worldsheet functions

This duality can be exploited to derive higher-point worldsheet
functions!

Inspired by the BRST variation written in terms of BRST invariants

QM123,4,5 = C1|23,4,5 − C3|12,4,5

assume the following monodromy variation of the 6pt worldsheet
function

DZ123,4,5,6 = Ω1E1|23,4,5,6 − Ω3E3|12,4,5,6

where the elliptic functions E1|23,4,5,6 are obtained from 5pt functions
using the combinatorics of 5pt BRST invariants
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Higher-point one-loop correlators

There is a unique solution:

Z123,4,5,6 = g
(1)
12 g

(1)
23 + g

(2)
12 + g

(2)
23 − g

(2)
13

This is the function we should use in 6pt ansatz!

Can solve all the other functions similarly: require the monodromy
variations of Zmn...

A,B,C ,... to match the BRST variation of the
corresponding Berends-Giele superfield MAM

mn...
B,C ,...
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Higher-point one-loop correlators

This structure generalizes to n-points including refined and anomalous
superfields (the “corrections” from the first slide)

Kn(`) ≡
b n−4

2
c∑

d=0

(−1)dK(d)
n (`) +KY

n (`)

Leads to BRST-invariant and single-valued 7-pt correlator

Puzzle at 8-points: modular form of weight four G4(τ) remains in the
BRST variation

Probably requires a new class of term that we missed, but the
Lie-polynomial structure of the correlator should be the same
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